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Generalized Spatial Aliasing
Solution for the Dispersion
Analysis of Infinitely Periodic
Multilayered Composites Using
the Finite Element Method
The finite element (FE) method offers an efficient framework to investigate the evolution
of phononic crystals which possess materials or geometric nonlinearity subject to exter-
nal loading. Despite its superior efficiency, the FE method suffers from spectral distor-
tions in the dispersion analysis of waves perpendicular to the layers in infinitely periodic
multilayered composites. In this study, the analytical dispersion relation for sagittal elas-
tic waves is reformulated in a substantially concise form, and it is employed to reproduce
spatial aliasing-induced spectral distortions in FE dispersion relations. Furthermore,
through an anti-aliasing condition and the effective elastic modulus theory, an FE model-
ing general guideline is provided to overcome the observed spectral distortions in FE dis-
persion relations of infinitely periodic multilayered composites, and its validity is also
demonstrated. [DOI: 10.1115/1.4036469]

1 Introduction

In various elastodynamic wave propagation disciplines, layered
composites have recently gained popularity. Some widespread uses
of bilayered composites are found in acoustic waveguide [1], acous-
tic rectifier [2], tunable piezoelectric materials [3], and nanostruc-
tured polymer layers [4]. In addition, multilayered composites
having more than two layers per unit cell are being heavily investi-
gated for various potential applications, which include stress-wave
attenuation [5], acoustic rectification [6], negative effective dynamic
properties [7,8], etc. Such novel applications of layered composites
are mainly due to the phononic band-gap property of their dispersion
relation.

The analytical dispersion relation for wave propagation perpen-
dicular to the layers has been investigated thoroughly for both
infinitely periodic bilayered composites [9–14] and infinitely peri-
odic multilayered composites [15–17]. On the other hand, due to
the complexity of the configuration, there have been limited ana-
lytical investigations on dispersion relation for wave motion at
arbitrary angles in the sagittal plane, in which the pressure wave
(P-wave) and vertical shear wave (SV-wave) propagate [18]. The
analytical dispersion relations of infinitely periodic bilayered
composites for sagittal plane waves can be found in several refer-
ences [18–21]. However, only a few researchers [22,23] have pre-
sented the analytical dispersion relation of infinitely periodic
multilayered composites for the sagittal plane waves, and their
formulations are unduly complex.

In order to overcome the challenges in the analytical investiga-
tions, researchers have been employing various numerical techni-
ques such as continuum power series method [24,25], the effective
stiffness method [26,27], the mixture theory [28–30], the plane
wave expansion method [31], the finite difference method [32], the
variational method [33,34], and the finite element (FE) method
[35–39]. In particular, the FE method offers a remarkable frame-
work to efficiently investigate the effect of material and geometric
nonlinearity on phononic dispersion relations [38,40–43], which
can be hardly done using other numerical techniques. So, it has
become a prevalent method to study the evolution of phononic dis-
persion relations due to the effect of nonlinearities of structures. In
the FE method, a two-step manner is typically employed to study
the evolution of dispersion relation of a periodic composite subject
to external loading. The first step is a conventional static nonlinear
analysis on the periodic composite, and this step considers material
and geometric nonlinearities in the FE framework. In the second
step, a linear perturbation analysis is performed on the deformed
periodic composite to obtain dispersion relations, which is the sub-
ject matter of this manuscript. Through this procedure, researchers
in the FE community have opened the possibility of tuning the
band-structure of periodic structures [38,40,42,44,45].

However, despite its superior capability to investigate the effect
of nonlinearities to phononic dispersion relations, the FE method
suffers from spectral distortions in the dispersion analysis of
waves perpendicular to the layers in layered composites [35–39].
The importance of this issue regarding FE modeling and the corre-
sponding analysis are extensively discussed in Refs. [35] and [46].
It is worth mentioning that the spectral distortion discussed in
those references is irrelevant to the effect of mesh size in FE mod-
els. It is ironic that the numerical technique (i.e., FE method) suit-
able for complex phononic calculations cannot properly handle
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the simplest geometry in phononic crystals (i.e., infinitely periodic
layered composites). Simple geometries such as, spring-dashpot
models [47] or one-dimensional (1D) granular crystals [48] have
been adopted to investigate the effect of damping or nonlinearity
in phononic structures. Without resolving this critical issue in FE
dispersion relations, the FE method cannot be properly applied to
investigate the effect of material nonlinearity on the phononic dis-
persion relation of infinitely periodic multilayered composites.
Specifically, the structural 1D elements (e.g., truss or beam ele-
ments) available in the FE method are not suited for the dispersion
analysis of infinitely periodic layered composites because an infi-
nite length in the direction parallel to the layers (i.e., x1 direction
in Fig. 1(a)) cannot be considered in such elements. Thus,
researchers in the FE community have to adopt 2D elements and
apply the redundant Bloch periodic condition along the direction
parallel to the layers [35–39]. For infinitely periodic bilayered com-
posites, we recently showed that the spectral distortions are attrib-
uted to the spatial aliasing stemming from the use of 2D rectangular
unit cell and proposed a FE modeling guideline to avoid this issue
in the dispersion relation of waves perpendicular to the layers [46].

Furthermore, we revisit the analytical dispersion relation of
infinitely periodic multilayered composites for waves in the sagit-
tal plane, and newly derive the analytical solution in a notably
concise form. We adopt the transfer matrix approach to investi-
gate the multilayered composite problem in a simple, systematic
way. The derived analytical solution is employed to reproduce fic-
titious modes in FE dispersion relations, which originate from the
inevitable usage of 2D unit cell in the FE modeling of infinitely
periodic multilayered composites. Moreover, we offer a general-
ized FE modeling guideline for infinitely periodic multilayered
composites to avoid the spectral distortions within a frequency
range of interest.

2 Analytical Dispersion Relations for Multilayered

Periodic Composites

For infinitely periodic multilayered composites, only a few
researchers [22,23] have presented the analytical dispersion rela-
tion of sagittal plane waves. For instance, Nayfeh derived an ana-
lytical solution, which is based on a linear transformation
adopting the transformation matrix approach [22]. Moreover,
Braga and Herrmann presented a solution based on a sextic for-
malism using a variation of transformation matrix [23]. However,
due to their unduely complex formulations, it is challenging to

have an insightful physical interpretation in the adopted derivation
procedures and their outcomes. Note that the derivation presented
in this paper is completely independent of the previous works
[22,23] although we adopted the traditional transfer matrix
approach together with the Bloch theorem. In this section, the ana-
lytical formulation of sagittal plane waves is first revisited, and its
surprisingly concise form is derived by obtaining a transfer
matrix, whose expression has not been reported in the literature.
Then, the dispersion relation of wave propagation perpendicular
to the layers is obtained through the similar approach.

Consider an infinitely periodic multilayered composite which has
a periodic length a3 along the x3-axis (see Fig. 1(a)). Each unit cell
consists of M layers, and the thickness of the jth layer is denoted by

dj, so that a3 ¼
PM

j¼1 dj. For the jth layer, the mass density of its

material is denoted by qj, and the elastic properties are given by
c11;j ¼ kj þ 2lj; c44;j ¼ lj and c12;j ¼ c11;j � 2c44;j ¼ kj, where kj

and lj are Lam�e constants. Furthermore, the pressure and shear

wave velocities in the jth layer are denoted by cp;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11;j=qj

q
and

cs;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c44;j=qj

q
, respectively.

2.1 Wave Propagation at Arbitrary Angle in the Sagittal
Plane. In the sagittal plane (i.e., the x1–x3 plane shown in
Fig. 1(a)), the displacement field should be a function of x1, x3,
and t. Consequently, the dispersion relation for sagittal plane
waves should be described in a three-dimensional plot, i.e., x
over the j1–j3 plane. The irreducible Brillouin zone (IBZ) [49]
can be determined by considering the symmetry of the layered
composite, and it results in wavevector domain of j1 � [0, 1)
and j3 � [0, p/a3] (see Fig. 1(b)). For a fixed j1, we first solve the
governing equation with boundary conditions. Then, the complete
picture of the dispersion relation over the j1–j3 plane is obtained
by sweeping j1 over the range of [0,1).

Using the Helmholtz’s decomposition [50], the displacement
field u is resolved into the sum of the contribution from a
dilatation-related scalar potential U and the contribution from a
rotation-related vector potential H ¼ ½H1 H2 H3�T, i.e., u ¼
rUþr�H and r �H ¼ 0. Consequently, the governing equa-
tions of motion are decomposed into sagittal plane waves (i.e., P-
and SV-waves) and antiplane shear waves (i.e., SH-wave) [18,50].

Specifically, the governing equations of motion for coupled
P- and SV-wave propagations in the sagittal plane can be

Fig. 1 (a) Geometry of a multilayered periodic composite, whose unit cell is spanned by
primitive lattice vectors a1 and a3 in a two-dimensional (2D) coordinate space. Note that
a1 5 jja1jj and a3 5 jja3jj. (b) The corresponding wavevector space, where the topmost rectan-
gle delineated by a thick solid line represents first Brillouin zone. Note that the aliasing paths
are denoted by thick dotted lines.
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expressed in terms of U and H2. For the jth layer of nth unit cell,
the displacement components relating to sagittal plane waves are
expressed by

u1;j;n x1; x3;j;n; tð Þ ¼
@Uj

@x1

þ @H2;j

@x3;j;n

u3;j;n x1; x3;j;n; tð Þ ¼
@Uj

@x3;j;n
� @H2;j

@x1

(1)

and the corresponding governing equations are given by

@2Uj

@x2
3;j;n

þ @
2Uj

@x2
1

¼ 1

c2
p;j

@2Uj

@t2

@2H2;j

@x2
3;j;n

þ @
2H2;j

@x2
1

¼ 1

c2
s;j

@2H2;j

@t2

(2)

where x3,j,n represents the local x3-coordinate for the jth layer of
nth unit cell (see Fig. 1(a)). Assuming harmonic plane waves in
composites, the solutions of Eq. (2) are found to be

Ujðx1; x3;j;n; tÞ ¼ /̂F;je
iðj1x1�ap;jx3;j;n�xtÞ þ /̂B;je

iðj1x1þap;jx3;j;n�xtÞ

H2;jðx1; x3;j;n; tÞ ¼ ĥF;je
iðj1x1�as;jx3;j;n�xtÞ þ ĥB;je

iðj1x1þas;jx3;j;n�xtÞ

(3)

where ap;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2=c2

p;j � j2
1Þ

q
and as;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2=c2

s;j � j2
1Þ

q
, and

/̂F;j; /̂B;j; ĥF;j, and ĥB;j are the unknown amplitudes (or coefficients)

to be determined from boundary conditions at the layer interfaces.
By substituting Eq. (3) into Eq. (1), we obtain an expression for
the displacement u

u3;j;nðx1; x3;j;n; tÞ ¼ ð�iap;j/̂F;jÞeiðj1x1�ap;jx3;j;n�xtÞ

þ ðiap;j/̂B;jÞeiðj1x1þap;jx3;j;n�xtÞ

þð�ij1ĥF;jÞeiðj1x1�as;jx3;j;n�xtÞ

þ ð�ij1ĥB;jÞeiðj1x1þas;jx3;j;n�xtÞ

u1;j;nðx1; x3;j;n; tÞ ¼ ðij1/̂F;jÞeiðj1x1�ap;jx3;j;n�xtÞ

þ ðij1/̂B;jÞeiðj1x1þap;jx3;j;n�xtÞ

þð�ias;jĥF;jÞeiðj1x1�as;jx3;j;n�xtÞ

þ ðias;jĥB;jÞeiðj1x1þas;jx3;j;n�xtÞ

(4)

Here, in order to have decoupled pressure and shear motion in the
case of wave propagation perpendicular to the layers (i.e., j1¼ 0),
the following simplified amplitudes are introduced:

PF;j;n ¼ �iap;j/̂F;j; PB;j;n ¼ iap;j/̂B;j; QF;j;n ¼ �ias;jĥF;j;

PB;j;n ¼ ias;jĥB;j (5)

Using the simplified unknown amplitudes, the displacement of the
jth layer in nth unit cell (i.e., uj,n) can be expressed as follows:

u3;j;n x1; x3;j;n; tð Þ ¼ PF;j;ne�iap;jx3;j;n þ PB;j;neiap;jx3;j;nþ j1

as;j
QF;j;ne�ias;jx3;j;n � j1

as;j
QB;j;neias;jx3;j;n

� �
ei j1x1�xtð Þ

u1;j;n x1; x3;j;n; tð Þ ¼ � j1

ap;j
PF;j;ne�iap;jx3;j;n þ j1

ap;j
PB;j;neiap;jx3;j;nþQF;j;ne�ias;jx3;j;n þ QB;j;neias;jx3;j;n

� �
ei j1x1�xtð Þ

(6)

Furthermore, the corresponding stresses of the jth layer in nth unit cell are given by

r33;j;n x1; x3;j;n; tð Þ ¼ �PF;j;n
c11;jap;j

2 þ c12;jj2
1

ap;j
e�iap;jx3;j;n þ PB;j;n

c11;jap;j
2 þ c12;jj2

1

ap;j
eiap;jx3;j;nþQF;j;n c12;j � c11;jð Þj1e�ias;jx3;j;n

"

þQB;j;n c12;j � c11;jð Þj1eias;jx3;j;n

#
ei j1x1�xtð Þ

r31;j;n x1; x3;j;n; tð Þ ¼ 2PF;j;nc44;jj1e�iap;jx3;j;n þ 2PB;j;nc44;jj1eiap;jx3;j;nþQF;j;n
c44;j j2

1 � as;j
2

� �
as;j

e�ias;jx3;j;n

"

�QB;j;n
c44;j j2

1 � as;j
2

� �
as;j

eias;jx3;j;n

#
ei j1x1�xtð Þ

(7)

Eventually, the four unknown amplitudes PF,j,n, PB,j,n, QF,j,n, and
QB,j,n can be determined by applying two displacement and two
stress boundary conditions at the layer interface between the jth
and the (jþ 1)th layers in the nth unit cell

½u3;j;n�x3;j;n¼dj
¼ ½u3;jþ1;n�x3;jþ1;n¼0; ½u1;j;n�x3;j;n¼dj

¼ ½u1;jþ1;n�x3;jþ1;n¼0

½r33;j;n�x3;j;n¼dj
¼ ½r33;j;n�x3;jþ1;n¼0; ½r31;j;n�x3;j;n¼dj

¼ ½r31;j;n�x3;jþ1;n¼0

(8)

After successively applying the boundary conditions (8) at all the
interfaces within the nth unit cell, one can eventually find that

wave motion (represented by the amplitudes, PF,j,n, PB,j,n, QF,j,n,
and QB,j,n) in the first layer of the nth unit cell is related to that in
the first layer of the (nþ 1)th unit cells as follows:

Ws;1;nþ1 ¼ TsWs;1;n (9)

where

Ws;1;n ¼

PF;1;n

PB;1;n

QF;1;n

QB;1;n

2
664

3
775; Ws;1;nþ1 ¼

PF;1;nþ1

PB;1;nþ1

QF;1;nþ1

QB;1;nþ1

2
664

3
775 (10)
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Ts ¼ R�1
s;1 ðRs;MDs;MR�1

s;MÞ…ðRs;2Ds;2R�1
s;2 ÞRs;1Ds;1 ¼ R�1

s;1

YM
j¼2

Rs;Mþ2�jDs;Mþ2�jR
�1
s;Mþ2�j

0
@

1
ARs;1Ds;1 (11)

Rs;j ¼

1 1
j1

as;j
� j1

as;j

� j1

ap;j

j1

ap;j
1 1

� c11;jap;j
2 þ c12;jj2

1

ap;j

c11;jap;j
2 þ c12;jj2

1

ap;j
c12;j � c11;jð Þj1 c12;j � c11;jð Þj1

2c44;jj1 2c44;jj1

c44;j j2
1 � as;j

2
� �

as;j
�

c44;j j2
1 � as;j

2
� �

as;j

2
66666666666664

3
77777777777775

(12)

Ds;j ¼
e�iap;jdj 0 0 0

0 eiap;jdj 0 0

0 0 e�ias;jdj 0

0 0 0 eias;jdj

2
664

3
775 (13)

where the subscript s stands for sagittal waves, and Ts denotes the
transfer matrix which determines the relation between the ampli-
tude vectors (Ws,1,n and Ws,1,nþ1) of adjacent unit cells in the sag-
ittal plane.

Furthermore, we have another relation between the nth and
(nþ 1)th unit cells from the Bloch-periodic condition [49]

Ws;1;nþ1 ¼ eij3a3 Ws;1;n (14)

Now, by combining Eqs. (9) and (14), one can obtain an eigen-
value problem for sagittal plane waves at a given j1

TsWs;1;n ¼ eij3a3 Ws;1;n (15)

where eij3a3 and Ws,1,n are the eigenvalue and eigenvector of Ts,
respectively. For a given j1, the dispersion relation can be
obtained by solving the above eigenvalue problem of j3. By set-
ting eij3a3 ¼ k, the characteristic polynomial equation of Ts can
be obtained from the Cayley–Hamilton theorem [51]

k4 � g3k
3 þ g2k

2 � g1kþ g0 ¼ 0 (16)

with

g3 x; j1ð Þ ¼ tr Tsð Þ

g2 x; j1ð Þ ¼
1

2
tr Tsð Þ½ �2 � tr T2

s

� �h i
g1 x; j1ð Þ ¼

1

6
tr Tsð Þ½ �3 � 3 tr Tsð Þtr T2

s

� �
þ 2 tr T3

s

� �h i
g0 x; j1ð Þ ¼ det Tsð Þ

(17)

where trð�Þ and det(�) denote the trace and the determinant of a
matrix, respectively. Here, the polynomial coefficients (g1,…,g4)
can also be determined from four roots kr ¼ eij3;ra3 (with r¼ 1,…,
4) of Eq. (16). Recall that the dispersion relation is symmetric
along j1- and j3-axes due to the symmetry of geometric configu-
ration of infinitely periodic multilayered composites. Thus, for a
given j1 � [0,1), only two out of four solutions provide distinc-
tively different eigenmodes (denoted by j3,1 and j3,2), while the
other two solutions are located at the symmetric position along
j3-axis, i.e., j3,3¼�j3,1 and j3,4¼�j3,2. Consequently, the
roots of the characteristic polynomial (16) retain the reciprocal

relation, i.e., k3¼ 1/k1 and k4¼ 1/k2. Now, the polynomial coeffi-
cients g1(x, j1) and g0(x, j1) become simplified

g1ðx;j1Þ ¼ g3ðx; j1Þ ¼ trðTsÞ
g0ðx;j1Þ ¼ 1

(18)

Finally, by solving the simplified characteristic polynomial
equation (16) together with Eq. (18), one can obtain a surprisingly
concise expression for the dispersion relation of wave motion in
the sagittal plane

cos j3a3ð Þ ¼
1

4
g3 x; j1ð Þ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g3 x;j1ð Þ½ �2 � 4g2 x; j1ð Þ þ 8

q� �
(19)

By exploring j1 within the range of [0, 1), the complete picture
of dispersion relation for sagittal plane waves can be determined
over the j1–j3 plane. This newly derived analytical expression is
adopted to study spectral distortions observed in the FE analysis
of waves perpendicular to the layers in layered composites.

2.2 Wave Propagation Perpendicular to Composite Layers.
For the infinitely periodic layered composites, many researchers
investigated the analytical dispersion relation of wave motion per-
pendicular to the layers [9,12,14,16,17]. This section will revisit
its formulation by setting j1¼ 0 in the procedure presented in
Sec. 2.1.

For wave propagation perpendicular to the jth layer within the
nth unit cell, we can easily obtain the displacement components
by setting j1¼ 0 in Eq. (6)

u3;j;nðx3;j;n; tÞ ¼ PF;j;n e�ixx3;j;n=cp;j þ PB;j;n eixx3;j;n=cp;j

h i
e�ixt

u1;j;nðx3;j;n; tÞ ¼ QF;j;n e�ixx3;j;n=cs;j þ QB;j;n eixx3;j;ncs;j

h i
e�ixt

(20)

Similarly, the corresponding stresses of the jth layer in nth unit
cell can be also obtained from Eq. (7)

r33;j;n x1; x3;j;n; tð Þ ¼ �PF;j;nxqjcp;je
�ixdj

cp;j þ PB;j;nxqjcp;je
ixdj
cp;j

� �
e�ixt

r31;j;n x1; x3;j;n; tð Þ ¼ �QF;j;nxqjcs;je
�ixdj

cs;j þQB;j;nxqjcs;je
ixdj
cs;j

� �
e�ixt

(21)

Four unknown coefficients, PF,j,n, PB,j,n, QF,j,n, and QB,j,n, can be
determined from two displacement and two stress continuous
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boundary conditions at the layer interface between the jth and the
(jþ 1)th layers in the nth unit cell

½u3;j;n�x3;j;n¼dj
¼ ½u3;jþ1;n�x3;jþ1;n¼0; ½u1;j;n�x3;j;n¼dj

¼ ½u1;jþ1;n�x3;jþ1;n¼0

½r33;j;n�x3;j;n¼dj
¼ ½r33;j;n�x3;jþ1;n¼0; ½r31;j;n�x3;j;n¼dj

¼ ½r31;j;n�x3;jþ1;n¼0

(22)

After the application of Eq. (22) at all the interfaces, one can
simultaneously obtain two decoupled sets of equations: one for
pressure waves and the other for shear waves. Since the obtained
two sets of equations are analogous, only the set of equations for
pressure waves are considered in this section.

For pressure waves perpendicular to the layers, the successive
applications of the boundary conditions from one interface to
another eventually provide the following relation between the first
layer of the nth unit cell and that of the (nþ 1)th unit cell:

Wp;1;nþ1 ¼ TpWp;1;n (23)

where

Wp;1;n ¼
PF;1;n

PB;1;n

� �
; Wp;1;nþ1 ¼

PF;1;nþ1

PB;1;nþ1

� �
(24)

Tp ¼ R�1
p;1ðRp;MDp;MR�1

p;MÞ…ðRp;2Dp;2R�1
p;2ÞRp;1Dp;1

¼ R�1
p;1

YM
j¼2

Rp;Mþ2�jDp;Mþ2�jR
�1
p;Mþ2�j

0
@

1
ARp;1Dp;1 (25)

Rp;j ¼
1 1

�xqjcp;j xqjcp;j

2
4

3
5; Dp;j ¼

e
�ixdj

cp;j 0

0 e
ixdj
cp;j

2
664

3
775 (26)

where the subscript p stands for pressure waves, and Tp is the
transfer matrix which determines the relation between the ampli-
tude vectors (Wp,1,n and Wp,1,nþ1) of adjacent unit cells.

In addition to the continuous boundary conditions, the applica-
tion of the Bloch-periodic boundary condition provides another
relation between adjacent unit cells

Wp;1;nþ1 ¼ eij3a3 Wp;1;n (27)

After combining Eqs. (23) and (27), one can obtain an eigenvalue
problem for pressure wave motion

TpWp;n ¼ eij3a3 Wp;n (28)

where eij3a3 and Wp,1,n are the eigenvalue and eigenvector of Tp,
respectively. By setting k ¼ eij3a3 as in Sec. 2.1, the characteristic
polynomial equation of Tp can be written as

k2 � h1kþ h0 ¼ 0 (29)

with

h1ðxÞ ¼ trðTpÞ; h0ðxÞ ¼ detðTpÞ (30)

Analogous to the argument presented in Sec. 2.1, the reciprocal
relation is found in the eigenvalues, i.e., k2¼ 1/k1, resulting in

h0ðxÞ ¼ 1 (31)

Now, by solving the simplified characteristic polynomial equation
(29) with Eq. (31), one can obtain a concise, closed-form solution
of the dispersion relation for pressure wave propagation perpen-
dicular to the layers

cos j3a3ð Þ ¼
1

2
h1 xð Þ ¼ 1

2
tr Tpð Þ (32)

For the infinitely periodic bilayered composites (M¼ 2), the pres-
ent analytical solution (32) recovers the well-known expression
for the dispersion relation for waves perpendicular to the layers

cos a3j3ð Þ ¼ cos
xd1

cp;1

� �
cos

xd2

cp;2

� �

� 1

2

q1cp;1

q2cp;2
þ q2cp;2

q1cp;2

� �
sin

xd1

cp;1

� �
sin

xd2

cp;2

� �
(33)

Similarly, the dispersion relation of shear wave propagation per-
pendicular to the layers can be also obtained by solving another
decoupled eigenvalue problem, where the pressure wave-related
quantities are simply replaced by the corresponding shear wave-
related ones.

3 Numerical Dispersion Relations for Multilayered

Periodic Composites

In this section, an issue with spatial discretization is presented
to explain the spectral distortion in FE dispersion relations of
infinitely periodic multilayered composites. For the sake of com-
petentness of this article, we briefly review the discrete Fourier
transform (DFT) although it is already summarized in our previ-
ous study [46].

3.1 Discrete Fourier Transform. We consider an unknown
continuous spatial function v(x) defined in the 2D coordinate
space, and assume that only regularly spaced N1�N3 data for the
unknown function v(x) are available in a sampled region x1 2
½0; ðN1 � 1ÞDx1� and x3 2 ½0; ðN3 � 1ÞDx3�. Here, the discrete
series of the data are represented by fv½p1; p3�g, where pk ¼
0; 1; 2;…;Nk � 1 for k¼ 1, 3. Now, the Fourier coefficients v̂g of
the unknown continuous function v(x) can be estimated as follows
[52]:

v̂g � v̂ q1; q3½ � ¼
1

N1N3

XN1�1

p1¼0

XN3�1

p3¼0

v p1; p3½ �e�i2p
p1q1
N1
þp3q3

N3

� �
(34)

where the hat �̂ indicates quantities in the wavevector domain
and qk ¼ 0; 1; 2;…;Nk � 1 for k¼ 1, 3. Here, v̂½q1; q3� is referred
as the DFT of the discrete series {v[p1, p3]}. In addition, there is
an inverse formula by which a specific value of v[p1, p3] in the
space domain can be returned from the discrete series fv̂½q1; q3�g
in the wavevector domain

v p1; p3½ � ¼
XN1�1

q1¼0

XN3�1

q3¼0

v̂ q1; q3½ �ei2p
p1q1
N1
þp3q3

N3

� �
(35)

By the definition of DFT (34), the regularly spaced discrete spa-
tial data v[p1, p3] in the coordinate space engender the periodicity
of the DFT coefficients

v̂½q1 þ l1N1; q3 þ l3N3� ¼ v̂½q1; q3� (36)

where l1 and l3 are arbitrary integers. The coefficients v̂½q1; q3�
just repeat themselves for wavevector domain beyond j1 2
½0; 2p=Dx1� and j3 2 ½0; 2p=Dx3�. Furthermore, for a real-valued
function v(x), its DFT coefficients become conjugate symmetric
with respect to the origin

v̂½�q1;�q3� ¼ v̂�½q1; q3� (37)

where �* indicates the complex conjugate. Therefore, the magni-
tude of the DFT coefficients jv̂½q1; q3�j is now symmetric around
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multiples of p/Dx1 and p/Dx3 in the j1- and j3-axes, respectively.
This symmetry is commonly referred as the zone folding [53], and
the folding wavenumbers j1,f and j3,f are defined as

j1;f ¼
p

Dx1

; j3;f ¼
p

Dx3

(38)

Consequently, the calculated DFT coefficients are the only correct
Fourier coefficient estimates for the wavevector domain enclosed
by j1 � [0, j1,f] and j3 � [0, j3,f]. This periodicity of the DFT
entails infinitely many aliases of the true spectrum in the wave-
vector domain.

3.2 Spatial Aliasing. Assume that the unknown spatial func-
tion v(x) in Sec. 3.1 contains wavenumber components beyond
the wavevector domain of j1 � [0, p/Dx1] and j3 � [0, p/Dx3].
Then, these high-wavenumber components falsely contribute to
the DFT coefficient series calculated from the discretely measured
data {v[p1, p3]}. This numerical issue is referred as spatial aliasing
[52], and it can be alleviated by increasing the discrete sampling
rate which enables to capture high-wavenumber components
existing in the continuous function.

For infinitely periodic bilayered composites, we recently
showed that spatial aliasing is the origin of fictitious modes
observed in dispersion relation obtained in the FE framework
[46]. In this paper, we extend our finding to infinitely periodic
multilayered composites. In order to calculate the phononic dis-
persion relation of an infinitely periodic multilayered composite
in the FE framework, a rectangular unit cell of a1� a3 has to be
employed (see Fig. 1(a)) with periodic boundary condition along
x1 and x3-axes. Note that the properties of the layered composite
are a3-periodic in the x3-axis (i.e., the direction perpendicular to
the layers shown in Fig. 1(a)) while they are continuous along the
x1-axis (i.e., the direction parallel to the layers shown in Fig.
1(a)). The wave characteristics of the multilayered composite
relating to a3-periodicity can be properly captured by using a unit
cell length of Dx3¼ a3 in the direction perpendicular to the layers.
However, j1 components relating to homogeneous properties in
x1-direction cannot be fully accessed by using a unit cell length of
Dx1¼ a1 in the direction parallel to the layers. To make things
worse, even an artificial 2p/a1-periodicity occurs along the j1-axis
due to the use of a finite size unit cell in x1-axis. For infinitely per-
iodic multilayered composites, Sec. 4 illustrates that aliasing-
induced spectral distortions occur due to the inevitable use of a
finite size unit cell in the FE framework.

4 Comparison and Analysis

Regarding the dispersion relations of infinitely periodic layered
composites, the analytical [9–14] and the numerical [34,35,37]
studies in the literature predominantly investigate only bilayered
composites. Note that the FE method is an efficient tool to
numerically calculate the dispersion relations of any periodic
structures, but it entails fictitious modes in layered composites
regardless of the number of layers. Section 2 in this article clearly
shows that analytical dispersion relations of infinitely periodic
layered composites can be obtained for any number of layers.
Thus, to highlight spectral distortions in the FE framework, we
present the dispersion relations of two specific infinitely periodic
multilayered composites, which contain more periodic layers than
bilayer composites.

4.1 Geometry, Materials, and Numerical Model. Two dif-
ferent infinitely periodic multilayered composites are selected to
investigate the origin of the spectral distortions observed in FE
dispersion relations: one with an infinitely periodic three-layered
composite and the other with an infinitely periodic four-layered
one. Basically, these two composite cases are provided to show
that the spatial aliasing solution presented in this study is applica-
ble to any infinitely periodic multilayered composites regardless

of the number of periodic layers. The unit cell of the infinitely per-
iodic three-layered composite consists of steel (d1¼ 0.4 mm), alu-
minum (d2¼ 0.4 mm), and copper (d3¼ 0.2 mm), so the periodic
length of the composite in the x3-axis is a3 ¼

P3
j¼1 dj ¼ 1 mm.

On the other hand, for the infinitely periodic four-layered compos-
ite, the unit cell is composed of steel (d1¼ 0.4 mm), aluminum
(d2¼ 0.2 mm), copper (d3¼ 0.2 mm), and titanium (d4¼ 0.2 mm),
resulting in the periodic length of a3¼ 1 mm. The properties of
the considered materials are listed in Table 1.

As discussed in Sec. 3.2, the numerical procedure for dispersion
analysis in the FE framework requires the use of a rectangular
unit cell in the 2D coordinate space. In order to highlight the
effect of the aspect ratio of a1/a3 in the considered unit cell, we
use two different aspect ratios a1/a3¼ 2.0, and a1/a3¼ 1.0 for the
both composites. Figures 2(a) and 3(a) describe the geometries
and the corresponding Brillouin/aliasing zones of the infinitely
periodic three-layered composite models with a1/a3¼ 2.0 and a1/
a3¼ 1.0, respectively. The analogous schematic diagrams for the
infinitely periodic four-layered models with a1/a3¼ 2.0 and a1/
a3¼ 1.0 are also shown in Figs. 4(a) and 5(a), respectively.

Plane strain conditions are assumed in all the FE simulations,
so all the 2D FE models are constructed using four-node bilinear
plane strain elements (CPE4R elements in ABAQUS). The detailed
procedure to obtain dispersion relation using the FE method can
be found in Refs. [42] and [46]. Through a mesh refinement study,
we select the mesh size of 0.025a3 to ensure the convergence of
the FE simulations.

4.2 Numerical Dispersion Relations in the Finite Element
Framework. In order to obtain the dispersion relations of infinitely
periodic multilayered composites, researchers in the FE community
have arbitrarily selected a thin unit cell without a clear understanding
of the routine [34,35,37]. Specific examples in this section will show
that FE dispersion relations should be carefully interpreted because
their results contain undesired fictitious modes and show strong
dependence on the configuration of the employed unit cell.

For the infinitely periodic three-layered composite, Figs. 2(b)
and 3(b) illustrate the numerical dispersion relations obtained
using the FE models with the aspect ratios of a1/a3¼ 2.0 and a1/
a3¼ 1.0, respectively. Those two figures show two types of lines.
The first type is the set of (blue) solid lines with dot markers rep-
resenting the correct dispersion relation for waves propagation
perpendicular to the layers, and the second type is the set of the
(red) solid lines corresponding fictitious modes. In the FE frame-
work, those two types of modes are obtained simultaneously and
they cannot be separated. We separate those two types of modes
by comparing FE results with the analytical solution, which will
be discussed in Sec. 4.3. From the FE model with the aspect ratio
of a1/a3¼ 2.0, the first fictitious mode appears around the normal-
ized frequency of �x ¼ xa3=ð2pcs;2Þ ¼ 0:5. On the other hand, the
FE model with a1/a3¼ 1.0 produces the first fictitious modes
around �x ¼ 1:0. As the aspect ratio of the unit cell (i.e., a1/a3)
increases, the first fictitious mode tends to emerge at lower fre-
quencies. For the infinitely periodic four-layered composite, a
similar trend is also observed in the numerical dispersion relations
for wave propagation perpendicular to the layers. In Figs. 4(b) and
5(b), the first fictitious mode is observed around �x ¼ 0:5 and �x ¼
1:0 from the FE model with a1/a3¼ 2.0 and a1/a3¼ 1.0, respec-
tively. Note that any aspect ratio (even smaller than 1.0) can also
be explored, but the FE dispersion relations will contain fictitious

Table 1 Properties of considered materials

Index, j Material q (kg/m3) k (GPa) l (GPa)

1 Steel 7800 121.2 80.8
2 Aluminum 2700 51.1 26.3
3 Copper 8960 95.1 47.7
4 Titanium 4500 78.1 43.9
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modes regardless of the magnitude of the aspect ratio (e.g., see
Ref. [46]). The two aspect ratios (i.e., a1/a3¼ 2.0, 1.0) in this
study are merely chosen to efficiently demonstrate the effect of
the aspect ratio on the appearance of fictitious modes.

4.3 Analytical Dispersion Relation and Spatial Aliasing.
Using the analytical solution of sagittal plane waves (19), the dis-
persion relations of infinitely periodic multilayered composites
can be calculated along specific wavevector paths. Due to the
homogeneous properties along x1-direction, wave motion in the

infinitely periodic multilayered composites contains infinitely
large j1 components. For the infinitely periodic three-layered
composite, the sagittal plane wave solution (19) shows the non-
periodic characteristics of true dispersion relation in the direction
parallel to the layers (see Fig. 6(a-1) with j3¼ 0 and Fig. 6(a-2)
with j3¼ p/a3). Figures 6(b-1) and 6(b-2) also show a similar
trend for the infinitely periodic four-layered composite. However,
the spatial discretization by using a rectangular unit cell of a1� a3

in the FE framework induces the artificial 2p/a1-periodicity in the
j1-axis of the wavevector domain as discussed in Sec. 3.2. Fur-
thermore, it entails an infinitely many aliases of the true phononic

Fig. 2 (a) (Left) A unit cell of the infinitely periodic three-layered composite having a1/a3 5 2.0,
which is employed for numerical dispersion analysis. (Right) The corresponding wavevector
domain, which illustrates the valid wavevector path for waves perpendicular to the layers
(C–X) and the corresponding aliasing paths (C02X 0; C002X 00). (b) FE dispersion relation
obtained by employing a unit cell of a1/a3 5 2.0. Note that the numerical dispersion relation
contains unwanted fictitious modes represented by red solid lines. (c) Three analytical disper-
sion relations obtained from Eq. (19): (c-1) j1 5 0, (c-2) j1 5 2p/a1, and (c-3) j1 5 4p/a1. (d) The
projection of all the analytical dispersion relations in Fig. 2(c) onto the j3 2 x plane. Note that
one can find one-to-one map in all the observed wave modes in Figs. 2(b) and 2(d), indicating
that the fictitious modes originate from the aliasing paths. Moreover, the maximum valid fre-
quency xmax from Eq. (44) is denoted by a line with square markers.
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dispersion relation, causing spectral distortions in numerical dis-
persion relation. In the following, the sagittal plane wave solution
(19) is adopted to reproduce the distorted dispersion relations
shown in Sec. 4.2.

The infinitely periodic three-layered composites are first con-
sidered. Recall that Fig. 2(b) shows the FE dispersion relation
obtained by using a unit cell having a1/a3¼ 2.0. Using the sagittal
wave solution (19), we obtain the analytical dispersion relations at
three different j1 values, all of which are multiples of 2j1,f¼ 2p/
a1. In other words, the analytical dispersion relation with j1¼ 0
(i.e., the path C–X in Fig. 2(a)) is shown in Fig. 2(c-1), and it rep-
resents the dispersion relation for waves perpendicular to the

layers. In addition, Figs. 2(c-2) and 2(c-3) illustrate the sagittal
wave solution (19) at j1¼ 2j1,f (i.e., C0 � X0) and j1¼ 4j1,f (i.e.,
C00 � X00), respectively. Then, all the analytical dispersion rela-
tions calculated at different j1 values (j1 ¼ 0; 2j1;f ; 4j1;f ; 6j1;f ,
etc.) are projected onto the j3�x plane, and the projected disper-
sion relation is shown in Fig. 2(d). By comparing Figs. 2(b) and
2(d), one can find one-to-one correspondence in all the observed
wave modes. Thus, the comparison between Figs. 2(b) and 2(d)
shows that spectral distortions in the FE dispersion relations are
induced by spacial aliasing originated from C0 � X0; C00 � X00,
etc., which are the aliasing paths of C – X in the first Brillouin
zone. Similarly, in Fig. 3, the numerical dispersion relation

Fig. 3 (a) (Left) A unit cell of the infinitely periodic three-layered composite having a1/a3 5 1.0,
which is employed for numerical dispersion analysis. (Right) The corresponding wavevector
domain, which illustrates the valid wavevector path for waves perpendicular to the layers
(C–X) and the corresponding aliasing paths (C02X 0; C002X 00). (b) FE dispersion relation
obtained by employing a unit cell of a1/a3 5 1.0. Note that the numerical dispersion relation
contains unwanted fictitious modes represented by red solid lines. (c) Three analytical disper-
sion relations obtained from Eq. (19): (c-1) j1 5 0, (c-2) j1 5 2p/a1, and (c-3) j1 5 4p/a1. (d) The
projection of all the analytical dispersion relations in Fig. 3(c) onto the j3 2 x plane. Note that
one can find one-to-one map in all the observed wave modes in Figs. 3(b) and 3(d), indicating
that the fictitious modes originate from the aliasing paths. Moreover, the maximum valid fre-
quency xmax from Eq. (44) is denoted by a line with square markers.
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obtained from the FE model with a unit cell having the aspect
ratio of a1/a3¼ 1.0 (i.e., Fig. 3(b)) are compared with the analyti-
cal dispersion relations obtained from sagittal plane waves (i.e.,
Fig. 3(d)). Furthermore, for the infinitely periodic four-layered
composites, Figs. 4 and 5 compare the sagittal plane wave disper-
sion relations with the numerical result obtained from the FE mod-
els having the aspect ratios of a1/a3¼ 2.0 and 1.0, respectively.

The results presented in Figs. 2–5 clearly show that a smaller
aspect ratio in FE modeling introduces fictitious modes at higher
frequencies, thus resulting in fewer fictitious modes in the pre-
sented graphs. The sagittal plane wave solutions prove that the

fictitious modes occur at the aliasing paths. In the wavenumber
domain, the distance of the aliasing paths (i.e., C0 � X0; C00 � X00,
etc.) from the wavevector path C–X within the first Brillouin zone
can be expressed by

j1;l ¼
2pl

a1

(39)

where l is an integer. Thus, as the aspect ratio decreases (i.e., a1

decreases), j1,l increases (see Fig. 1(b)). Consequently, due to the
proportional relation between wavenumber and the corresponding

Fig. 4 (a) (Left) A unit cell of the infinitely periodic four-layered composite having a1/a3 5 2.0,
which is employed for numerical dispersion analysis. (Right) The corresponding wavevector
domain, which illustrates the valid wavevector path for waves perpendicular to the layers (C –
X) and the corresponding aliasing paths (C02X 0; C002X 00). (b) FE dispersion relation obtained
by employing a unit cell of a1/a3 5 2.0. Note that the numerical dispersion relation contains
unwanted fictitious modes represented by red solid lines. (c) Three analytical dispersion rela-
tions obtained from Eq. (19): (c-1) j1 5 0, (c-2) j1 5 2p/a1, and (c-3) j1 5 4p/a1. (d) The projection
of all the analytical dispersion relations in Fig. 4(c) onto the j3 2 x plane. Note that one can
find one-to-one map in all the observed wave modes in Figs. 4(b) and 4(d), indicating that the
fictitious modes originate from the aliasing paths. Moreover, the maximum valid frequency
xmax from Eq. (44) is denoted by a line with square markers.
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frequency in elastic wave motion, fictitious modes appear at
higher frequencies as a1 decreases.

In summary, aliasing-induced spectral distortions in FE dis-
persion relations are reproduced through the newly derived sagit-
tal plane wave solution for infinitely periodic multilayered
composites (19).

5 Discussion on Finite Element Modeling Guideline

for Indefinitely Periodic Multilayered Composites

For infinitely periodic bilayered composites, our previous study
[46] suggested a FE modeling guideline, which determines a

proper FE model configuration to obtain a valid numerical disper-
sion relation of waves perpendicular to the layers. In this section,
we extend the derivation beyond infinitely periodic bilayered
composites, and offer a generalized FE modeling guideline which
can cover infinitely periodic multilayered composites. For the dis-
persion relation of infinitely periodic multilayered composites, fic-
titious modes occur at the several aliasing paths, i.e., multiples of
2j1,f in the j1-axis. Recall that j1,f is the folding wavenumber,
j1,f¼ p/Dx1¼ p/a1. If a unit cell of a1� a3 is employed in the FE
modeling of the layered composite shown in Fig. 1(a), the corre-
sponding numerical dispersion relation is not impaired by the
existence of the spatial aliasing up to j1¼j1,max

Fig. 5 (a) (Left) A unit cell of the infinitely periodic four-layered composite having a1/a3 5 1.0,
which is employed for numerical dispersion analysis. (Right) The corresponding wavevector
domain, which illustrates the valid wavevector path for waves perpendicular to the layers
(C–X) and the corresponding aliasing paths (C02X 0; C002X 00). (b) FE dispersion relation
obtained by employing a unit cell of a1/a3 5 1.0. Note that the numerical dispersion relation
contains unwanted fictitious modes represented by red solid lines. (c) Three analytical disper-
sion relation obtained from Eq. (19): (c-1) j1 5 0, (c-2) j1 5 2p/a1, and (c-3) j1 5 4p/a1. (d) The
projection of all the analytical dispersion relations in Fig. 5(c) onto the j3 2 x plane. Note that
one can find one-to-one map in all the observed modes in Figs. 5(b) and 5(d), indicating that
the fictitious modes originate from the aliasing paths. Moreover, the maximum valid frequency
xmax from Eq. (44) is denoted by a line with square markers.
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j1;max < 2j1;f ¼
2p
a1

() a1 <
2p

j1;max

(40)

In other words, the second inequality of Eq. (40) indicates a
proper unit cell size a1 in the FE framework for a given wavenum-
ber of interest, j1,max. The above anti-aliasing condition is valid
regardless of the number of layers per unit cell of infinitely peri-
odic layered composites.

However, the number of layers per unit cell should be carefully
considered in order to suggest a FE model guideline in terms of
the frequency x of propagating waves rather than the wavenum-
ber j1. Note that numerical dispersion analysis of infinitely peri-
odic multilayered composites is typically represented in the space
of j3�x (refer Figs. 2(b), 3(b), 4(b), and 5(b)). In order to
explore a relation between the wavenumber j1 and the frequency
x of propagation waves, we adopt the effective modulus theory
for infinitely periodic multilayered composites [54]. As long as
each layer’s thickness is sufficiently small compared to the wave-
length of a harmonic excitation, the effective modulus theory
states that an infinitely periodic multilayered composite behaves
as a transversely isotropic continuum [54]. In the direction parallel

to the layers (i.e., x1-direction in Fig. 1(a)), the effective modulus
theory for infinitely periodic multilayered composites suggests an
approximate linear relation between the wavenumber j1 and the
frequency x of waves for the lowest wave mode

x ’ 2p�cs

k1

¼ �csj1 (41)

where the effective shear wave velocity �cs is employed because
the lowest wave mode always comes from shear waves, not from
pressure waves [10]. Here, for infinitely periodic multilayered
composites, the wave velocity �cs is defined using the effective
mass density �q and the effective elastic constant �c44 as

�cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�c44=�q

p
(42)

where

�q ¼
XM

j¼1

njqj;
1

�c44

¼
XM

j¼1

nj

lj

; nj ¼
djXM

k¼1

dk

(43)

Fig. 6 (a) Analytical dispersion relation obtained from Eq. (19) for the infinitely periodic
three-layered composite: (a-1) j3 5 0 and (a-2) j3 5 p/a3. (b) Analytical dispersion relation
obtained from Eq. (19) for the infinitely periodic four-layered composite: (b-1) j3 5 0 and (b-2)
j3 5 p/a3. The dotted lines denote the approximated linear dispersion relations obtained from
the effective modulus theory (41). Note that the j1 axis is intentionally normalized by a3

because the periodic length a3 is the common characteristic length of the considered peri-
odic composites.
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Here, the bar notation �� denotes the effective quantities of the
infinitely periodic multilayered composites. For waves in the
direction parallel to the layers (i.e., j3¼ 0, p/a3), Fig. 6 shows
that the approximate linear frequency-wavenumber relation based
on the effective modulus theory (41) (denoted by the dotted lines)
is well compared with the lowest wave mode of the sagittal plane
wave solution. Note that the linear relation between x and j given
by Eq. (41) is limited to body waves (i.e., longitudinal and trans-
verse wave motion) of infinitely periodic multilayerd composites
which have infinite length in all directions. These relations cannot
be applied to periodic plate structures which are characterized by
the traction-free boundary conditions on top and bottom surfaces,
because surface waves are typically the main interest. The studies
on periodic plates using the FE framework [55–58] have shown
that the dispersion relations of periodic plates are substantially
different from the corresponding infinitely periodic phononic
crystals. In addition, the wave finite element (WFE) method has
been often adopted to investigate the dispersion relations of lay-
ered composite plates [59–63]. Some researchers reported an spa-
tial aliasing issue in their analysis [59,60], and preformed a set of
sensitivity study on the appearance of fictitious modes by chang-
ing the aspect ratio of their WFE unit cell. Although our guideline
proposed to body waves of infinitely periodic multilayerd compo-
sites cannot be directly applicable to periodic plates, the finding
and the procedure presented in this manuscript can be adopted to
elegantly resolve the spatial aliasing issue reported in the disper-
sion relations of periodic plates.

By substituting the approximate linear relation (41) into the
anti-aliasing condition (40), the following generalized FE model-
ing guideline is obtained:

a1 <
2p �cs

xmax

() xmax <
2p �cs

a1

¼ 2p
a1

XM

j¼1

njqj

0
@

1
A XM

j¼1

nj

lj

0
@

1
A

2
4

3
5
�1=2

(44)

Using Eq. (44), one can determine an adequate FE unit cell size a1

of infinitely periodic multilayered composites for the highest fre-
quency of interest (xmax). The resultant equations in Eq. (44) con-
sider the number of layers per unit cell of infinitely periodic
multilayered composites, which affect the effective shear wave
velocity �cs described in Eq. (42). In this regard, this study pro-
vides the generalized FE modeling guideline which is applicable
to infinitely periodic multilayered composites. In Figs. 2(d), 3(d),
4(d), and 5(d), the maximum valid frequency xmax suggested
from Eq. (44) are denoted by a black horizontal line with square
markers for the considered unit cell size of a1. Regardless of the
number of layers and the unit cell configurations, no fictitious
modes are observed below the maximum valid frequency xmax

suggested from Eq. (44). Thus, the validity of the proposed guide-
line (44) is demonstrated, so that it can be applicable for numeri-
cal dispersion relations of general infinitely periodic multilayered
composites.

6 Conclusion

The FE method offers an efficient framework to investigate the
evolution of phononic crystals that possess materials or geometric
nonlinearity subject to external loading. Despite its superior effi-
ciency, the FE method suffers from spectral distortions in the dis-
persion analysis of infinitely periodic multilayered composites.
Based on our recent study on spectral distortions in the FE disper-
sion relations of infinitely periodic bilayered composites [46], we
extend our investigation to general infinitely periodic multilayered
composites. We first rederive the analytical sagittal plane wave
solution in a substantially concise form and reproduce aliasing-
induced spectral distortions in FE dispersion using the derived
analytical solution. Furthermore, combining an anti-aliasing con-
dition and the effective elastic modulus theory, we provide a

generalized FE modeling guideline to overcome the observed
spectral distortions in FE dispersion relations of infinitely periodic
multilayered composites. For a frequency range of interest, the
suggested FE modeling guideline can be adopted to obtain a valid
FE dispersion relation for wave propagation perpendicular to the
layers of infinitely periodic multilayered composites. To be clear,
our guideline cannot be applied to nonlinear wave motion such as
amplitude-dependent wave dispersion relations because the effec-
tive modulus theory is employed. However, in order to study the
evolution of dispersion relation of a periodic composite subject to
external loading, the FE method typically adopts a two-step man-
ner, i.e., nonlinear static analysis and then dispersion analysis. In
the dispersion analysis step, the proposed FE modeling guideline
is still applicable to a deformed periodic structure, which is the
outcome from the nonlinear static analysis step. Thus, the pro-
posed FE modeling guideline can be used for investigating the
evolution of the band-structure of infinitely periodic multilayered
composites.
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