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We investigate the propagation of elastic waves in four periodic porous elastomeric planar structures,
where pattern transformation is induced by mechanical instability under uniaxial compression. A series
of numerical analyses is performed to offer a detailed understanding of the evolution of their spectral
band-gaps as a function of void patterns, porosity, and applied deformation. The results of our study out-
line a general strategy to design phononic crystals whose response can be effectively tuned by the level of
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1. Introduction

Phononic crystals are periodic structures designed to control the
dispersion of waves through Bragg scattering – the scattering of
waves by a periodic arrangement of scatterers with dimensions
and periods comparable to the characteristic wavelengths. In the
last decade, there has been a growing interest in the study of pho-
nonic crystals since they can be engineered to prevent the propaga-
tion of elastic waves within a certain range of frequencies called
band-gaps (Kushwaha et al., 1993; Jensen, 2003; Martinsson and
Movchan, 2003). Because of their band-gap properties, phononic
crystals have been exploited to design devices for noise reduction
(Casadei et al., 2012), vibration control (Casadei et al., 2010) and
waive guides (Vasseur et al., 2007). These practical applications
have generated rising interest in the effect of both geometry
(Movchan et al., 2006; Bertoldi and Boyce, 2008) and material com-
position (Vasseur et al., 1994; Cheng et al., 2006; Zhou et al., 2009;
Wang et al., 2013) on the location of the band-gaps.

The ability to tune the phononic properties during operation
has also been shown to be a promising mechanism to facilitate
the engineering applications of phononic crystals (Bertoldi and
Boyce, 2008; Wang et al., 2013). It has been demonstrated that
both the position and the width of phononic band-gaps can be
affected by applied temperature (Jim et al., 2009) and deformation
(Bertoldi and Boyce, 2008; Wang and Bertoldi, 2012). Moreover, a
recent study has shown that the tunability of the band-gaps can be
significantly increased by enhancing geometric nonlinearity during
deformation (Wang et al., 2013). Since geometric nonlinearity can
be amplified by triggering instabilities along the loading path,
these findings once more highlight the fact that buckling is not
always inconvenient or dangerous, but can also be exploited as a
new exciting functional actuation mechanism (Bertoldi et al.,
2008; Shim et al., 2012, 2013; Babaee et al., 2013).

In a recent study – by considering geometric constraints on the
tessellations of the 2D Euclidean plane – it has been shown that in
four mono-disperse circular hole arrangements buckling can be
exploited to reversibly switch between expanded and folded peri-
odic configurations (Shim et al., 2013). Remarkably, in these struc-
tures all the ligaments undergo the first buckling mode in an
approximately uniform manner, resulting in a uniform hole closure
under deformation and in a homogeneous pattern transformation
(see Fig. 1). In this study, we focus on the four planar porous struc-
tures shown in Fig. 1 and investigate numerically through finite
element simulations the effect of applied deformation on the prop-
agation of elastic waves. In particular, we study how the band-gaps
of these structures evolve as a function of void patterns, porosity,
and applied deformation, providing guidelines for the design of
phononic crystals with desired tunable properties.

2. Formulation

In this section, we present the governing equations and bound-
ary conditions used in the static and wave propagation analyses.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.12.018&domain=pdf
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2.1. Governing equations

For a given continuum body B, we denote by X0 and X its unde-
formed (reference) and deformed (current) configurations and by X
and x material and spatial points in X0 and X, respectively. A
motion of B is then a smooth one-to-one mapping that assigns
each material point X to a spacial point x at time t:

x ¼ v X; tð Þ; xi ¼ vi XI; tð Þ: ð1Þ

The deformation gradient of the motion is defined as:

F ¼ Gradx ¼ @x
@X

; FiJ ¼
@xi

@XJ
; ð2Þ

where Grad denotes the gradient operator in the undeformed
configuration.

In the absence of body forces, the local form of linear momen-
tum balance can be expressed in the undeformed configuration
as (Holzapfel, 2000):

DivP� q0
D2U
Dt2 ¼ 0;

@PiJ

@XJ
� q

D2Ui

Dt2 ¼ 0; ð3Þ

where Div denotes the divergence operator in the undeformed con-
figuration, P is the first Piola–Kirchhoff stress, U ¼ x� X is the dis-
placement field in the material description, q0 is the mass density in
the undeformed configuration and D=Dt denotes the materials
time-derivative. For an hyperelastic material with strain energy
density function W0 defined in the undeformed configuration, the
first Piola–Kirchhoff stress P can be expressed as:

P ¼ @W0

@F
; PiJ ¼

@W0

@FiJ
: ð4Þ

Note that the Cauchy stress r is related to the first Piola–Kirchhoff
stress by r ¼ J�1PFT , where J ¼ det F.

In order to investigate instabilities and propagation of elastic
waves, we consider a perturbation superimposed upon a given
state of finite deformation that takes the body to a new equilibrium
configuration where (3) is still satisfied. This incremental problem
is governed by:

Div�P� q0
D2�U
Dt2 ¼ 0;

@�PiJ

@XJ
� q0

D2�Ui

Dt2 ¼ 0; ð5Þ

where the accent � denotes the increment of the corresponding
quantity. Moreover, linearization of the constitutive relation yields:

�P ¼ L : �F; �PiJ ¼ LiJkL
�FkL; ð6Þ

where L represents the mixed elasticity tensor:
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Fig. 1. Experimental images of four periodic structures with differently arranged holes l
configuration (applied compressive engineering strain e ¼ 0:21) (Shim et al., 2013). All
ligaments between the holes are found to buckle in a uniform manner, leading to a distinc
Since the specimens are made of an elastomeric material, the process is fully reversible
LiJkL ¼
@2W0

@FiJ@FkL
: ð7Þ

The incremental problem can be also described within the
deformed configuration. The linearized form of the governing
equation can be expressed spatially as:

div�r� q
@2u�

@t2 ¼ 0;
@�rij

@xj
� q

@2�ui

@t2 ¼ 0; ð8Þ

where div is the divergence operator with respect to x and @=@t is
the spatial time derivative and u represents the displacement field
in the spatial description. Employing push-forward transformations
based on linear momentum (Wang et al., 2013; Bertoldi and Gei,
2011), we obtain:

r� ¼ J�1�PFT ¼ C : grad�u; �rij ¼ J�1�PiJFjJ ¼ Cijkl
@�uk

@xl
; ð9Þ

where grad denotes the gradient operator in the deformed configu-
ration, and C represents the spatial elasticity tensor:

Cijkl ¼ J�1FjJFlL
@2W0

@FiJ @FkL 
: ð10Þ

In this study, we focus on the propagation of infinitesimal ampli-
tude waves described by

�u x; tð Þ ¼ u
4

xð Þe�ixt ; ð11Þ

where u
4

and x denote the magnitude and angular frequency of the
wave, respectively. From the linearized constitutive Eq. (9), �r is
then obtained as:

�r x; tð Þ ¼ r
4

xð Þe�ixt ; ð12Þ

so that (8) becomes:

div r
4
þqx2 u

4
¼ 0; ð13Þ

which represents the frequency domain wave equation.

2.2. Elastic waves in 2-D periodic structures

To investigate the propagation of elastic waves in a 2-D infinite
periodic structure, we start by defining a primitive unit cell
spanned by the lattice primitive vectors a1 and a2 in its deformed
configuration (see Fig. 2(A) and (B)). While any spatially periodic
function v xð Þ is characterized by:

vðxþ rÞ ¼ vðxÞ; ð14Þ

with
(C) 3. . .6 3 6 (D) 3. . .4 6 4

oaded under uniaxial compression in the undeformed (top) and deformed (bottom)
structures are characterized by 50% initial porosity (scale bars: 20 mm). The thin

tive buckled pattern comprising a periodic array of elongated, almost closed ellipses.
and repeatable.
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Fig. 2. (A) Schematic of an infinite periodic structure in the two dimensional space. (B) Primitive unit spanned by the primitive lattice vectors a1 and a2. Basis vectors are
denoted by ê1 and ê2. (C) The corresponding reciprocal unit spanned by the reciprocal primitive vectors b1 and b2. Basis vectors eei are defined as eei ¼ 2p

jja1�a2 jj
ei for i ¼ 1;2. (D)

The first Brillouin zone corresponds to the polygon enclosed by the dotted lines, and the irreducible Brillouin zone is the green area (enclosed by G-K-M-Q-N-P-G).
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r ¼ ra1a1 þ ra2a2; ð15Þ

ra1 and ra2 being arbitrary integers, the propagation of an elastic
plane wave within the periodic structure must satisfy the Bloch-
periodic conditions (Kittel, 2005):

u
4
ðxþ rÞ ¼ u

4
ðxÞeik�r; ð16Þ

where k denotes the wave vector in the reciprocal space.
Noting that an arbitrary plane wave propagating with a wave

vector k does not necessarily have the periodicity of the structure
(i.e., eik�r – 1 for most k), we then introduce the reciprocal transla-
tional periodicity vectors g in the wave vector k-space:

g ¼ gb1b1 þ gb2b2; ð17Þ

where gb1 and gb2 are arbitrary integers and the reciprocal primitive
lattice vectors b1 and b2 are defined as:

b1 ¼ 2p a2 � ê3

jja1 � a2jj
; b2 ¼ 2p ê3 � a1

jja1 � a2jj
; ð18Þ

with ê3 ¼ a1 � a2ð Þ=jja1 � a2jj (see Fig. 2(C)). Since ai � bj ¼ 2pdij (dij

here is the Kronecker delta), it is easy to show that eig�r ¼ 1, yielding

eig�ðxþrÞ ¼ eig�x: ð19Þ

Combining (16) and (19), we can see that the wave motion is g-

periodic in the reciprocal wave vector k-space (i.e. u
4

kþgðxþ rÞ ¼

u
4

kðxþ rÞ), so that the eigenvalues xðkÞ of the frequency domain
wave Eq. (13) are also g-periodic in k (Kittel, 2005),

xðkþ gÞ ¼ xðkÞ: ð20Þ

Thus, only a subset of wave vectors k is needed to be considered to
calculate the dispersion relation. Such subset spans the first Brillou-
in zone (Brillouin, 1946), which corresponds to the polygonal area
enclosed by the perpendicular bisectors of the reciprocal lattice vec-
tors (see dotted polygon in Fig. 2(D)). Moreover, if the primitive unit
cell is invariant under certain rotational or mirror reflectional trans-
formations, only part of the first Brillouin zone needs to be consid-
ered, which is referred as the irreducible Brillouin zone (IBZ) (see
the shaded region within the hexagon in Fig. 2(D)). Finally, to con-
struct the dispersion relation for periodic structures with symme-
tries it is a common practice to consider only wave vectors on the
boundary of the irreducible Brillouin zone (Maldovan and
Thomas, 2009).
1 The imperfection amplitude for each mode was chosen to be smaller than 1 % of
e average element size in the finite element model.
2 Note that the accent ^ is used here to identify quantities related to the enlarged

nit cell.
3. Numerical strategies

In this study, both the static and dynamic response of infinite
periodic 2-D structures is investigated using the commercial finite
element software ABAQUS/Standard and considering a unit cell
with suitable boundary conditions.
3.1. Static analysis

To determine the static response of an infinite structure sub-
jected to a macroscopic deformation gradient F, periodic boundary
conditions are imposed to the boundary of a spatially periodic unit
cell such that

ub ¼ ua þ F� 1
� �

Xb � Xa
� �

; ð21Þ

where the subscripts a and b are two nodal points periodically
located on the boundary of the unit cell and 1 denotes the second
order identity tensor. Within the finite element framework, the
components of F can be conveniently prescribed using a set of vir-
tual nodes and the corresponding macroscopic first Piola–Kirchhoff
stress P is then obtained through virtual work consideration
(Danielsson et al., 2002; Bertoldi and Boyce, 2008). Note that, if a
microscopic instability is detected along the loading path, an
enlarged primitive unit is used with the size dictated by the new
periodicity of the buckled structure. Moreover, to trigger the insta-
bility during the simulation and to capture the post-transformation
behavior, a small imperfection1 based on first three eigenmodes of
the enlarged primitive unit is introduced into the mesh by perturb-
ing the initial position of each node.

3.2. Stability analysis

Upon application of deformation, an infinitely periodic struc-
ture can suddenly change its periodicity due to mechanical insta-
bility. Such instability could be either microscopic (i.e., with
wavelengths that are of the order of the size of the microstructure)
or macroscopic (i.e., with much larger wavelengths than the size of
the microstructure) (Triantafyllidis and Maker, 1985; Geymonat
et al., 1993; Bertoldi and Boyce, 2008).

3.2.1. Microscopic instability
Microscopic (local) buckling modes are characterized by wave-

lengths that are of the order of the size of the microstructure and
may alter the initial periodicity of the solid. The simplest, but com-
putationally expensive path for investigating them is to construct
enlarged unit cells of various sizes spanned by lattice vectors
â1 ¼ m1a1 and â2 ¼ m2a2 (m1 and m2 being positive integers)2

and to use a linear perturbation procedure to calculate their critical
strains and corresponding modes. The critical strain of the infinite
periodic structure is then defined as the minimum of the critical
strains on all possible enlarged unit cells (Bertoldi et al., 2008;
Kang et al., 2014).

Interestingly, the computational cost of such analysis can be
significantly reduced considering a single primitive unit cell and
th

u
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applying Bloch-periodic conditions (16) (Triantafyllidis and Maker,
1985; Geymonat et al., 1993; Bertoldi and Boyce, 2008) with

k̂ ¼ b̂1 þ b̂2; ð22Þ

where

b̂1 ¼
1

m1
b1; and b̂2 ¼

1
m2

b2: ð23Þ

In fact, it follows from (16) that for any choice of m1 and m2

u
4

xþ â1 þ â2ð Þ ¼ u
4

xð Þeik̂� â1þâ2ð Þ ¼ u
4

xð Þ; ð24Þ

clearly indicating that k̂ can be used on a single primitive unit cell
for the analysis of the response of the enlarged unit cell spanned by
â1 and â2. To work with the complex-valued relations of the Bloch-
periodic conditions (16) in ABAQUS, all fields are split into real and
imaginary parts. In this way, the equilibrium equations are divided
into two sets of uncoupled equations for the real and imaginary
parts (Aberg and Gudmundson, 1997; Bertoldi and Boyce, 2008).
Thus, the problem is solved using two identical finite-element
meshes for the unit cell, one for the real part and the other for
the imaginary part, and coupling them by Bloch-periodic displace-
ment boundary conditions:

u
4re

b ¼ u
4re

a cos½k � rab� � u
4im

a sin½k � rab�;

u
4im

b ¼ u
4re

a sin½k � rab� þ u
4im

a cos½k � rab�; ð25Þ

where rab ¼ xb � xa denotes the distance in the deformed configura-
tion between two nodes periodically located on the primitive unit
boundary, and the superscripts re and im denote the real and the
imaginary part of the displacement field, respectively. Note that
(25) can be easily implemented within ABAQUS/Standard using a
user defined subroutine MPC (ABAQUS, 2010).

The stability of each enlarged unit defined by m1 and m2 can be
then investigated within the finite element framework by detect-
ing the point along the loading path at which the corresponding
tangent stiffness matrix becomes singular (i.e., det K½ � ¼ 0½ �). Alter-
natively, the stability of each enlarged unit cell can be investigated
by detecting the applied load at which the smallest eigenfrequency
associated to a non-trivial eigenmode is zero (Bathe, 1996). Finally,
the onset of instability for the infinite periodic structure is defined
as the minimum critical strain on all the considered enlarged unit
cells defined by m1 and m2. Here, we investigated the stability of 25
enlarged primitive units by choosing m1 ¼ 1; . . . ;5 and
m2 ¼ 1; . . . ;5 in (23). To detect the onset of instability for each
enlarged primitive unit, we perform eigenfrequency analysis
(module ⁄FREQUENCY in ABAQUS) along the loading path at
increasing values of applied deformation and detect the smallest
load for which an eigenfrequency associated with a non-trivial
eigenmode becomes zero.3 The critical strain of the infinite periodic
structure is then defined as the minimum on all 25 considered
enlarged unit cells.

3.2.2. Macroscopic instability
It has been shown that macroscopic, long wavelength instabili-

ties correspond to loss of ellipticity at the macroscopic scale
(Geymonat et al., 1993). Therefore, they can be investigated by
detecting when the homogenized mixed elasticity tensor L violates
the positive definite conditions (Marsden and Hughes, 1983):

m� Nð Þ : L : m� Nð Þ > 0; LiJkL mi NJ mkNL > 0 ð26Þ
3 Note that this procedure is significantly simpler than calculating det K½ � ¼ 0½ �
since it does not require to export the stiffness matrix calculated by ABAQUS and to
evaluate its determinant using a numerical package.
,

for all m�N – 0, where m and N are unit vectors defined in the
deformed and the undeformed configurations, respectively. Note
that the homogenized mixed elasticity tensor L relates the macro-
scopic deformation gradient increment �F to the macroscopic first
Piola–Kirchhoff stress increment �P as:

�P ¼ L : �F; �P iJ ¼ LiJkL
�F kL: ð27Þ

In this study, 2-D finite element simulations on a single primi-
tive unit cell with the spatially periodic boundary conditions (14)
are performed to monitor the loss of ellipticity of the homogenized
tangent modulus L. At every deformation increment, the compo-
nents of L are identified by subjecting the unit cells to four
independent linear perturbations of the macroscopic deformation
gradient �F, calculating the corresponding averaged stress compo-
nents �P and comparing to Eq. (27). Then, the loss of ellipticity
condition is examined by checking the positive definite condition
(26) with m and N separately explored at every p=360 radian
increment.

3.3. Wave propagation analysis

To calculate the dispersion relation x ¼ xðkÞ within the finite
element framework, the Bloch-periodic conditions (16) are applied
to the boundary of the enlarged unit cell as described in Section
3.2.1. As mentioned in Section 2, only wavevectors located on the
perimeter of the IBZ are considered (i.e., the edges of the green area
in Fig. 2(D)). In particular, we discretize each edge of the IBZ into
20 segments of equal length, so that

kj;G�K ¼ kG þ
j
N

kG � kK½ � for j ¼ 0; 1; 2; . . . ;N with N ¼ 20;

ð28Þ

where kj;G�K denotes the jth wave vector between two adjacent ver-
tices G and K in the wave vector k-space. For each considered wave
vector k, the corresponding frequencies x are then calculated per-
forming an eigenfrequency analysis. The eigenfrequencies associ-
ated with each considered wavevector are then plotted in the
dispersion relation diagram, where phononic band-gaps can be
readily identified.

Since the goal of our study is to evaluate the effect of applied
deformation to the propagation of elastic waves in periodic struc-
tures undergoing microscopic instabilities, we first perform a static
analysis on the enlarged unit cell (with dimensions dictated by the
microscopic instability analysis) subject to the prescribed defor-
mation F. The static analysis is then followed by eigenfrequency
wave analyses, which account for the effect of the pre-deformation.
It is important to note that applied deformation leads to a change
of the primitive lattice vectors:

a1 ¼ FA1; a2 ¼ FA2; ð29Þ

where Ai and ai (i ¼ 1; 2) denote the vectors in the undeformed and
the deformed configurations, respectively. Therefore, the Brillouin
zone also evolves during deformation, and we account for this in
the calculations.

4. Numerical results

In this section, after describing the geometry, material model
and loading conditions, we present numerical results for the static
and dynamic response of periodic 2-D porous structures, charac-
terized by instability-induced pattern transformation under uniax-
ial compression. Our results demonstrate that the band-gaps of the
considered structures are highly affected not only by hole arrange-
ment and porosity, but also by applied deformation. Note that all
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Fig. 3. Four mono-disperse circular hole arrangements where buckling can be exploited to reversibly switch between expanded and folded periodic configurations: (A)
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simulations were performed using the nonlinear finite-element
package ABAQUS/Standard.

4.1. Geometry, materials and loading conditions

Geometry. We investigate the response of four periodic porous
structures for which buckling can be exploited to reversibly switch
between expanded and folded periodic configurations (Shim et al.,
2013). In Fig. 3 we show the hole arrangements considered in this
study, corresponding to a square (i.e. here and in the following
identified by its vertex configuration4 4.4.4.4), hexagonal
(3.3.3.3.3.3), rhombille (3.6.3.6) and deltoidal trihexagonal (3.4.6.4)
tilings in both the undeformed (expanded) and deformed (folded)
configurations.

In all these structures, the minimum width of the ligaments
between adjacent holes is given by A0 � 2R0ð Þ;A0 and R0 denoting
the center-to-center distance between holes and the hole radius
in the undeformed configuration (see Fig. 5), respectively. Since
the phononic band-gaps are strongly influenced by the smallest
geometric feature in the system (Liu et al., 2002), here we compare
the response of structures characterized by the same ratio R0=A0.
Note that the same ratio of R0=A0 leads to different values of initial
porosity w0 in the four periodic patterns under investigation. For
example, R0=A0 ¼ 0:47 results in an initial porosity
w0 ¼ 0:69;0:80; 0:60 and 0:64 for structures 4.4.4.4, 3.3.3.3.3.3,
3.6.3.6 and 3.4.6.4, respectively.

In all our analyses, plane strain conditions are assumed and 2-D
models are constructed using 6-node modified hybrid elements
(elements CPE6MH in ABAQUS). The accuracy of the meshes was
ascertained through a mesh refinement study, resulting in the final
sweeping seed size of 0:07A0 to ensure mesh convergence in all
simulations. Note that for a given a set of geometric parameters,
the same finite element model was used for both the static as well
as the wave propagation analysis.

Constituent material properties. The response of the material
is captured using the Yeoh hyperelastic model (Yeoh, 1993) whose
strain energy density is given by

W0 �
X3

i¼1

Ci0 I1 � 3
� �i þ J � 1ð Þ2i

=Di

h i
; ð30Þ

where J ¼ det Fð Þ and I1 ¼ tr J�
2
3FT F

� �
. Note that two of the parame-

ters entering in the Yeoh model are related to the conventional
shear modulus (G0) and bulk modulus (K0) at zero strain as C10 ¼
G0=2 and D1 ¼ 2=K0. Here, we use C10 ¼ 131 kPa;C20 ¼
0 kPa;C30 ¼ 3:5 kPa, and D1 ¼ D2 ¼ D3 ¼ 38:2 GPa�1 and an initial
4 For uniform tiling, the vertex configuration is a sequence of numbers representing
the number of sides of the faces going around the vertex.
mass density of q0 ¼ 965 kg=m3, which are suitable for describing
a silicone rubber (Vinylpolysiloxane: Elite Double 32, Zhermack)
(Shim et al., 2012).

Loading conditions. In this study, assuming plane strain condi-
tions, we consider infinitely periodic structures under uniaxial
compression, so that

F ¼ ð1þ e11Þê1 � ê1 þ ð1� eÞ ê2 � ê2 þ ê3 � ê3; ð31Þ

where e denotes the applied compressive engineering strain in x2�
direction, and e11 is determined from r11 ¼ 0. Here, a compressive
engineering strain of e ¼ 0:2 is applied to investigate the effect of
the non-linear deformation on the propagation of small amplitude
elastic waves.

4.2. Stability analysis

Finite element simulations are performed on the four unit cells
highlighted in Fig. 3-top to detect both macroscopic and micro-
scopic instabilities under uniaxial compression. Structures charac-
terized by a wide range of aspect ratios, R0=A0 2 0:37;0:48ð Þ, are
considered and the results are summarized in Fig. 4, where the
critical engineering strains at the onset of both microscopic and
macroscopic instabilities are reported as a function of both R0=A0

(bottom horizontal axis) and the initial porosity w0 (top horizontal
axis). Regardless of the type of instability and hole arrangement,
the critical strain is found to monotonically decrease for increasing
values of R0=A0 due to the reduction of structural stiffness. More-
over, within the considered range of initial porosity, the critical
strain for microscopic instability is found to be always smaller than
that corresponding to macroscopic instability, so that short wave-
length modes are expected to emerge along the loading path for all
the four porous structures. Note that the microscopic instability
alters the initial periodicity of structures 4.4.4.4 and 3.3.3.3.3.3,
so that enlarged primitive cells consisting of 2� 2 and 1� 2 of ini-
tial primitive units are required to describe the post-buckling
response of these structures, respectively. In contrast, structures
3.6.3.6. and 3.4.6.4 are found to retain their initial periodicity even
after the onset of instability.

4.3. Wave propagation analysis: design of tunable phononic crystals

We now investigate the effects of the hole pattern, the ratio
R0=A0 and the applied compressive strain on the band-gaps of the
four periodic structures shown in Fig. 3-top. In order to study the
propagation of waves in these structures, we use unit cells with
the size dictated by the periodicity introduced by buckling (see
Fig. 5). It is important to note that the alteration in periodicity
induced by buckling significantly affects both the shape and the
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size of the IBZ (e.g., the IBZ for structure 4.4.4.4 shrinks to a quarter
of its initial size after buckling.). However, since in our calculations
we use the enlarged unit cells predicted by the stability analysis
(see Fig. 5), we only need to account for the gradual increase of
the IBZ induced by the applied finite deformation.

We start by constructing the dispersion diagrams for the unde-
formed configurations, which are shown in Fig. 6 in terms of nor-
malized frequency ~x ¼ xA0=ð2pcTÞ, where cT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G0=q0

p
is the

transverse plane wave velocity in the homogeneous material.
While several studies have focused on the band-gaps in the unde-
formed configuration of structures 4.4.4.4 and 3.3.3.3.3.3 (Zalipaev
et al., 2002; Wu et al., 2004; Bertoldi and Boyce, 2008; Su et al.,
2012), little is known about structures 3.6.3.6 and 3.4.6.4. It is
interesting to see that these latter structures are characterized by
rather low frequency band-gaps occurring near ~x 	 0:4, highlight-
ing once more the important role played by the hole pattern.

Next, to investigate the effect of applied deformation on the
propagation of elastic waves, we compress uniaxially all the struc-
tures by applying a compressive engineering strain up to e ¼ 0:2
and then construct the dispersion diagrams for the deformed con-
figurations (see Fig. 7). By comparing the plots reported in Figs. 6
2b

G X
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2b

G X

M

1b

M

Fig. 5. Representative volume elements as predicted by the stability analysis and the co
3.3.3.3.3.3, (C) 3.6.3.6, and 3.4.3.6. Note that, although the unit cells for structures 3.6.3
simulations we account for the gradual increase of the IBZ induced by the applied finite
and 7, it is easy to see that the applied deformation substantially
alters the band-gaps as well as the IBZ.

To better quantify this effect we now proceed by calculating the
band-gaps for all four structures at several points along the loading
path. In particular, we consider structure characterized by
R0=A0 ¼ 0:43, 0.45 and 0.47, apply compressive engineering strains
up to e ¼ 0:2 and calculate the band diagram after every strain
increment of De ¼ 0:005 . These calculations enable us to describe
the transformations of the band-gaps as a function of applied
deformation, as shown in Fig. 8–11 for structures 4.4.4.4,
3.3.3.3.3.3, 3.6.3.6 and 3.4.3.6, respectively.
4.3.1. 4.4.4.4 and 3.3.3.3.3.3: Band-gap structures with low tunability
We start by discussing the results for structure 4.4.4.4, for

which the ratios R0=A0 ¼ 0:43;0:45, and 0:47 correspond to an ini-
tial porosity w0 ¼ 0:58;0:64, and 0:69, respectively. The deformed
shapes and the corresponding dispersion relations at different lev-
els of compressive engineering strain are provided in Fig. 8. As
shown in Fig. 8-top, in the undeformed configuration this structure
possesses a phononic band-gap near ~x 	 0:7 for all three values of
R0=A0.

As R0=A0 increases, this band-gap tends to increase in width and
to migrate to lower frequencies because of the reduction of struc-
tural stiffness induced by the increase in porosity. The results
reported in Fig. 8 also highlight the effect of applied deformation
on the propagation of elastic waves in the structure. Up to the
onset of the microscopic instability (corresponding to the red ver-
tical line in Fig. 8), no significant changes in the band-gap are
observed. However, as the new pattern induced by buckling
becomes more accentuated (i.e., e > 0:1) a couple of new band-
gaps open. Moreover, it is worth noticing that applied deformation
also alters the IBZ, and thus both undeformed and deformed (at
e ¼ 0:2) IBZs are reported in the inserts of Fig. 8. Since the size of
the reciprocal lattice of a periodic 2-D structure is inversely pro-
portional to the area spanned by the primitive lattice vectors, the
size of IBZ increases as applied deformation reduces the porosity
of the structure.

Fig. 9 shows the results for structure 3.3.3.3.3.3. For the case of
small R0=A0 (e.g. 0:43 in 9A), this structure hardly possesses any
band-gap in both undeformed and deformed configurations. Differ-
ently, for larger R0=A0 (e.g. 0:45 and 0:47 in 9B and 9C, respec-
tively), the structure is characterized by a band-gap in the
undeformed state, but its width is much smaller than that found
in the undeformed structure 4.4.4.4. When the structure is
deformed, this band-gap gradually fades out and then appears
again when the deformation is further increased.
4.3.2. 3.6.3.6 and 3.4.6.4: Band-gap structures with high tunability
Next, we focus on the effect of applied deformation on the prop-

agation of elastic waves in structures 3.6.3.6 and 3.4.6.4. Remark-
ably, the results reported in Figs. 10 and 11 clearly indicate that
these two structures offer higher band gap tunability than struc-
tures 4.4.4.4 and 3.3.3.3.3.3.
1b 1b

2b

G K
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C

rresponding irreducible Brillouin zones (IBZ) in the reciprocal space: (A) 4.4.4.4, (B)
.6, and 3.4.3.6 have different shapes, their corresponding IBZs are identical. In the
deformation.
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Fig. 6. Dispersion relations for the undeformed structures with R0=A0 ¼ 0:47. (A) 4.4.4.4, (B) 3.3.3.3.3.3, (C) 3.6.3.6, and (D) 3.4.3.6.
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Fig. 7. Dispersion relations for the deformed structures (at the compressive engineering strain of e ¼ 0:2) with R0=A0 ¼ 0:47 (A) 4.4.4.4, (B) 3.3.3.3.3.3, (C) 3.6.3.6, and (D)
3.4.3.6.
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Focusing on Fig. 10, where we report results for structure
3.6.3.6, we note that the undeformed configuration is character-
ized by a wide band-gap at ~x 2 0:28;0:43ð Þ; 0:25;0:44ð Þ, and
0:20;0:41ð Þfor R0=A0 ¼ 0:43;0:45, and 0:47, respectively. Note that

these band-gaps are located at much lower frequency ranges than
those of structures 4.4.4.4 and 3.3.3.3.3.3, making this hole
arrangement a promising candidate for engineering applications.
Furthermore, as the applied compressive strain is increased and
the folded pattern induced by instability emerges, several new
band-gaps open and this process becomes more accentuated as
the ratio R0=A0 increases.

Finally, the results reported in Fig. 11 show that structure
3.4.6.4 is characterized by a similar response. Although in the
undeformed configuration the system possess only few low fre-
quency band-gaps, these are significantly altered by applied defor-
mation and the effect is enhanced for increasing values of porosity.



Fig. 8. Phononic band-gaps as a function of the applied strain for structure 4.4.4.4 subjected to uniaxial compression. Three different aspect ratios are presented: (A)
R0=A0 ¼ 0:43, (B) R0=A0 ¼ 0:45, and (C) R0=A0 ¼ 0:47. The contour plot on the deformed structures represents the von-Mises stress distribution (unit: kPa), and the inserted
figures shows the change of the IBZ during the corresponding pattern transformation.

Fig. 9. Phononic band-gaps as a function of the applied strain for structure 3.3.3.3.3.3 subjected to uniaxial compression. Three different aspect ratios are presented: (A)
R0=A0 ¼ 0:43, (B) R0=A0 ¼ 0:45, and (C) R0=A0 ¼ 0:47. The contour plot on the deformed structures represents the von-Mises stress distribution (unit: kPa), and the inserted
figures shows the change of the IBZ during the corresponding pattern transformation.
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Therefore, our numerical results indicate that structure 3.6.3.6
and 3.4.6.4 characterized by large values of porosity can be an
excellent candidate for the design of tunable systems, since a wide
range of frequencies can be switched on/off by applied
deformation.

4.3.3. Discussion and conclusions
In this study, we numerically investigate the propagation of

small amplitude elastic waves in four porous elastomeric struc-
tures, in which a mechanical instability under uniaxial compres-
sion induces a pattern transformation. Our study shows that
mechanical instabilities and large deformation can be effectively
utilized to reversibly tune and control the phononic band gaps of
the periodic structures. More specifically, our results indicate that:

(i) For a given value of applied strain � and hole pattern, an
increase in porosity results in wider band-gaps.
(ii) For a given value of applied compressive strain e and ratio
R0=A0, the hole pattern has a strong effect on the number and
location of the band-gaps. While this observation is well known
for the undeformed structures (Maldovan and Thomas, 2009),
our study show that it also applies to the deformed configura-
tions. In fact, with the exception of structure 3.3.3.3.3.3.3, all
other three structures are characterized by several low-fre-
quency band-gaps along the entire deformation process, whose
location and width is found to be determined by the hole
arrangement, the porosity and the level of applied deformation.
(iii) For a given ratio R0=A0 and a given hole pattern, the pattern
transformation induced by instability plays a key role in the
evolution of the band-gaps. Initially, the structure deforms in
an affine manner and the band-gaps are only marginally
affected by the applied compressive strain. However, as the
folded pattern emerges beyond the onset of instability, the
width of the pre-existing band-gaps significantly changes and
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Fig. 10. Phononic band-gaps as a function of the applied strain for structure 3.6.3.6 subjected to uniaxial compression. Three different aspect ratios are presented: (A)
R0=A0 ¼ 0:43, (B) R0=A0 ¼ 0:45, and (C) R0=A0 ¼ 0:47. The contour plot on the deformed structures represents the von-Mises stress distribution (unit: kPa), and the inserted
figures shows the change of the IBZ during the corresponding pattern transformation.

Fig. 11. Phononic band-gaps as a function of the applied strain for structure 3.4.6.4 subjected to uniaxial compression. Three different aspect ratios are presented: (A)
R0=A0 ¼ 0:43, (B) R0=A0 ¼ 0:45, and (C) R0=A0 ¼ 0:47. The contour plot on the deformed structures represents the von-Mises stress distribution (unit: kPa), and the inserted
figures shows the change of the IBZ during the corresponding pattern transformation.
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several new band-gaps open. In particular, structures 3.6.3.6
and 3.4.6.4 with higher R0=A0 ratios show dramatic changes in
the band-gap distribution induced by the applied deformation.
(iv) It is worthwhile to mention that the deformed configurations
of structures 3.6.3.6 and 3.4.6.4 are chiral. Although structural
chirality is known to have no effect on the mechanical properties
of materials based on classical elasticity (Lakes, 2001), this study
shows that the considered chiral structures have superior low-
frequency band-gap capabilities, as previously shown by
Spadoni et al. (2009). However, the investigation of the connec-
tions between chirality and propagation of elastic waves goes
beyond the scope of the present work and will be the subject
of future research.

We also note that in order for the structures to sustain the large
deformation induced by buckling while remaining in the fully
elastic regime, elastomeric materials such as silicon rubber are
typically used for fabrication. Although these materials are
dissipative and it is well known that material damping affects
the dynamic response of the system (Psarobas, 2001; Jensen,
2003; Liu et al., 2008; Hussein, 2009), here we consider them to
be purely elastic. This choice is motivated by the fact that it has
been recently shown that moderate levels of damping as those pro-
vided by elastomeric materials do not significantly affect the band-
gaps of the periodic structures (Babaee et al., submitted for
publication).

In conclusion, our study outlines a general strategy in which a
judicious choice of hole arrangement and porosity provides a
foundation for the design of phononic crystals whose response
can be tuned by applied deformation. Furthermore, since buckling
is scale independent and the deformation process is fully revers-
ible, we expect our results will contribute the design of smart
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systems that control the wave propagation depending on applied
deformation.
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