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A class of diatomic 2-D soft granular crystals
undergoing pattern transformations

Bodhi Rudra, a Yunyao Jiang,b Yaning Lib and Jongmin Shim *a

We propose a class of diatomic 2-D soft granular crystals, which

features pattern transformation under compression with lateral

confinement. The proposed granular crystals are composed of

two different types of cylinders: large soft cylinders and small hard

cylinders. The pattern-transformable granular crystals are obtained

by exploring perturbed packing patterns as potential configurations,

and compression with lateral confinement as the driving force of the

transition. As a demonstration of the proof-of-concept, we first show

the results of desktop-scaled experiments and finite element simula-

tions for a representative case. Then, we present the procedure to

obtain these new pattern transformations in soft granular crystals

based on the compact packing theory of diatomic circles. The scale-

independent compact packing theory serves as an important part

of the veiled underlying mechanism of the observed pattern trans-

formations, so the proposed granular crystals can open new avenues

in the microstructural design of functional materials towards practical

applications.

1 Introduction

Granular crystals (i.e., ordered arrays of particles) are considered as
a potential component for energy dissipation1–4 and a promising
configuration for phononic band-gaps.5–8 In particular, it is
reported that the phononic band-structure of a granular crystal
can be distinctively altered by its geometry.7 Thus, the tunability
arising from pattern transformations will affect the coverage of
the band-gaps, and the versatility of granular crystals can be
significantly improved by incorporating pattern transformations.
In 2011, Goncu et al.9 reported a deformation-induced pattern
transformation of square lattices under compression with lateral
confinement (i.e., a kind of biaxial loading condition). They

demonstrated a pattern transformation in square arrays of cylin-
drical particles, and investigated the effect of radius ratio on the
pattern transformation and its reversibility. However, since their
work, the mechanism of pattern-transformable granular crystals
has not been revealed and no other pattern transformation of
granular crystals has been suggested or investigated.

Here, we propose four new pattern transformations in soft
granular crystals obtained by considering the compact packing
of diatomic circles.10–14 The proposed granular crystals are
composed of two different types of cylinders: large soft cylinders
and small hard cylinders. The pattern-transformable granular
crystals are obtained by exploring perturbed packing patterns as
potential configurations, and compression with lateral confine-
ment as the driving force of the transition. As a demonstration of
the proof-of-concept, we first show the results of desktop-scaled
experiments and finite element (FE) simulations for a represen-
tative case. Then, we disclose the procedure to obtain these new
pattern transformations in soft granular crystals based on the
compact packing theory of diatomic circles. The procedure is
composed of two steps. The first step is to identify four potential
transformation pairs, which are obtained by considering the
packing density evolution under compression with lateral
confinement. In the second step, the rigid-body re-arrangement
assumption provides the principal compressive loading direction
for each transformation potential transformation pair.

2 Experimental results

The cylindrical particles are printed using a 3-D printer, Objet
Connex 260, whose printing resolutions is 16 mm. All the printed
cylindrical particles have a nominal thickness of T0 = 6.5 mm.
White-colored VeroWhite (Young’s modulus EVW

0 = 2.00 GPa)
is employed to print the hard particles having a nominal radius,
r = 2.4 mm. Soft particles are printed with transparent DM60 (i.e.,
digital material obtained by mixing VeroWhite and TangoPlus,
and EDM60

0 = 2.49 MPa), and their radius is R = 6.0 mm. Thus, the
radius ratio of the particles is w = r/R = 0.40. The initial
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configuration consists of hard and soft particles placed on
rhombic lattices (see Fig. 1A-1), and it can be represented by
a rhombic unit-cell, whose major diagonal is straight-up. For
the considered granular crystal, we print 66 full hard particles,
27 full soft particles, 12 half-circular soft particles, and 6 soft
particles in the shape of a circular segment having a height of
4.73 mm. The non-full soft particles are designed to reduce the
contact area between the particles and a surrounding acrylic
fixture while maintaining the periodicity of the pattern. Before
the assembly of the crystal, all the particles are coated with
mineral oil, and Teflon tape is used in the inside of the fixture
to further reduce friction between the particles. Using these
particles, a granular crystal (width (W0)� height (H0) = 84.7 mm�
75.6 mm) is assembled in the acrylic fixture. In this initial
configuration, adjacent particles touch each other, but all the
particles are uncompressed.

The experiments are performed under compression with
lateral confinement, which can be viewed as biaxial loading
conditions (see Fig. 1A). With the displacement-controlled
setting, the top layer of the granular crystal is compressed at
a constant speed of 0.02 mm s�1 up to the engineering strain of
eeng = �0.20, where eeng is the ratio between the applied axial
displacement and the initial height of the granular crystal (i.e.,
H0). As shown in Fig. 1A-1, all the hard particles are isolated
in the initial configuration. Under compression with lateral
confinement, however, the granular crystal undergoes particle
rearrangement, which leads to a new periodic pattern showing
the coalescence of two hard particles (see Fig. 1A-2 and A-3).
As the applied load increases, two vertically separated hard
particles get closer and they eventually become surrounded
by four adjacent soft particles. Fig. 1A-3 shows the deformed

shapes of the proposed granular crystal at an engineering strain
of eeng = �0.20, revealing that the unit-cell of the granular
crystal remains rhombic under compression with lateral con-
finement. The observed transition is gradual in time, and slight
inhomogeneity over the crystal domain is observed due to the
boundary layer. The gradual transition of the pattern is due to
the lateral confinement and friction, and it is qualitatively
different from the typical bucking behavior showing an abrupt
transition. The gradual behavior in pattern transformations
can also be seen from the smooth evolution in the stress–stain
curve (see Fig. 2).

In addition to the experimental images of the deformed
patterns shown in Fig. 1A, we monitor the displacement data
and the corresponding load data recorded from the cross-head
extension and the load-cell attached to the top layer of the
granular crystal, respectively. The engineering stress of seng is
calculated from the measured force divided by the loading
surface area of W0 � T0. The stress–strain curve obtained from
the experiments is presented with a black solid line in Fig. 2,
and we find that stress is monotonically increasing with strain
increase. It is worth noticing that, as the compressive strain
increases, the overall crystal stiffness (i.e., the slope of the
stress–strain curve) of the granular crystal tends to increase
due to compaction.

The experimental setting shown in this study contains
various types of moderate imperfections, which include particle
mis-alignment, non-uniform distribution of lubricants between
particles, eccentricity of the vertical loading and boundary
effect. Despite these moderate imperfections, we observed
repeatable pattern transformation in the experiments, and
this experimental finding affirms the robustness of the pheno-
mena under investigation. Furthermore, we focus on the
loading transition only in this article, leaving the pattern
transformation reversibility upon unloading as the topic of
a further investigation. The reversibility of the proposed
granular crystals upon unloading is found to be highly
affected by the radius ratio as well as the stiffness ratio, and
a similar phenomenon was also observed in the square
pattern reported by Goncu et al.9

Fig. 1 Pattern transformation of a 2-D soft granular crystal. (A) Experi-
mental results. (B) Finite element (FE) simulation with a full-size model.
(C) FE simulation with a unit-cell model with periodic boundary
conditions.

Fig. 2 Stress–strain relation of the 2-D soft granular crystal with the
radius ratio of w = r/R = 0.4.

Communication Soft Matter



5826 | Soft Matter, 2017, 13, 5824--5831 This journal is©The Royal Society of Chemistry 2017

3 Finite element analysis

Numerical simulations are completed to explore the pattern
transformation of the proposed granular crystal. Since soft
particles are considered, we perform FE analysis using commercial
ABAQUS/Standard software to capture qualitative information
of the transition.

The material properties of both soft and hard particles are
measured through uniaxial compression testing. A linear elastic
model with EVW

0 = 2.00 GPa and nVW
0 = 0.4 is employed to

represent the material behavior of VeroWhite. On the other hand,
the constitutive behavior of DM60 is accurately captured using
the Mooney–Rivlin model15,16 whose strain energy density is
U = C10(Ī1 � 3) + C01(Ī2 � 3) + (J � 1)2/D1, where C10 = 0.174
MPa, C01 = 0.243 MPa, and D1 = 0.0482 MPa�1. Here, Ī1 =

tr(J�2/3FTF), �I2 ¼
1

2
�I
2
1 � tr J�4=3 FTF

� �2� �h i
, J = det F, and F is

the deformation gradient. The model parameters of Mooney–
Rivlin are related to the conventional shear modulus (GDM60

0 ) and
bulk modulus (KDM60

0 ) at zero strain: GDM60
0 = 2(C10 + C01) and

KDM60
0 = 2/D1. There are two different sources of friction in

experiments: inter-particle friction and friction between particles
and the fixture (i.e., side and front walls). In order to consider
friction, FE simulations adopt the Coulomb friction model with a
friction coefficient of m = 0.1. In all the FE analyses, 2-D models
are constructed using 4-node bilinear plane stress elements with
reduced integration (CPS4R elements in ABAQUS/Standard).
A series of mesh refinement studies is preformed to assure
the independency of numerically obtained load–displacement
relations on mesh sizes, and the sweeping mesh size of 0.3 mm
is determined to ensure the convergence of the FE simulations.

With these material models and the simulation setting, we
execute FE simulations with two different types of models: (i) a
full-size model representing the actual experimental setting
illustrated in Section 2 and (ii) a unit-cell model with periodic
boundary conditions representing an infinitely periodic structure.
Fig. 1B shows the pattern transformation of the granular crystal
obtained from the FE simulations with the full-size model, and
the FE results are in excellent qualitative agreement with the
corresponding experiments. Fig. 1B-3 shows the image of the
granular crystal at the engineering strain of eeng = �0.2, where
the new patterns are nearly completed showing the coalescence of
two hard particles. Moreover, the stress–strain relationship from
the FE simulation with the full-size model is presented by the red
line with circular marks in Fig. 2, and we observe good quantita-
tive agreement between the experimental and the simulation
results. Note that the stress level in the FE simulations is slightly
affected by the friction coefficient although the formation of
pattern transition is not critically affected by its magnitude.

In addition to the FE simulation with the full-size model, we
run computationally inexpensive FE simulations with a unit-
cell model with periodic boundary conditions assuming an
infinitely periodic structure. Periodic boundary conditions subject
to deformation are imposed on the unit-cell by prescribing
displacement u such that ub = ua + (%Fapp � 1)(Xb � Xa), with the
subscripts a and b indicating two nodal points periodically located

on unit-cell boundaries, 1 denoting the second order identity
tensor, and %Fapp representing the macroscopic deformation
gradient imposed on two positions Xa and Xb. Virtual nodes are
introduced to prescribe the macroscopic deformation gradient
%Fapp at their degrees of freedom. Considering the principle of
virtual work, the corresponding macroscopic first Piola–Kirchhoff
stress %Papp can be obtained from the forces at the degree of
freedom of the virtual nodes.17 Specifically, the unit-cell model
shown in Fig. 1C-1 is subjected to the macroscopic deformation
gradient %Fapp = e1 # e1 + (eeng + 1)e2 # e2. The corresponding
nominal stress seng is obtained from the corresponding macro-
scopic first Piola–Kirchhoff stress component seng = %Papp

22 . Its
detailed implementation for continuum structure modeling can
be found in ref. 17–19, and the only change in granular crystal
modeling is to include additional boundary layers of particles
to impose periodic conditions. In this study, three additional
unit-cells are included to model boundary layers, and eventually
four primitive unit-cells are employed to model the behavior of
one primitive unit-cell subjected to periodic boundary conditions
(see Fig. 1C-1). The deformed shapes of the unit-cell model under
compression with lateral confinement are presented in Fig. 1C,
which depicts its transition to the configuration where two hard
particles merge. In addition, Fig. 2 shows that the stress–strain
relation from the unit-cell model simulation is well compared
with the experimental results and the FE predictions with the
full-size model. Note that the evolution of its overall stiffness
is not as monotonic as the one from the full-size model. In the
unit-cell model simulation, a rather abrupt stiffness change
occurs around eeng B �0.15 when the two hard particles touch
each other. On the other hand, the full-size model includes
approximately 30 primitive unit-cells (see Fig. 1B) and its non-
linear behavior is nonhomogeneous, so the onset of two-hard-
particle contacts spreads over a range of applied strains, resulting
in a smooth monotonic evolution of the overall crystal stiffness. In
general, we find that the deformed shapes and the corresponding
stress–strain relation of the unit-cell model show good agreement
with the experimental results and the full-size model FE predictions,
as shown in Fig. 1C and 2, respectively.

Given the good qualitative and quantitative agreement
found among the full-size model, the unit-cell model, and the
experimental results, we proceed by focusing on FE analysis
with the unit-cell models to further discuss how to obtain a
class of new pattern-transformable granular crystals.

4 Pattern-transformable granular
crystals from diatomic circular packing

Through a combination of experiments and FE simulations,
we have demonstrated the proof-of-concept of the new pattern-
transformable granular crystal under compression with lateral
confinement. We now present the procedure to obtain a class
of new pattern-transformable granular crystals. In the granular
crystal reported by Goncu et al.,9 hard and soft particles are initially
placed on two embedded square lattices, and the pattern trans-
formation is observed upon compression with lateral confinement.
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During the transition of the granular crystal, we observe an
increase in packing density, which is defined as the ratio of
particle area within a unit-cell to the unit-cell area and is
denoted by c in this study. Motivated by this observation, we
examine the compact packing density theory of diatomic
circles10–14 in order to search for other pattern-transformable
granular crystals. The compact packing of circles is defined as a
condition where every pair of circles in contact is in mutual
contact with two other circles.10,13 For diatomic circles,
Kennedy13 identified the complete list of 9 compact radius
ratios (denoted by w1,. . ., w9) and the corresponding compact
packing (denoted by P1,. . ., P9), as presented in Fig. 3.
In addition, by slightly changing the radius ratio (i.e., w = r/R)
near each compact packing, he also introduced the corres-
ponding perturbed packing configuration (denoted by P10,. . .,
P90). Fig. 4 illustrates a few of the perturbed patterns P30, P70,
and P80 obtained from the compact packing configurations.
Note that most compact packing configurations (e.g., P3, P7)
have two different contact conditions for their perturbed packing
configuration: one below and the other above the compact
radius ratio. However, some compact packing configurations
(e.g., P8) have only one type of perturbed packing above its
compact radius ratio because small particles lose contact with
the surrounding large particles in a configuration having the
radius ratio smaller than the compact radius ratio (e.g., see
Fig. 4C for P80).

Based on the list of the diatomic compact packing, the pattern-
transformable granular crystal reported by Goncu et al.9 can
be viewed as a transition between two perturbed packing
configurations. In other words, the initial square pattern is
a perturbed packing P40, and the re-arranged (i.e., final)
configuration under compression with lateral confinement is
a perturbed packing P10 (see Fig. 3). Inspired by this finding, we
seek new pattern transformations by exploring the perturbed
packing as potential pattern-transformable configurations, and
compression with lateral confinement as the driving force of
the transition. The exploration now requires us to resolve two
principle questions: how to identify a proper transformation
pair of configurations and how to find a proper set of loading
directions and radius ratios.

4.1 Transformation pairs

To identify a potential transformation pair of configurations,
we consider the ratio between the number of large circles
and the number of small circles in a primitive unit-cell, i.e.,
Nlarge circles : Nsmall circles, which is referred to as the particle ratio
in this study. During the transition under compression with
lateral confinement, the particle ratio of a considered granular
crystal should not be changed. Thus, we re-visit the complete list of
the diatomic compact packing configurations (see Fig. 3), and then
arrange them in groups using the particle ratio within a primitive
unit-cell. There exist four groups of packing configurations: (1) 1-to-1:
P1, P2, P4; (2) 1-to-2: P3, P7, P8; (3) 1-to-6: P6, P9; and (4) 2-to-7: P5.
The particle ratio for each pattern is also denoted in Fig. 3. Multiple
transformation pairs may exist within these groups, but we
focus on the particle ratio of 1-to-2 in this study.

For a given packing arrangement with soft granular particles,
the packing density should increase upon compression with
lateral confinement. In other words, for a given radius ratio w,
the packing density of the initial configuration should be lower
than that of the re-arranged configuration under compression
with lateral confinement. Thus, for each compact packing in the
group of the 1-to-2 particle ratio, we obtain the analytical
expressions of the packing density of the corresponding
perturbed packing as follows:

cP30 ðwÞ ¼

p
2

1þ 2w2

1þ wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðwþ 2Þ

p w 2 ½0:155; 0:533�

p
8

1þ 2w2
� �

ð1þ wÞ2

wð1þ 2wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2w
p w 2 ½0:533; 1�

8>>>><
>>>>:

; (1)

cP70 ðwÞ ¼

p
8

1þ 2w2
� �

ð1þ wÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðwþ 2Þ

p w 2 ½0:155; 0:281�

p
2

1þ 2w2

ð1þ 2wÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2w
p w 2 ½0:281; 1�

8>>>><
>>>>:

; (2)

cP80 ðwÞ ¼ 2p

3
ffiffiffi
3
p 1þ 2w2

ð1þ wÞ2 w 2 ½0:155; 1�: (3)

The above analytical expressions are derived by considering two
different contact conditions of each perturbed packing, except

Fig. 3 The complete list of 9 compact diatomic circles, denoted by P1,. . .,
P9. Each pattern shows the radius ratio (i.e., w = r/R) and the particle ratio
(i.e., the ratio between the number of large circles and the number of small
circles in a primitive unit-cell delineated by a red-colored rhombus).
For the configurations having a 1-to-2 particle ratio, primitive lattice
vectors a1 and a2 are also denoted.
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for P80 (see Fig. 4). Fig. 5 shows the evolution of packing density
in terms of the radius ratio w. By way of illustration, consider
the particle configuration for the compact packing P3 having
w3 E 0.533 and c E 0.914 (see Fig. 4A for its pattern). As the
radius ratio w decreases, the configuration deviates from the
compact packing P3, reducing its packing density to c E 0.867
at w E 0.344. The further decrease to w = w8 E 0.155 eventually
results in the compact packing P8. Similarly, the increase in the
radius ratio w also provides the evolution of its packing density,
and leads to the monatomic hexagonal packing at w = 1.

The other two types of perturbed patterns also show similar
evolutions. Fig. 5 shows that the family of perturbed packing
configurations P80 possesses the least packing density for
any given radius ratio. Thus, under compression with lateral
confinement, the perturbed packing configurations P80 are
inadequate for the re-arranged (i.e., final) configuration since
the packing density of the initial configuration should be lower
than that of the re-arranged configuration. There exist six
transformation pairs from the permutation of three perturbed
packing configurations (i.e., P30, P70, and P80), but we exclude
two cases which include P80 as the re-arranged configuration.
Consequently, the consideration of packing density evolution
under compression with lateral confinement provides four
potential transformation pairs: (a) P80 to P70, (b) P80 to P30, (c)
P70 to P30, and (d) P30 to P70.

4.2 Loading direction and radius ratio

For the identified potential transformation pairs, a systematic
analytical study is performed to find proper radius ratios and
the corresponding loading directions. For a given radius ratio w,
there exist three different perturbed configurations, i.e., P30,
P70, and P80. A proper loading direction for pattern trans-
formations among those configurations has to be related to
the applied macroscopic deformation gradient %Fapp. For a given
radius ratio, we estimate a macroscopic deformation gradient
by comparing the geometry of the initial and re-arranged
primitive unit-cells.20 Operationally, assuming rigid-body

Fig. 4 Examples of perturbed patterns for the packing configurations having the particle ratio of 1-to-2. (A) Perturbed patterns P30. (B) Perturbed
patterns P70. (C) Perturbed patterns P80.

Fig. 5 The evolution of packing density of diatomic perturbed patterns in
terms of the radius ratio, w.
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re-arrangements, we obtain a macroscopic deformation gradient %F
considering the unit-cells delineated in Fig. 4:

%Fai
1 = ar

1, %Fai
2 = ar

2 ) %F = [ar
1ar

2][ai
1ai

2]�1, (4)

where a1 and a2 indicate the primitive lattice vectors of the
considered configurations (see Fig. 4), and the superscripts i
and r indicate the initial and the re-arranged configurations,
respectively. Subsequently, we perform the polar decomposi-
tion of the macroscopic deformation gradient, %F = %RŪ, where %R
is the macroscopic rotation tensor and Ū is the macroscopic
right stretch tensor.21 Then, the principle compressive loading
direction (i.e., measured by an angle y from the horizontal direction
in the initial configuration) is obtained by taking the eigen-
decomposition of Ū, i.e.Ū = %QŪ* %QT, where Ū* is the principal macro-
scopic right stretch tensor and %Q is the coordinate transformation
matrix represented by %Q = [cos(�y), sin(�y); �sin(�y), cos(�y)].
Thus, for a given set of radius ratios w and a transformation pair, the
principle compressive loading direction y can be explicitly obtained.
Fig. 6 illustrates the identified loading directions for each potential
transformation pair. The compressive loading angle of the transi-
tions P80 - P70 and P80 - P30 is independent of the radius ratio
and is found to be y = 301 and 01, respectively. For the transitions
P70 - P30 and P30 - P70, however, the compressive loading
angle depends on the radius ratio.

With the constructed principle loading direction for each
transformation pair, we perform a series of parametric FE
simulations with a unit-cell model by sweeping the radius ratio,
w A [0.155, 1]. For a desired principle stretch Ū*app in the
principle loading direction, the deformation gradient %Fapp to be
applied in the initial configuration of the considered unit-cell is
determined from %Fapp = %QŪ*app %QT. Furthermore, we extract the
corresponding engineering stress from the transformed macro-
scopic first Piola–Kirchhoff stress, %P*app = %QT %Papp %Q. For each
transition pair, we find a narrow range of the radius ratio w
resulting in a distinctive pattern transformation: (a) P80 to P70: w
A [0.20, 0.46] with y = 301, (b) P80 to P30: wA [0.40, 0.60] with y = 01,
(c) P70 to P30: w A [0.40, 0.60] with y A [�231, �8.31], and

(d) P30 to P70: w A [0.20, 0.46] with y A [45.91, 72.31]. In Fig. 6,
the radius ratios leading to pattern transformation are denoted by
solid lines with markers.

In order to provide the representative FE analysis results
using unit-cells with periodic boundary conditions, we select
the radius ratio of w = 0.4 in this study. Fig. 7 shows the initial
and the deformed shapes of each transition pair under the
corresponding loading direction. At the strain level of eeng =
�0.3, the pattern transformation is nearly completed for each
case. The corresponding stress–strain relations is also pre-
sented in Fig. 8. Due to compaction, the overall crystal stiffness
is increasing as the compressive strain increases. Furthermore,
for the identified geometric and loading configurations of
pattern transformations, we explore the size-effect of an enlarged
unit-cell model, whose area is enclosed by lattice vectors m1a1 and
m2a2. Fig. 9 and 10 show the FE analysis results employing an
enlarged unit-cell with m1 = m2 = 5. We find that the pattern
transformation observed in the enlarged unit-cell simulations are
also well compared with the results from the primitive unit-cell
simulations having m1 = m2 = 1. Note that the macroscopic
deformation gradient %Fapp is imposed only on unit-cell boundaries,
and the motion of the unit-cell inner part is indirectly governed by
the constraints on unit-cell boundaries. Thus, by increasing the

Fig. 6 The principle compressive loading direction for the four transition
pairs based on the rigid body re-arrangements. The solid lines with
markers denote the loading angles which lead to a distinctive pattern
transformation.

Fig. 7 FE simulation results using unit-cells enclosed by lattice vectors a1

and a2. The radius ratio is w = 0.4. (A) P80 to P70. (B) P80 to P30. (C) P70 to
P30. (D) P30 to P70.

Communication Soft Matter



5830 | Soft Matter, 2017, 13, 5824--5831 This journal is©The Royal Society of Chemistry 2017

size of the enlarged unit-cell in FE simulations, the employed
numerical formulation introduces more inhomogeneity under
loading conditions, which can be viewed as a type of numerical
imperfection in loading. Consequently, the pattern transformation
observed in the enlarged unit-cell models numerically affirms the
robustness of the phenomena under investigation, but only to a
modest extent. In Sections 2 and 3, we choose the transition P80

to P70 with w = 0.4 to demonstrate the proof-of-concept of the

proposed pattern-transformable granular crystals. The initial
configuration of the considered crystal (i.e., the pattern P80) is
designed such that the principle compressive loading direction
is aligned with the vertical loading direction of the universal
testing machine.

5 Conclusion

In this study, we introduce a class of pattern-transformable
diatomic 2-D soft granular crystals, whose transition is induced
by compression with lateral confinement. The proof-of-concept
of the proposed granular crystals is demonstrated by performing a
combination of experiments and numerical simulations with a
finite size specimen. Furthermore, based on the compact packing
theory of diatomic circles, we present a systematic procedure to
obtain these new pattern transformations in soft granular crystals.
Pattern transformations in soft granular crystals are due to various
factors including material properties, friction coefficients, loading
rates, geometry/material imperfections, particle configurations,
etc. In this study, we demonstrate that the particle configuration
(or compact packing) is an important part of the veiled pattern
transformation mechanism.

The scale-independent compact packing theory serves as an
underlying mechanism of the observed pattern transformations,
so the proposed granular crystals can open new avenues in the
microstructural design of functional materials towards practical
applications. In this study, deformation is used as the driving
force of the pattern transformations. However, as seen in research
activities in continuum structures,22–25 the proposed pattern
transformations can also be initiated by several other driving
forces such as swelling/shrinking actuation under various external
stimuli including pH, temperature, and water content. Furthermore,
it is well known that the band-structure and wave characteristics of
phononic crystals are significantly affected by their geometry and
material nonlinearity.26,27 Thus, the proposed pattern-transformable
granular crystals can open the possibility of tunable phononic
crystals actuated by various driving forces.

On the other hand, the proposed configurations possess
various aspects to be further investigated. This study has not

Fig. 8 Stress–strain relation obtained from FE simulation using unit-cells
enclosed by lattice vectors a1 and a2. The radius ratio is w = 0.4.

Fig. 9 FE simulation results using unit-cells enclosed by lattice vectors
5a1 and 5a2. The radius ratio is w = 0.4. (A) P80 to P70. (B) P80 to P30.
(C) P70 to P30. (D) P30 to P70.

Fig. 10 Stress–strain relation obtained from FE simulation using unit-cells
enclosed by lattice vectors 5a1 and 5a2. The radius ratio is w = 0.4.
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explored the reversibility upon unloading and the effect of
imperfections, and they are the next topics for further investi-
gations. Moreover, in addition to the compact packing of
particles, we are currently studying the instability of particle
configurations as another key ingredient of the proposed
transitions.
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