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In this paper, we combine experiments and numerical simulations to investigate the large
deformation mechanics of periodically patterned cylindrical structures under uniaxial
compression. Focusing on cylinders with a square array of circular pores, we show that
their buckling behavior is not only controlled by the porosity (as for the case of the cor-
responding infinitely large planar structures), but also by the length and thickness of the
shell and the number of pores along the full circumference. While infinitely long cy-
lindrical shells only support long wavelength (global) modes, by reducing the length and
tuning the thickness, short wavelength (local) modes can be observed. Furthermore,
frustrated short wavelength modes are triggered when a local instability is critical, but the
buckling pattern is not compatible with the number of pores along the circumference.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Structural materials are often inhomogeneous on small scales and possess specific microstructures. In particular, porous
materials with well-defined periodicity are ubiquitous not only in nature, but also in synthetic structures and devices
(Gibson and Ashby, 1999). Periodic porous materials are used to design lightweight structures (Queheillalt and Wadley,
2005) with exceptional mechanical characteristics such as high energy absorption (Wierzbicki and Abramowicz, 1983;
Papka and Kyriakides, 1994) and excellent acoustic damping (Verdejo et al., 2009). Moreover, these materials are attractive
media for controlling and manipulating the propagation of waves with applications ranging from optical fibers and sound
filters to photonic integrated circuits and acoustic mirrors (Maldovan and Thomas, 2009).

Periodic porous structures made of elastic materials are capable of undertaking homogeneous and reversible pattern
transformations under compression due to the buckling of their beam-like ligaments. For example, upon reaching a critical
applied deformation a square array of circular holes in a 2D elastomeric matrix suddenly transforms into a periodic pattern
of alternating, mutually orthogonal ellipses (Mullin et al., 2007; Michel et al., 2007; Zhang et al., 2008). Such pattern
transformation has been found to be robust and only marginally affected by small imperfections and edge effects (Bertoldi
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et al., 2008). However, its emergence can be compromised in structures characterized either by low levels of porosity or by
multiple nucleation sites (Bertoldi et al., 2010; Zhu, 2011; Kang et al., 2013). In fact, it has been found that by progressively
reducing the porosity a transition from instabilities with a short wavelength to instabilities characterized by a wavelength
much larger than the scale of the microstructure occurs (Bertoldi et al., 2010). Moreover, the presence of multiple nucleation
sites has been shown to result in domains of uniform buckling patterns separated by antiphase boundaries (Zhu, 2011; Kang
et al., 2013).

Motivated by recent studies on porous shells that derive functionality from mechanical instabilities (Shim et al., 2012;
Lazarus and Reis, 2015), here we investigate the non-linear response under uniaxial compression of elastomeric cylindrical
structures patterned with a square array of circular pores. Our combined experimental and numerical results show three key
features. First, differently from the case of an infinite 2D matrix perforated with a square array of circular pores that sup-
ports short wavelength modes for large enough values of porosity (Michel et al., 2007; Bertoldi et al., 2008), only long
wavelength modes can be triggered in infinitely long patterned cylinders. Second, by reducing the length of the cylindrical
shells and tuning its thickness and porosity, short wavelength modes resulting in a checkerboard pattern similar to that
found in their 2D counterparts can be observed. Third, the response of the cylindrical shells is also significantly affected by
the number of pores along the full circumference. More specifically, frustrated short wavelength modes characterized by a
line of defects can be observed in samples with an odd number of pores along the circumference. In contrast to the 2D
periodic structures, the line of defects is not introduced because of multiple nucleation sites, but it is due to the in-
compatibility between the periodicity of the short wavelength mode and the odd number of pores along the circumference.

This paper is organized as follows. After presenting the family of porous cylindrical structures considered in this study
(Section 2), in Section 3 we describe the experiments conducted by subjecting three different elastomeric structures to
uniaxial compression. Then, in Section 4 we explain the numerical analyses that are used to investigate the nonlinear
response of the structures on both full size and unit cell models. Finally, numerical and experimental results are compared
and discussed in Section 5, highlighting the effect of the cylinder length, thickness, porosity and number of pores along the
full circumference on the response of the structure.
Fig. 1. Periodic porous cylinder with a square of circular pores: (a) schematic of the full size structure and (b) schematic of the unit cell.
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2. Geometry

A schematic of the porous cylindrical structures considered in this study is shown in Fig. 1a. The cylinder has an inner
radius Ri, an outer radius Ro and a square array of circular pores around the full circumference. The structure is, therefore,
characterized by the unit cell shown in Fig. 1b, consisting of a cylindrical sector with a single pore. If the number of pores
around the full circumference of the cylinder is denoted by Nc , the angle of this sector is defined as

α π= ( )N2 / , 1c

and its length, Lu, is given by

α= ( )L R . 2u o

Moreover, the size of the pores is defined by the angle αp (see Fig. 1b). Since the pores are characterized by a fixed value of αp,
their cross-section changes from circular on the outer surface to elliptical on the inner one. More specifically, if we denote
with α=R R /2p p o the radius of the circular pores on the outer surface, the semi-axes of the elliptical voids on the inner
surface are given by

α α
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3. Experiments

Three specimens with different microstructures are fabricated using a molding approach. Each specimen is made of
=N 10r rows of pores and is characterized by =R 12.5 mmi and =R 25 mmo . The other geometrical parameters defining the

three samples are provided in Table 1, where =L N Lr u denotes the total length of the specimens.
To manufacture the samples, we start by fabricating a negative mold using a 3D printer (Connex 500 available from

Objet, Ltd.) with VeroBlue (product number: RGD840, Objet) material. Note that the mold of specimen 2 is designed to cast
one-third of the cylinder while the other two are designed to cast half cylinders. The specimens are cast using a silicone
rubber material (Elite Double, SHORE-A 8; Zhermack). Before replication, a releasing agent (Easy Release 200 available from
Smooth-On, Inc.) is sprayed on the mold surfaces for easy separation. The cast mixture is first placed in vacuum for de-
gassing for around five minutes and, then, set at room temperature for curing. After demolding, each cylindrical structure is
built by joining all its parts with a silicone adhesive sealant (DAP Products Inc., Baltimore, MD).

Each specimen is tested under uniaxial compression using a Discovery Hybrid rheometer (TA Instruments, New Castle,
DE). All tests are conducted at −0.1 mm s 1, ensuring quasi-static conditions. Before performing the tests, the samples are
glued to flat plate fixtures using an instant glue (Krazy Glue, Westerville, OH) to prevent slippage at their ends. During each
test, the applied load versus deformation is recorded and then compared to the numerical results obtained by conducting
the analysis described in Section 4.

Differently from the case of uniaxial tension and pure torsion for which all samples deform similarly (see Appendix A),
the experiments indicate that under uniaxial compression the microstructure has a profound effect and significantly alters
the deformation path followed by the cylinders. In fact, as shown in Fig. 2, three different post-buckling behaviors are found
under compression. In specimen 3, characterized by a low value of porosity (ψ ∼ 0.47), a global buckling mode with a
wavelength equal to the length of the sample is observed. By contrast, in specimens 1 and 2, characterized by a higher value
of porosity (ψ ∼ 0.6), buckling causes a sudden transformation in the periodic pattern of the structure, without altering the
cylinder global shape. More specifically, in specimen 1 we observe the formation of a checkerboard pattern identical to the
one previously observed in 2D periodic structures comprising a square array of circular pores (Mullin et al., 2007; Bertoldi
et al., 2008; Zhang et al., 2008) and characterized by a wavelength twice the length of the unit cell in both circumferential
and axial directions (as highlighted by the yellow line on specimen 1 in Fig. 2). However, in specimen 2 the formation of
Table 1
Design parameters of casted specimens.

Nc αp (rad) ψ L (mm)

Specimen 1 16 0.353 0.636 98.17
Specimen 2 15 0.377 0.636 104.72
Specimen 3 18 0.271 0.471 87.27



Fig. 2. Buckling pattern of the specimens under high compressive strains (ε = 0.15 for all samples): specimen 1 shows a local buckling pattern, specimen
2 shows a local buckling pattern with a row of frustrated pores, and specimen 3 shows a global buckling pattern. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

F. Javid et al. / J. Mech. Phys. Solids 96 (2016) 1–174
such pattern is constrained by the odd number of pores around the full circumference ( =N 15c ). As a result, a line of defects
appears in the structure, as highlighted by the yellow contour lines on specimen 2 in Fig. 2. It should be noted that similar
defect lines induced by buckling have also been observed in 2D periodic structures (Kang et al., 2013; Zhu, 2011). However,
while in 2D structures these are induced by buckling patterns evolving from different nucleation sites, here they are the
result of the incompatibility between the periodicity of the structure and the checkerboard pattern.
4. Modeling

To study the large deformation mechanics of cylindrical porous structures under compression, nonlinear simulations
are performed with the finite element package, ABAQUS/Standard using both full size and unit cell models. All models are
constructed using 10-node modified tetrahedral elements with hourglass control (C3D10M element type). The accuracy of
the mesh is insured by a mesh refinement study, resulting in ∼900 elements for each unit cell (note that the full size
models of the three specimens are constructed by patterning the corresponding unit cell in both axial and circumferential
directions). In all simulations the response of the silicon rubber used to fabricate the samples is captured using an almost
incompressible hyperelastic neo-Hookean model with initial shear modulus μ = 82.5 kPa and bulk modulus

=K 41.25 MPa.

4.1. Boundary conditions

Here, we first present the boundary conditions used to investigate the response of the full size models and then focus on
the periodic boundary conditions used for the unit cell analysis.

4.1.1. Full size model
To simulate the experimental conditions in the numerical analysis and mimic the glue attachment of the samples to the

loading fixtures, we completely fix the nodes on the bottom surfaces of the cylinders. Moreover, the models are subjected to
uniaxial compression by fixing all nodes on their top surfaces in radial and circumferential directions, while uniformly
displacing them in axial direction. The applied nominal strain, ε, is then obtained as the ratio between the applied axial
displacement and the initial length of the model, L. Moreover, the corresponding nominal stress, S, is calculated by dividing
the total reaction force on the top surface by the undeformed cross-sectional area of the sample, ( )π −R Ro i

2 2 .

4.1.2. Unit cell
To reduce the computational cost, we take advantage of the periodicity of the structures and investigate their response
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using the unit cell shown in Fig. 1b with periodic boundary conditions defined on four of its surfaces. In fact, the structure is
periodic along the circumferential and axial directions, while it is not in the radial direction.

To define suitable boundary conditions, we introduce a cylindrical coordinate system, fixed to the reference frame, and
denote with Θ= ( )R ZY , , and θ= ( )r zy , , the coordinates of a material point in the undeformed (reference) and deformed
configuration, respectively. The change in coordinates of an arbitrary point is then given by,

θ Θ= [ ] = − = [( − ) ( − ) ( − )] ( )ΘD D D r R z ZD y Y, , , , . 5R Z

Moreover, an infinitesimal change in coordinates induced by the applied deformation can be expressed as

= ( )D J Yd d , 6

where
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Next, we consider a macroscopic deformation represented by J applied to the unit cell and focus on pairs of nodes
periodically located on the top/bottom and left/right surfaces. Making use of Eq. (6), the coordinates of two nodes peri-
odically located on the top and bottom faces can be related as

− = [ − ]
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since =R Rt b and Θ Θ=t b. Note that the superscripts t and b denote quantities associated to nodes on the top and bottom
faces, respectively.

Moreover, since the cylindrical structure is rotationally periodic and consists of Nc identical unit cells forming a closed
ring, it is easy to show that for two nodes periodically located on the left and right faces,

− = ( )D D 0. 9r l

Here, the superscripts r and l refer to quantities associated to nodes on the right and left surfaces, respectively. In fact, if we
assume that for the α-th unit cell along the circumference − =α αD D Ql r, , (Q being an arbitrary vector), then
∑ ( − ) =α

α α
= ND D QN l r

c1
, ,c . However, since =α α−D Dl r, , 1 and =α α+D Dr l, , 1, it follows that ∑ ( − ) =α

α α
= D D 0N l r

1
, ,c , showing that the

only possibility is =Q 0.
Operationally, we use a user defined multiple point constraint (MPC) subroutine to implement Eqs. (8) and (9) in our

numerical simulations. More specifically, in the MPC subroutine Eqs. (8) and (9) are used to define relations between the
displacements of pairs of nodes periodically located on the top/bottom and left/right surfaces, respectively. In fact, since for
a generic node
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Moreover, we define a virtual node and use its degrees of freedom to prescribe ( )J J J, ,13 23 33 .
To simulate uniaxial compression, we prescribe ε( ) = ( )J J J, , 0, 0,13 23 33 and extract the corresponding macroscopic

nominal stress, S , through virtual work considerations. We start by calculating the external and internal virtual work as

δ ξ δ= ( )W J , 13ext 3 33

and

δ δ δ= = ( )W V S F V S J , 14int 0 33 0 33

where ξ3 is the reaction force at the virtual node corresponding to the assigned displacement J̄33 and V0 denotes the volume
of the unit cell in the undeformed configuration. Since δ δ=W Wext int , it follows that

ξ=
( )

S
V

.
15

3

0

Note that the periodic boundary conditions derived above are validated by comparison with analytical expressions for
the applied force versus deformation obtained for a homogeneous (non-porous) hollow cylinder subjected to uniaxial
loading and pure torsion (see Appendix B).

4.2. Instability analysis

Here, we describe the instability analyses that we perform on the full size models and their corresponding unit cells.

4.2.1. Full size models
The stability of the full size models is examined using eigenvalue analyses. More specifically, a linear perturbation

procedure is accomplished in ABAQUS/Standard using the *BUCKLE module.

4.2.2. Unit cell models
Although buckling often alters the periodicity of the structure, it may be still investigated considering an initial unit cell

and studying the propagation of small-amplitude perturbations of arbitrary wavelength superimposed on the current state
of deformation (Williams and Anderson, 1983; Triantafyllidis et al., 2006; Bertoldi et al., 2008; Ning and Pellegrino, 2015).
While a real natural frequency corresponds to a propagating wave, a complex natural frequency identifies a perturbation
exponentially growing with time. Therefore, the transition between a stable and an unstable configuration is identified
when the frequency vanishes.

To conduct such analysis, we first uniaxially compress the unit cell by applying a finite strain, ε, and then investigate the
propagation of small amplitude elastic waves in the predeformed structure. Since the structure is periodic along the cir-
cumferential and axial directions, the buckling mode follows the Bloch wave relation (Kittel, 2005),

( ) ( ) ( )Θ α Θ α+ + = + ( )Θu R Z L u R Z i k i k L, , , , exp , 16u Z u

where = ( )Θu u uu , ,R Z , π α= ( ) =Θ Θ Θk m N m2 / /c , π= ( )k L m2 /Z u Z . Moreover, mΘ and mZ are the number of unit cells contained
in a full wavelength along the circumferential and axial directions, respectively. It follows from Eq. (16) that1

π π= =
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and an instability is detected at the lowest value of ε for which mZ and mΘ exist such that the corresponding wave has
vanishing frequency.

It is important to note that the length of the cylinder limits the possible values of mZ to be considered in the analysis. In
fact, although larger values of mZ result in lower critical strains (since longer cylinders are easier to buckle), only buckling
modes with a wavelength shorter of or equal to the length of the structure can be observed in the porous cylinders.
Therefore, we consider ≤ ≤m N1 Z r . Moreover, since the cylindrical structure consists of Nc unit cells forming a closed ring
(Prasad et al., 1974; Thomas, 1979; Williams and Anderson, 1983; Ning and Pellegrino, 2015)

Θ α Θ( + ) = ( ) ( )R N Z R Zu u, , , , . 18c

Making use of Eq. (16), it is easy to show that Eq. (18) is satisfied only if

( )α π= =
( )

Θ
Θ

⎛
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Nexp exp

2
1,

19
c c

yielding
1 Note that Eqs. (17) are equivalent to π= ( )i mD D exp 2 /t b
Z , and π= ( )Θi mD D exp 2 /r l , since linearization of Eqs. (10) yields ∼u DR R and ∼Θ Θu RD .
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= ( )Θm
N
n

, 20
c

where n is an integer number. Furthermore, since α π π π= = ∈ [ [Θ Θk m n N2 / 2 / 0, 2C , it follows that there are Nc values of n to
be considered (i.e. = … −n N0, 1, 2, ., 1c ). However, since π π( ) = ( − ( − ) )i n N i N n Nexp 2 / exp 2 /c c c , n and −N nc are associated
with waves of the same form (but with opposite direction of propagation). Therefore, we only need to consider

= … ⌊ ⌋ ( )n N0, 1, 2, .., /2 21c

where ⌊ ⌋N /2c denotes the largest integer smaller than or equal N /2c .
Finally, to work with the complex-valued relations of the Bloch-periodic conditions (17) in a commercial software such as

ABAQUS/Standard, we split all fields into real and imaginary parts (Aberg and Gudmundson, 1997; Bertoldi et al., 2008).
These two meshes are, then, coupled by Bloch-periodic displacement boundary conditions:
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Note that Eqs. (22) can be easily implemented within ABAQUS/Standard using a MPC user-subroutine.
5. Results

To investigate the response of the porous cylindrical structures under uniaxial compression, we first study their stability
performing eigenvalue and Bloch wave analysis for the full size and unit cell models, respectively (as described in Section
4.2). We then conduct post-buckling analyses by introducing a geometrical imperfection with the form of the critical ei-
genmode to preferentially activate the first mode during simulation of the compression test.

5.1. Instability analysis

Full size models: The first eigenmode and the corresponding critical compressive strain for all three specimens are shown
in Fig. 3 and clearly correspond to the experimentally observed buckling patterns (see Fig. 2). To better characterize these
numerically obtained modes, we focus on a circular path in the middle of the models (highlighted in yellow in the insets in
Fig. 4d–f), plot uR, uΘ and uZ along this path for all three specimens (Fig. 4a–c), and decompose these displacements into
their Fourier components (Fig. 4d–f). The amplitude spectra of the displacement components indicate that the buckling
patterns of specimens 1 and 2 are characterized by = = =Θm N n/ 16/8 2c (see Fig. 4d) and =Θm 15/72 (see Fig. 4e), re-
spectively. As shown in Fig. 3, the buckling modes of both specimens are characterized by a local pattern transformation
which alters the periodicity of the structure. However, the wavelength of these patterns along the circumference is different,
since the checkerboard pattern characterized by =Θm 2 that emerges in specimen 1 is not compatible with the odd number
of pores of specimen 2. Finally, as in the experiments, for specimen 3 the critical mode is global (i.e. it is characterized by

=Θm 18 – see Fig. 4f) and does not alter significantly the pore shapes, but, conversely, leads to a change in the overall shape
of the cylinder.

Unit cell models: The results of the Bloch wave analyses performed on the unit cells are shown in Fig. 5 for all three
specimens. In the plots, we report the evolution of the frequency ω (normalized by its maximum value, ωmax, which occurs
at ε = 0) as a function of the applied strain ε for three different periodicities, = ( )Θm mm , Z , including the one which goes to
zero at the lowest strain value (i.e. the critical one).3 In the undeformed configuration (i.e. ε = 0) all eigen-frequencies ω
associated with the possible m are positive. However, as ε increases, the eigen-frequencies associated with each m gradually
decrease and eventually become negative. The critical strain parameter related to each periodicity, m, can be easily extracted
from the plots, since it corresponds to the intersection point between each curve and the horizontal line ω = 0. Finally, the
onset of instability for the periodic structures is defined as the minimum critical strain on all possible = ( )Θm mm , Z . Note
that the critical strain and the reconstructed mode shapes for each m shown in the plots are reported on the right.

We find that the critical mode of specimens 1 is associated to = ( )m 16/8, 2 , resulting in a checkerboard pattern similar to
that found in the corresponding full size models and experimental results. Differently, our results indicate that for specimen
2 Note that n¼7 and 8 are associated with the same buckling pattern, since π π( ) = ( − ( − ) )i N i N Nexp 2 7/ exp 2 8 /c c c for Nc¼15.
3 Note that in our analyses we considered all possible periodicities, m.



Fig. 3. Eigenmodes and eigenvalues (critical strain) for the full size models.
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2 the critical strain is associated to = ( )m 15/7, 2 . The corresponding mode is characterized by a pattern similar to that of
specimen 1, but with a line of defects, since the checkerboard pattern is not compatible with an odd number of pores around
the circumference. Finally, we find that for specimen 3 the lowest value of critical strain is associated to = ( )m 18/1, 10 . The
critical mode is shown in Fig. 5c, right and is reminiscent of the long wavelength mode observed in the experiments.

In general, the results of Fig. 5 are in excellent agreement with those obtained for the full size models (Fig. 4). Moreover,
they indicate that the critical values of strain predicted by the Bloch analysis are slightly larger than those obtained for the
full size models. This difference in the prediction of the critical strain is related to both the effect of the boundary conditions
at the two ends of the cylinders and the fact that the analysis for the full size models is performed on the unloaded
structure, whereas the Bloch wave analysis accounts for the nonlinear deformation of the structure prior to instability.

5.2. Post-buckling analysis

In Fig. 6 the numerical and experimental results of the compression tests for all three specimens are presented, showing
excellent agreement. Note that, guided by the results of the Bloch wave analysis, for the unit cell analysis of specimens 1,
2 and 3 we used a supercell comprising an array of = ( )m 2, 2 , = ( )m 15, 2 4 and = ( )m 18, 10 unit cells, respectively.

All specimens exhibit an initial linear elastic behavior with a sudden departure from linearity to a plateau stress. During
the linear elastic range of deformation, the pores undergo a gradual and homogeneous compression. However, as shown by
the snapshots on the right side of Fig. 6, for larger values of ε this relatively affine-like deformation is replaced by a
transformation to a pattern of alternating, mutually orthogonal ellipses for specimens 1 and 2. Differently, in specimen
3 buckling deforms the entire cylinder into a sinusoidal curve. These transformations correspond to the plateau region
immediately after the departure from linearity.

We also note that when a short wavelength instability is triggered under uniaxial compression as for specimens 1 and 2,
the diameter of the structure progressively reduces for increasing values of applied deformation, resulting in an auxetic-like
behavior. This unusual behavior can be quantified by inspecting the normalized change of the cylinder outer radius,
4 Since, =Θm 15/7 is not an integer for specimen 2, a larger supercell characterized by = ( )m 15, 2 is chosen.



Fig. 4. Frequency content of the eigenmodes for full size models. We focus on a circular path in the middle of the specimens, as highlighted by the yellow
line in the models shown as insets, and report the radial, uR, angular, uΘ, and axial, uZ, displacements along this path for the three specimens (a–c).
Amplitude spectra of displacements are shown in (d–f). (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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( − )r R R/o o o, as a function of ε. The results reported in Fig. 7 show that both specimens 1 and 2 significantly contract in radial
direction after the onset of instability, while specimen 3, which experiences a global buckling, continues to radially expand
as the applied strain is increased. It is worth noticing that the evolution of the diameter for specimens 1 and 2 is very similar,
indicating that the line of defects introduced because of the odd number of pores in specimen 2 does not significantly alter
the macroscopic response of the system. This important observation is also confirmed by the quantitatively similar stress–
strain curves shown in Fig. 6a and b for specimens 1 and 2, respectively.

5.3. Effect of the length and thickness of the porous cylinder

In this study, we considered three specimens characterized by different values of porosity ψ( ) and number of pores
around the circumference (Nc), but with the same inner (Ri) and outer (Ro) radii and rows of pores (Nr¼10).

To investigate the role played by the length of the cylinder, we calculate the critical strain associated to the short and long
wavelength modes for increasing number of rows. This can be efficiently done by focusing on the unit cell models and
calculating the critical strain associated to the modes characterized by = (⌊ ⌋ )Nm /2 , 2c (short wavelength mode – ⌊ ⌋N /2c

denoting the largest integer smaller than or equal to N /2c ) and = ( )N Nm ,c r (long wavelength mode) for different values of
Nr. While the local buckling mode is not affected by Nr, we find that for all three specimens the critical strain associated to
the global mode monotonically decreases for increasing values of Nr (see Fig. 8). Therefore, long wavelength modes are likely
to be triggered in longer cylinders (i.e. for larger values of Nr). More specifically, the results reported in Fig. 8a indicate that
in specimen 1 a short wavelength mode is triggered upon compression if <N 26r (as for <N 26r the critical strain associated
to the short wavelength mode is lower than that corresponding to the long wavelength mode), while a long wavelength
mode is expected for ≥N 26r (as for ≥N 26r the critical strain associated to the long wavelength mode is lower than that
corresponding to the short wavelength mode). Moreover, we find that the mode switching for specimen 2 and specimen
3 occurs at =N 24r and =N 8r , respectively (see Fig. 8b and c). Importantly, our results also indicate that in infinitely long
cylinders global modes will always be triggered (as larger values of mZ result in lower critical strains). This observation
marks another difference between the response of the porus cylindrical shells considered here and the 2D counterparts, as a
2D matrix of infinite size perforated with a square array of circular holes can support the local mode for large enough values
of porosity (Michel et al., 2007; Bertoldi et al., 2008).



Fig. 5. Bloch wave analysis: (a) specimen 1, (b) specimen 2, and (c) specimen 3. On the left, we show the evolution of the frequency parameter as a function
of the applied strain for three different values of ( )Θm m, Z . On the right, we report the mode shapes associated to the considered values of ( )Θm m, Z .
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The cylinder thickness, −R Ro i, is another parameter that can significantly affect the stability of the structure under
compression. As shown in Fig. 9, if the thickness of specimen 1 is decreased to − =R R 2.5 mmo i , not only the value of the
critical strain is significantly reduced, but also the wavelength of the associated mode is altered. In fact, in this case we find
that the critical mode is characterized by = ( ) = ( )Θm mm , 8, 10Z , resulting in the long wavelength pattern shown in Fig. 9,
right.



Fig. 6. Comparison of numerical and experimental results for uniaxial compression: (a) specimen 1, (b) specimen 2, and (c) specimen 3. On the left, the
nominal stress versus nominal strain curves are compared to the experimental data. Snapshots of the samples and the corresponding models are shown on
the right.
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6. Conclusions

In this work we have combined experiments and numerical analysis to study the nonlinear response of cylindrical shells
patterned with a square array of circular holes subjected to uniaxial compression. Our results indicate that (a) the critical
buckling mode is highly affected by the geometry of the shell; (b) for long, thin, or low porous cylinders the long wavelength
mode (reminiscent of the buckling mode of an Euler–Bernoulli beam) is critical; (c) by decreasing the length and tuning the



Fig. 7. Evolution of the outer radius of the cylinders as a function of the applied compressive deformation. Interestingly, the outer radius of both specimen
1 and specimen 2 starts to decrease above the instability point, resulting in an auxetic-like behavior.

Fig. 8. Critical strain associated to the local and the global modes as a function of Nr for: (a) specimen 1, (b) specimen 2, and (c) specimen 3.

Fig. 9. Bloch wave analysis for a cylinder with =N 16c , α = 0.353p , =R 22.5 mmi and =R 25 mmo . On the left, we show the evolution of the frequency
parameter as a function of the applied strain for three different values of ( )Θm m, Z . On the right, we report the mode shape associated to
( ) = ( )Θm m, 8, 10Z .
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thickness and porosity of the cylinders a short wavelength instability can be triggered, resulting in a transformation of the
initial microstructure into a periodic pattern of mutually orthogonal ellipses; and (d) if the pattern induced by the short
wavelength instability is not compatible with the number of pores along the full circumference (as for the case of cylinders
with an odd number of pores along the full circumference), a frustrated pattern with a line of defects emerges. The variety of
qualitatively different post-buckling behaviors that can be induced in cylindrical patterned shells by controlling their
geometry gives us the opportunity to design the next generation of actuators, sensors and switches that take advantage of
their highly nonlinear response.
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Appendix A. Uniaxial tension and pure torsion

Using the same experimental and numerical setups described in Sections 3 and 4 we also investigate the response of the
specimens to uniaxial tension and pure torsion. In particular, to numerically subject the full size models to pure torsion, a
cylindrical displacement field = + +Θ Θu u uu e e eR R Z Z is applied to the nodes on the top surface of the model with com-
ponents

γ γ= − − ( ) = ( ) = ( )Θ⎡⎣ ⎤⎦u R L u R L u1 cos , sin , 0. A.1R Z

where R is the initial radial position of each node and γ is the applied twist angle per unit length. The corresponding
measured torque, T, is readily obtained by summing up the reaction forces at all P nodes on the top face as

∑ ξ γ ξ γ= ( ) − ( )
( )

Θ
=

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥T R L R Lcos sin ,

A.2i

P
i i

R
i i

1

where ξΘ
i and ξiR denote the components of the reaction force at the i-th node in circumferential and radial direction,

respectively, and Ri is the node radial position.
Moreover, for the simulations conducted on unit cell models, pure torsion is simulated by prescribing

γ( ) = ( )J J J, , 0, , 013 23 33 . To calculate the corresponding macroscopic torque, T , we note that the external work can be ex-
pressed as

δ ξ δ δ= = ( )W J TL J , A.3ext u2 23 23

so that

ξ=
( )

T
L

,
A.4u

2

Fig. A1. Comparison of numerical and experimental results for uniaxial tension: (a) specimen 1, (b) specimen 2, and (c) specimen 3. The nominal stress
versus nominal strain curves, obtained numerically, are compared to the experimental data. Snapshots of the samples and the corresponding models are
shown as insets.



Fig. A2. Comparison of numerical and experimental results for pure torsion: (a) specimen 1, (b) specimen 2, and (c) specimen 3. Normalized torque versus
normalized twist angle. Note that Jc is the polar moment of inertia of the cross-sectional area of the cylinder. Snapshots of the samples and the corre-
sponding models are shown as insets.
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and Lu being defined in Eq. (2).
Results for uniaxial tension: The results for uniaxial tension are presented in Fig. A1 for all three specimens. For each

specimen we report the stress–strain curves obtained from the full size (continuous lines) and unit cell (dash-dotted lines)
analyses and compare them to the experiments (dashed lines). Remarkably, we find an excellent quantitative agreement
between all sets of data. All three specimens are characterized by an almost linear stress–strain curve. The curves for
specimens 1 and 2 are almost identical, since these structures are characterized by very similar values of porosity (ψ ∼ 0.6).
In contrast, the curve for specimen 3 is much steeper, indicating that this sample is much stiffer. This is expected, since
specimen 3 is characterized by a lower value of porosity (ψ ∼ 0.47). Snap-shots of the experiments compared to the full size
and unit cell models at the same applied strain, ε, are also shown as insets in each plot. Note that all specimens show a
similar deformation mechanism under tension in which all the pores elongate along the loading direction as the applied
deformation progressively increases. The periodicity of the structure, therefore, remains unaltered during loading, so that a
single unit cell model is sufficient to accurately capture its response.

Results for pure torsion: FE predictions for pure torsion tests are compared to the experimental results in Fig. A2. In each
plot, the normalized torque is shown as a function of the dimensionless applied twist angle per unit length, γRo . Note that
the torque, T, measured during the torsion test is normalized as, T L J/ c, where Jc is the polar moment of inertia of the cross-
sectional area of the cylinder (i.e. π= ( − )J R R /2c o i

4 4 ). Again, we find excellent agreement between numerical and experi-
mental results, highlighting the robustness of our numerical approach. Similar to the case of uniaxial tension, we find an
almost linear response for all samples. Moreover, specimen 3 is the stiffest specimen also in torsion, given its lower value of
porosity. Finally, it should be noted that the maximum values of the normalized twist angles corresponds to 2 radians in
specimens 1 and 2 and to 1.75 radian in specimen 3.
Appendix B. Analytical solutions

Here, we derive analytical expressions for the applied force versus deformation of a homogeneous (non-porous) hollow
cylinder subjected to uniaxial loading and pure torsion. We assume incompressibility for our analytical calculations and
then compare the resulting expressions to the numerical results obtained from both the full size and the unit cell models.
Particularly, we use a non-porous hollow cylinder characterized by Ri¼12. 5 mm, Ro¼25 mm and L¼104.72 mm and also a
unit cell with γ π= 2 /15. Moreover, we consider a hyperelastic neo-Hookean material model, as explained in Section 4, for
which we can readily found the corresponding Cauchy stress, σ , as

σ μ= = − ( )pSF B I, B.1

where S denotes the nominal stress tensor, F the deformation gradient, =B FFT the left Cauchy–Green tensor, p the hy-
drostatic pressure, and I the identity matrix.

Uniaxial loading: We begin with the case of axial loading, for which the deformation is uniform throughout the cylinder.
If we denote with ε the applied nominal strain in axial direction, the deformation gradient takes the form

ε ε
ε=

+
⊗ +

+
⊗ + ( + ) ⊗

( )θ ΘF e e e e e e
1

1
1

1
1 .

B.2
r R z Z

Substituting Eq. (B.2) into Eq. (B.1) and imposing σ σ= =θθ 0rr , the Cauchy stress is found as

σ μ ε
ε

= ( + ) −
+

⊗
( )

⎡
⎣⎢

⎤
⎦⎥e e1

1
1

.
B.3z z

2



Fig. B1. Homogeneous (non-porous) cylinder under uniaxial loading: comparison of the analytical solution with numerical results obtained from the full
size and unit cell models.
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In Fig. B1 we compare FE results obtained from the full size and unit cell models with the analytical predictions. Note that
the small discrepancy found for the FE results of the full size model is dictated by the boundary conditions used in those
analysis, where the expansion in radial direction at the two ends of the cylinder is completely prevented.

Pure torsion: Under pure torsion, the deformation in cylindrical coordinates takes the form

θ Θ γ= ( ) = + = ( )r r R Z z Z, , , B.4

where γ is the twist per unit length of the deformed cylinder and r(R) is a function of the original radial coordinate R. It
follows that the deformation gradient in cylindrical coordinates is given by

γ= ⊗ + ⊗ + ⊗ + ⊗ ( )θ Θ θ
r
R

r
R

rF e e e e e e e e
d
d

. B.5r R Z z Z

Moreover, since the material is incompressible, we will have

− = − ( )r r R R , B.6i i
2 2 2 2

where ri and Ri denote the inner radius of the cylinder in the current and reference configurations, respectively. Note that Eq.
(B.6) can be rewritten in differential form as

= ( )
r
R

R
r

d
d

. B.7

Substituting Eqs. (B.5) and (B.7) into Eq. (B.1) the stress components can be obtained as

σ σ σ μγ σ μ= = = = −θ θ r
R
r

p0, , ,r rz z rr

2

2

σ μ γ σ μ= + − = −
( )

θθ
⎛
⎝⎜
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zz

2

2
2 2

where the pressure p here is a function of r. Moreover, since equilibrium requires that

σ σ σ+ − = ( )
θθ

r r
d
d

0, B.9
rr rr

by substituting Eqs. (B.8) into Eq. (B.9) we obtain

μ γ= − + − −
( )
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Finally, p can be obtained by integrating Eq. (B.10) and using Eq. (B.7),

μ γ= + − +
( )

⎛
⎝⎜

⎞
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where Cp is a constant. The two constants Cp (in Eq. (B.11)) and ri (in Eq. (B.6)) can be then determined by imposing that the



Fig. B2. Homogeneous (non-porous) cylinder under pure torsion: comparison of the analytical solution with numerical results obtained from the full size
and unit cell models.
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pressure on the inner and outer surfaces of the cylinder is zero

σ σ( = ) = ( = ) = ( )r r r r 0. B.12rr i rr o

Substituting Eqs. (B.8), (B.11) and (B.6) into Eq. (B.12), we obtain a non-linear system of equations from which we can solve
for Cp and ri,
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Finally, the torque exerted on the cylinder can be readily obtained as

( )∫ π σ π μγ= = + − −
( )θ

+ − ⎡⎣ ⎤⎦M r r r r R R r2 d
2

.
B.14r

r R R

z i o i i
2 2 2 2 4

i

i o i
2 2 2

Numerical and analytical results are compared in Fig. B2, showing excellent agreement and confirming the validity of the
boundary conditions used in our simulations.
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