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Harnessing instabilities for design of soft reconfigurable
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Most materials have a unique form optimized for a specific property

and function. However, the ability to reconfigure material structures

depending on stimuli opens exciting opportunities. Although

mechanical instabilities have been traditionally viewed as a failure

mode, here we exploit them to design a class of 2D soft materials

whose architecture can be dramatically changed in response to an

external stimulus. By considering geometric constraints on the

tessellations of the 2D Euclidean plane, we have identified four

possible periodic distributions of uniform circular holes where

mechanical instability can be exploited to reversibly switch between

expanded (i.e. with circular holes) and compact (i.e. with elongated,

almost closed elliptical holes) periodic configurations. Interestingly,

in all these structures buckling is found to induce large negative

values of incremental Poisson's ratio and in two of them also the

formation of chiral patterns. Using a combination of finite element

simulations and experiments at the centimeter scale we demonstrate

a proof-of-concept of the proposed materials. Since the proposed

mechanism for reconfigurable materials is induced by elastic insta-

bility, it is reversible, repeatable and scale-independent.
Mechanical instabilities are not always deleterious though they
are conventionally regarded as failure modes. Because of the
large deformation and dramatic shape changes that accompany
them,1,2 mechanical instabilities in elastic structures provide
opportunities for designing responsive materials capable of
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reversibly switching between two different congurations with
applications in sensors, microuidics, bioengineering, robotics,
acoustics and photonics.3–8 In particular, instabilities in periodic
porous structures comprising of square and triangular arrays of
circular holes have been found to lead to the transformation of
the pores in ordered arrays of high-aspect ratio (almost closed)
ellipses9–11 and have been demonstrated to be instrumental for
the design of phononic switches,7 color displays12 and materials
with unusual properties such as large negative Poisson's
ratio.13,14 However, to design the next generation of responsive
and recongurable materials and devices that take advantage of
the dramatic changes in geometry induced by instabilities, the
effect of pore shape and lattice topology on the response of the
system need to be fully understood. While it has been recently
shown that thepore shapehas a strong effect bothon the onset of
instability and on the postbuckling behavior,13 there has been no
systematic study on the effect of the hole arrangement. So far the
selection of the architecture has been guided by intuition and
buckling has been exploited as a folding mechanism only in
square and triangular arrays of holes.7,9,12–15

Here, werst identify possible periodic distributions ofmono-
disperse circular holes where buckling can be exploited to
reversibly switch between expanded (i.e. with circular holes) and
compact (i.e. with elongated, almost closed elliptical holes) peri-
odic congurations. Then, we conrm the validity of our ndings
through a combination of experiments and numerical simula-
tions.While twoof these four congurationshavebeenpreviously
reported,9,10,16 the other two are newly discovered. Remarkably, in
these two new congurations elastic buckling not only can be
exploited to design materials with negative Poisson's ratio (also
known as auxetic material), but also acts as a reversible chiral
symmetry-breaking mechanism, enabling the reversible switch
between the initial nonchiral and the buckled chiral pattern.
Furthermore, since the proposed folding mechanism exploits
mechanical instabilities, our study opens avenues for the design
of recongurable materials over a wide range of length scales.

We start by nding periodic monodisperse circular hole
arrangements in plates where buckling can be exploited as a
This journal is ª The Royal Society of Chemistry 2013
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mechanism to reversibly switch between undeformed/expanded
and deformed/compact congurations. Therefore, we require
that the instability does not only reduce the symmetry, but also
leads to the transformation of the circular holes into elongated
(almost closed) ellipses. Inspired by recent work on buckling of
spherical structured shells, where hole arrangements were
systematically explored through polyhedra,6 here we investigate
the hole arrangements by considering geometric constraints on
the tilings (i.e., tessellations) of the 2D Euclidean plane.

In order for all the monodisperse circular holes to close
through buckling of the ligaments, the plates should meet the
following requirements: (a) the center-to-center distances of
adjacent holes are identical, so that all the ligaments are char-
acterized by the same minimum width and undergo the rst
buckling mode in an approximately uniform manner; (b) there
is an even number of ligaments around every hole, so that the
deformation induced by buckling leads to their closure. Math-
ematically, these geometric constraints can be rephrased as: the
skeleton of the porous structure should (a0) be a convex uniform
tiling of the 2D Euclidean plane (which are vertex-transitive and
have only regular faces) (b0) with an even number of faces
meeting at each vertex. Focusing on convex uniform tilings (i.e.
Platonic and Archimedean tilings) where all the vertices are the
same, so that all the holes deform similarly, we nd that there
are only four tessellations which meet the above requirements:
square tiling, triangular tiling, trihexagonal tiling and rhombi-
trihexagonal tiling (see Fig. 1A). Note that these tilings can be
Fig. 1 Geometric compatibility for the arrangement of circular holes on the
porous structures, restricted to four specific configurations (shown in each row).
(A) Tilings. (B) Expanded undeformed porous structures. (C) Compact porous
structures, which are buckled under uniaxial compression. The green-shaded
regions in (B) and (C) denote the unit cell in the undeformed and deformed
configurations, respectively.

This journal is ª The Royal Society of Chemistry 2013
fully described by their vertex gures (i.e. a sequence of
numbers representing the number of edges of the polygons
going around the vertex): 4.4.4.4 for the square, 3.3.3.3.3.3 for
the triangular, 3.6.3.6 for the trihexagonal and 3.4.6.4 for the
rhombitrihexagonal tiling. The corresponding porous struc-
tures are then obtained by placing a circular hole at each vertex
of the tiling (Fig. 1B and ESI†). To help us refer to these four
periodic porous structures, hereaer we use the vertex gure of
the corresponding tiling to denote them, as indicated in Fig. 1B.
Fig. 1C shows the compact/folded congurations of the porous
structures, which are obtained through nite element (FE)
buckling analysis under uniaxial compression. They clearly
show that all the ligaments in the structures undergo the rst
buckling mode uniformly. The instability is found not only to
change the planar symmetry group of the structures (i.e. for
4.4.4.4 from p4m to p4g, for 3.3.3.3.3.3 from p6m to pgg, for
3.6.3.6 from p3m1 to p3, and 3.4.6.4 from p6m to p6), but also to
lead to closure of the holes and compaction of the structures. It
is worth noting that the same compact patterns can also be
predicted using continuum elasticity theory and modeling each
buckled elliptical hole as a dislocation dipole that interacts
elastically with all the other dipoles in the system17 (see ESI†).

Guided by our analysis, we built physical and numerical
models of all four porous structures (see Fig. 2A). The structures
are characterized by an initial void-volume-fraction j4.4.4.4 ¼
j3.6.3.3.6 ¼ j3.4.6.4 ¼ 0.49 and j3.3.3.3.3.3 ¼ 0.48 (j ¼ total hole
area/total area). Note that the slight variation in porosity
between the four structures is related to limited accuracy during
the fabrication process. The samples for the experiments were
fabricated using silicone rubber with Young's modulus E ¼ 0.9
MPa and a mold-casting process with molds prepared by 3D
rapid prototyping. In all the structures, the holes are charac-
terized by radius r ¼ 4 mm and a large out-of-plane thickness is
employed to avoid out-of-plane buckling. Uniaxial compression
tests were performed on a standard quasi-static loading frame
under displacement-control (see ESI† for details on the experi-
mental setup). On the numerical side, simulations were per-
formed using the non-linear Finite Element code ABAQUS/
Standard. Plane strain conditions were assumed and the
behavior of the silicone rubber used in the experiments was
captured using the Yeoh hyperelastic model.18 Uniaxial
compression tests were simulated by imposing vertical
displacements at the top face, while keeping all other degree of
freedom of both top and bottom faces xed (see ESI† for details
on the FE simulations).

Representative pictures taken during the tests at different
levels of nominal strain 3 (calculated as change of height
divided by the original height) are presented in Fig. 2, showing
an excellent agreement between experiments and FE simula-
tions. At small nominal strains, the holes are observed to
deform uniformly (see Fig. 2B). However, when a critical value
of applied nominal strain is reached, the thin ligaments
between the holes start to buckle in a uniform manner. Even-
tually, at 3 ¼ �0.15 (Fig. 2C), a distinctive buckled pattern is
observed in the central part of the samples, only marginally
affected by the boundary conditions. Finally, the buckled
pattern becomes further accentuated for larger values of applied
Soft Matter, 2013, 9, 8198–8202 | 8199
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Fig. 2 Numerical (left) and experimental (right) images of all four structures (4.4.4.4, 3.3.3.3.3.3, 3.6.3.6 and 3.4.6.4) at different levels of deformation: (A) 3¼ 0.00, (B)
3 ¼ �0.07, (C) 3 ¼ �0.15 and (D) 3 ¼ �0.21. All configurations are characterized by an initial void-volume-fraction j z 0.5. Scale bars: 20 mm.

Fig. 3 (A) Experimental and numerical stress–strain curves for the four struc-
tures. S denotes the nominal stress (calculated as force divided by the cross-
sectional area in the undeformed configuration). Dashed lines correspond to
experiments and solid lines to simulations. Note that for 3 < �0.20 the porous
structure 4.4.4.4. shows a stiffening behavior due to densification. A similar
response is observed also for the other three structures, but for larger values of
applied strain 3. (B) Table summarizing the mechanical properties of the four
periodic structures measured from experiments and simulations.
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strain, leading to the formation of a periodic array of elongated,
almost closed ellipses, as shown in Fig. 2D for 3 ¼ �0.21. Since
the specimens are made of an elastomeric material, the process
is fully reversible and repeatable. Upon release of the applied
vertical displacement, the deformed structures recover their
original congurations.

Interestingly, Figs. 2C–D clearly shows that the porous
structures 3.6.3.6 and 3.4.6.4 buckle into a chiral pattern, while
the initially expanded congurations are non-chiral. Therefore,
in these two systems buckling acts as a reversible chiral
symmetry breaking mechanism. Despite many studies on
pattern formation induced by mechanical instabilities,15

relatively little is known about the use of buckling as a reversible
chiral symmetry breaking mechanism. Although several
processes have been recently reported to form chiral
patterns,19–23 all of these work only at a specic length-scale,
preventing their use for the formation of chiral structures over a
wide range of length scales, as required by applications.
Furthermore, most of these chiral symmetry breaking processes
are irreversible19–21 and only few systems have been demon-
strated to be capable of reversibly switching between non-chiral
and chiral congurations.22,23 Remarkably, since the mecha-
nism discovered here exploits a mechanical instability that is
scale independent, our results raise opportunities for reversible
chiral symmetry breaking over a wide range of length scales.

Both experiments and simulations reported in Fig. 2 clearly
indicate that the onset of instability is strongly affected by the
arrangement of the holes. A more quantitative comparison
between the response of the structures investigated in this
paper can be made by inspecting the evolution of stress during
both experiments and simulations (see Fig. 3). Although all
structures are characterized by roughly the same porosity, the
8200 | Soft Matter, 2013, 9, 8198–8202
hole arrangement is found to strongly affect both the effective
modulus Ē (calculated as the initial slope of the stress–strain
curves reported in Fig. 3) and the critical strain 3cr (calculated as
the strain at which the stress–strain curves reported in Fig. 3
plateau), demonstrating that through a careful choice of the
This journal is ª The Royal Society of Chemistry 2013
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architecture materials with the desired response can be
designed.

A clear feature in Fig. 2 is that aer instability the lateral
boundaries of three samples (i.e. 4.4.4.4, 3.6.3.6 and 3.4.6.4)
bend inwards, a clear sign of negative Poisson's ratio.24,25 To
quantify the lateral contraction (and thus the negative Poisson's
ratio) of the porous structures, we investigate the evolution of
the microstructure during both experiments and simulations.
The physical samples were marked with black dots (see Fig. 2)
and their position was recorded using a high-resolution digital
camera and then analyzed by digital image processing (MAT-
LAB). We focused on the central part of the samples where the
response was clearly more uniform and marginally affected by
the boundary conditions. For each structure we constructed
several parallelograms connecting the markers in the central
part of the sample (see Fig. 2A and 4A and ESI† for details) and
monitored their evolution. For each parallelogram, local values
of the engineering strain 3xx and 3yy were calculated from the
positions of its vertices at each recorded frame t as

3xxðtÞ ¼ ðx4ðtÞ � x3ðtÞÞ þ ðx2ðtÞ � x1ðtÞÞ
2jL0

34j
� 1; (1)

3yyðtÞ ¼ ðy1ðtÞ � y3ðtÞÞ þ ðy2ðtÞ � y4ðtÞÞ
2jL0

13jcos q
� 1; (2)

where (xi, yi) denote the coordinates of the i-th vertex of the
parallelogram, |L034| and |L013| are the norm of the lattice vectors
spanning the parallelogram in the undeformed conguration
Fig. 4 (A) Schematic diagram of the central parallelograms used to compute �n

and �ninc. (B) Macroscopic Poisson's ratio �n and �ninc as a function of the local
nominal strain �3yy for all the four periodic porous structures. Finite element
simulations are performed on infinite periodic structures. Error-bars on experi-
mental curves are standard deviation of the quantity calculated for multiple
parallelograms in the central region (see ESI†).

This journal is ª The Royal Society of Chemistry 2013
(see Fig. 4A) and q ¼ arccos
L034$L

0
13

jL034jjL013j
. The local values of the

engineering strain were then used to calculate local values of
Poisson's ratio as

nðtÞ ¼ � 3xxðtÞ
3yyðtÞ ; (3)

and

nincðtÞ ¼ � 3xxðtþ DtÞ � 3xxðtÞ
3yyðtþ DtÞ � 3yyðtÞ : (4)

Note that n characterizes the lateral contraction/expansion of
the structure with respect to the initial/undeformed congura-
tion. Differently, ninc quanties the lateral contraction/expan-
sion with respect to the deformed conguration induced by an
increment in the applied strain D3 and allow us to describe the
Poisson's ratio of a material that operates around a pre-
deformed state. Finally, the ensemble averages �3xx ¼ h3xxi, �3yy ¼
h3yyi, �n ¼ hni, and �ninc ¼ hninci for the central parallelograms
under consideration were computed.

On the numerical side, to verify that the values of �n and �ninc
calculated from the experiments were not affected by the
boundary conditions, we considered innite periodic structures
and investigated the response of representative volume
elements (see insets in Fig. 4B) using periodic boundary
conditions (see ESI† for details). The evolution of the macro-
scopic Poisson's ratio was then obtained from simulation using
eqn (3) and (4), in this case with 3xx and 3yy denoting the
macroscopic component of the strain.

The evolution of the Poisson's ratios �n and �ninc as function of
the local engineering strain �3yy is presented in Fig. 4. As
expected, all the structures are characterized by initially positive
values of �n and �ninc. However, as previously observed for a square
array of circular holes,13,14 the dramatic pattern transformation
introduced by instability strongly affects the Poisson's ratio,
leading to enhanced compaction. Beyond the instability, �n is
found to monotonically decrease as a function of �3yy in all the
four structures and eventually becomes negative for three of
them. While �n gradually decrease aer instability, �ninc is char-
acterized by two plateaus. Before instability setting on, all
structure are characterized by a constant and positive value of
�ninc z 0.4. At instability, a rapid transition to a negative value
that then remains constant for increasing values of deformation
is observed. More specically, we nd that aer instability
�ninc4.4.4.4 z �0.95, �ninc3.3.3.3.3.3 z �0.39, �ninc3.6.3.6 z �0.78 and
�ninc3.4.6.4z�0.75. Therefore, our results reveal that instabilities
in the four periodic porous structures considered here can be
exploited to design materials and devices whose response is
characterized by large values of incremental negative Poisson's
ratio �ninc. The material will exhibit such unusual behavior if pre-
loaded beyond the instability point.

The results reported here clearly show that by carefully
choosing the initial architecture, materials with unconventional
response can be designed. In fact, our study demonstrates that
buckling in four different periodic porous structures may be
exploited to achieve large negative values of incremental
Soft Matter, 2013, 9, 8198–8202 | 8201
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Poisson's ratio and in two of them also to induce the formation
of chiral patterns. Furthermore, while in this study we focused
on the response of structures with j x 0.5, the void-volume-
fraction j can be also used to ne-tune the response of the
structures, as revealed by previous studies.13,14 To conrm the
robustness of desired buckling phenomena, detailed FE simu-
lations have been conducted to reveal that for structures with
porosity in the range j ˛ [0.4,0.6] buckling always lead to the
compact congurations shown in Fig. 2C (see ESI†), demon-
strating that the proposed folding mechanism can be effectively
exploited to design a new class of recongurable materials.

In summary, we have identied four periodic distributions
of mono-disperse circular holes in planar elastic structures
where mechanical instability can be exploited to reversibly
switch between expanded (i.e. with circular holes) and compact
(i.e. with elongated, almost closed elliptical holes) congura-
tions. Interestingly, in two of these structures (i.e. 3.6.3.6 and
3.4.6.4) the instability can be exploited to induce the formation
of a chiral pattern. Furthermore, in all the structures the pattern
transformation induced by instability is found to lead to large
negative values of macroscopic Poisson's ratio. Also, due to the
intrinsic characteristics of elastic buckling, our study opens
avenues for the design of novel responsive and recongurable
materials and devices over a wide range of length scales. In
particular, recent developments in microscale fabrication open
exciting opportunities for miniaturization of the proposed
structures, with potential applications ranging from tunable
mechanical metamaterials to switchable optics.

Finally we note that the design principles outlined in this
paper, which combine concepts of topology (i.e. tilings) and
mechanics (i.e. buckling), represent a powerful tool to design
recongurable structures and can be further extended to curved
surfaces and 3D structures.

This work has been supported by Harvard MRSEC through
grant DMR-0820484 and by NSF through grants CMMI- 1149456
(CAREER) and by the Wyss Institute through the Seed Grant
Program. K.B. acknowledges start-up funds from the Harvard
School of Engineering and Applied Sciences and the support of
the Kavli Institute and Wyss Institute at Harvard University.
E.R.C. acknowledges NSF MSPRF grant DMS-1204686.
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ANALYSIS - DESIGN PRINCIPLES

From tilings of the 2D Euclidean plane to porous
structures

To identify possible periodic monodisperse circular
hole arrangements in elastic plates where buckling can
be exploited as a mechanism to reversibly switch between
undeformed/expanded and deformed/compact configur-
ations, we investigate the hole arrangements by consider-
ing geometric constraints on the tilings (i.e., tessellations)
of the 2D Euclidean plane.

In order for all the monodisperse circular holes to close
through buckling of the ligaments, the plates should meet
the following requirements: (a) the center-to-center dis-
tances of adjacent holes are identical, so that all the lig-
aments are characterized by the same minimum width
and undergo the first buckling mode in an approxim-
ately uniform manner; (b) there is an even number of
ligaments around every hole, so that the deformation
induced by buckling leads to their closure. Mathemat-
ically, these geometric constraints can be rephrased as:
the skeleton of the porous structure should (a’) be a con-
vex uniform tiling of the 2D Euclidean plane (which are
vertex-transitive and have only regular faces) (b’) with an
even number of faces meeting at each vertex. Focusing on
1-uniform tilings (i.e. Archimedean tilings) where all the
vertices are the same, so that all the holes deform simil-
arly, we find that there are only four tessellations which
meet the above requirements: square tiling, triangular
tiling, trihexagonal tiling and rhombitrihexagonal tiling
(see Fig. S1-A). The corresponding porous structures are
then obtained by placing a circular hole at each vertex
of the four tilings (see Fig. S1-B). Finally, we note that
each periodic porous structure has an underlying kin-
ematic model which comprises of a network of rigid poly-
gons and hinges (see Fig. S1-C). These kinematic models
can be obtained by transforming the circular holes either
to (i) squares, if they are surrounded by four thin liga-
ments (as in the cases of 4.4.4.4, 3.6.3.6, 3.4.6.4); or (ii)
hexagons, if they are surrounded by six thin ligaments
(as in the cases of 3.3.3.3.3.3).

Figure S1: From tilings to porous structures. (A) We start
with a solid sheet of material and draw a tiling pattern on
the sheet. (B) The corresponding porous structure is then
obtained by placing a circular hole at each vertex of the tiling.
(C) The corresponding kinematic model can be obtained by
transforming the circular holes either to squares or hexagons.

The kinematic models can then be used to study
the deformation mechanism of the corresponding porous
structures. Fig. S2 shows the folding mechanism of the
four kinematic models investigated in this study.
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Figure S2: Folding mechanism of the kinematic models. (A)
completely unfolded configuration; (B),(C) and (D) interme-
diate configurations; (E) completely compact/folded config-
uration. The polygons are colored differently only for visual-
ization purposes.

DISLOCATION DIPOLE MODEL

It has been recently shown that the patterns induced
by buckling in periodic porous structures can be invest-
igated by making use of continuum elasticity theory and
approximating the deformed holes as elastic dipoles [1].
The stress fields due to elastic dipoles are long ranged and
dipoles interact with each other with interaction energy
[1]

Uint = −E
π

b2d1d2
R2

[
cos (θ1 + θ2) sin θ1 sin θ2 +

1

4

]
,

(S1)
where E is the 2-dimensional Young’s modulus of bulk
elastic medium, R is distance between two dipoles, d1
and d2 are magnitudes of dipole vectors, and θ1 and θ2
are dipole orientations (Fig. S3A). We note that indi-
vidual elastic dipoles also feel the effect of the external
uniaxial compression [1], but this contribution is neg-
lected in this study. Assuming periodic boundary condi-
tions and independent orientations of dipoles inside the
primitive cell (Fig. S6), we minimized the interaction en-
ergy of elastic dipoles (S1). For each dipole, we included
interactions with ∼ 100 nearest dipole neighbors. The
patterns that correspond to the minimized interaction
energy of elastic dipoles in the four arrangements invest-
igated in this study are shown in Fig. S3. The patterns
closely resemble the patterns obtained with FE analysis
(see Fig. 1-C).

Figure S3: (A) Diagram of the interaction between two elastic
dipoles (d1 and d2) separated by R. (B) Patterns that cor-
respond to the minimum free energy of interactions between
elastic dipoles for the four structures considered in this study.

EXPERIMENTS

Material

Silicone rubber (Vinylpolysiloxane: Elite Double 32,
Zhermack) was used to cast the experimental specimens.
The material properties were measured through tensile
testing, up to a nominal strain ε = 0.82. No hyster-
esis and rate dependence was found during loading and
unloading. The stress-strain behavior was found to be
accurately captured by a Yeoh hyperelastic model [2],
whose strain energy density is

WYeoh =

3∑
i=1

[
Ci0

(
Ī1 − 3

)i
+ (J − 1)

2i
/Di

]
(S2)

where Ī1 = tr
[
dev

(
FTF

)]
, J = det [F], and F is the

deformation gradient. Note that two of the parameters
entering in Yeoh model are related to the conventional
shear modulus (G0) and bulk modulus (K0) at zero strain
as C10 = G0/2 and D1 = 2/K0. To capture the behavior
of the silicone rubber used in the experiments we used
C10 = 154 kPa, C20 = 0 kPa, C30 = 3.5 kPa, and
D1 = D2 = D3 = 38.2 GPa−1.
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Specimens fabrication

The molds to cast the specimens were fabricated us-
ing a 3-D printer (Connex 500, Objet Ltd.) having
a resolution of 600 dpi and a claimed printing accur-
acy of 30 µm. A very thin layer of mold release oil
(Ease Release 200, Smooth-on Inc.) was sprayed onto
the mold prior to molding. Then, the silicone rub-
ber was cast into the mold. The casted mixture was
first allowed to set in a vacuum for 10 minutes and
then was placed at room temperature until curing was
completed. The overall sizes of the four specimens are
W (width) × H(height) × T (thickness) = 80.0 × 80.0 ×
35.0mm, 86.6×75.0×35.0mm, 93.3×97.0 mm×35.0 mm
and 132.0× 137.1 mm× 55.0 mm for 4.4.4.4, 3.3.3.3.3.3,
3.6.3.6, 3.4.6.4, respectively. Note that large out-of-plane
thicknesses were employed for all the specimens in order
to avoid out-of-plane buckling modes during the uniaxial
compression tests. The four samples were designed to
have a void-volume-fraction ψ = 0.50 and holes with ra-
dius r = 4.0 mm. This resulted in a center-to-center
distance between adjacent holes of a = 10.8 mm for the
3.3.3.3.3.3 pattern, a = 9.3 mm for the 3.6.3.6 pattern,
and a = 9.7 mm for the 3.4.6.4 pattern. Note that the
fabricated samples were found to have a slightly lower
void-volume-fraction (i.e. ψ4.4.4.4 = 0.49, ψ3.3.3.3.3.3 =
0.48, ψ3.6.3.6 = 0.49, ψ3.4.6.4 = 0.49), due to the lim-
ited accuracy of the 3D printer. This deviation has been
accounted for in the simulations.

Testing

Uniaxial compressive experiments were performed on a
standard quasi-static loading frame (Instron 5566) with
a 10 kN load cell (Instron 2710-106) in a displacement-
controlled manner. The specimens were compressed
within flat compression fixtures. Note that the specimen
was not clamped to the fixtures, but friction between the
specimen and fixture surface was enough to hold the po-
sition of the specimens’ top and bottom faces because no
lubricant was used on the horizontal surfaces. The com-
pression tests were performed at the cross-head velocity
of 20 mm/min until the holes were almost closed. During
the test, a Nikon D90 SLR camera facing the specimen
was used to take pictures at every nominal strain incre-
ment of ∆ε = 0.006. The specimens were marked with
black dots, so that we were able to quantify the changes
in the geometry of the structures induced by deformation
with a post-processing code in MATLAB.

Calculation of εxx, εyy, ν and , νinc from experiments

To quantify the lateral contraction (and thus the neg-
ative Poisson’s ratio) of the porous structures in exper-

iments, we investigated the evolution of the microstruc-
ture. The physical samples were marked with black dots
as shown in Fig. 2 in the main text and their position was
recorded using a high-resolution digital camera and then
analyzed by digital image processing (MATLAB). All the
black markers were identified in the initial frame (Fig. S4-
A), and followed through the loading process. We only
focused on the central part of the samples where the re-
sponse was clearly more uniform and marginally affected
by the boundary conditions. We first constructed several
parallelograms connecting the markers in the central part
of the sample (Fig. S4-B) and monitored their evolution
as a function of the applied deformation. All the markers
and their corresponding parallelograms which were used
in the calculations, are highlighted in green in Fig. S4-C.
For each parallelogram, local values of the engineering
strain εxx and εyy were calculated from the positions of
its vertices at each recorded frame t as

εxx(t) =
(x4(t)− x3(t)) + (x2(t)− x1(t))

2 | L0
34 |

− 1, (S3)

εyy(t) =
(y1(t)− y3(t)) + (y2(t)− y4(t))

2 | L0
13 | cos θ

− 1, (S4)

where (xi, yi) denote the coordinates of the i-th vertex
of the parallelogram, | L0

34 | and | L0
13 | are the norm of

the lattice vectors spanning the parallelogram in the un-
deformed configuration (see Fig. 4-A in the main text)

and θ = arccos
L0

34·L
0
13

|L0
34||L0

13|
. The local values of the engin-

eering strain were then used to calculate local values of
the Poisson’s ratio as

ν(t) = − εxx(t)

εyy(t)
, (S5)

and

νinc(t) = − εxx(t+ ∆t)− εxx(t)

εyy(t+ ∆t)− εyy(t)
. (S6)

Note that ν characterizes the lateral contrac-
tion/expansion of the structure with respect to the
initial/undeformed configuration. Differently, νinc
quantifies the lateral contraction/expansion with respect
to the deformed configuration induced by an increment
in the applied strain ∆ε and allow us to describe the
Poisson’s ratio of a material that operates around a
pre-deformed state. Finally, the ensemble averages
εxx =< εxx >, εyy =< εyy >, ν =< ν > and ,
νinc =< νinc > for the central parallelograms under
consideration were computed.
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Figure S4: Illustration of calculation of εxx, εyy, ν and νinc
from experiments. (A) The samples were marked with black
dots. These markers were identified with a tracking number
in the initial frame and followed through the loading process.
(B) Parallelograms connecting four markers in the central
part of the sample were constructed and their evolution was
monitored as a function of the applied deformation. (C)All
the parallelograms used in the calculations are highlighted in
green.

FINITE-ELEMENT SIMULATIONS

Load-displacement analysis

The commercial finite element (FE) code
ABAQUS/Standard was used for simulating the
post-buckling response of the finite-size porous struc-
tures. Assuming plane strain conditions, 2D FE models
were constructed using ABAQUS element type CPE6MH
with a mesh sweeping seed size of 0.5 mm.

After determining the pattern transformation (the low-
est eigenmode) from a buckling analysis, an imperfection
in the form of the most critical eigenmode was introduced
into the mesh, scaled so that its magnitude was two or-
ders of magnitude smaller than the hole size.

As the experiments were performed under
displacement-controlled conditions, load-displacement
analysis were then performed imposing vertical displace-
ments at the top surface of the FE model, while fixing
the horizontal degrees of freedom. All the degrees of
freedom of the bottom surface were fixed.

Instability Analysis for Infinitely Periodic Solids

Our results demonstrate that buckling in elastic plates
with carefully designed arrangement of holes may be ex-
ploited to induce either the formation of chiral patterns
and/or negative Poisson’s ratio. However, so far we only
focused on the response of structures with ψ ' 0.5, and
did not explore the effect of the void-volume-fraction
ψ, which can be used to control the critical strain
at buckling. Since our results clearly show that the
FE simulations were able to accurately reproduce the
experimental results, we investigated numerically the
effect of ψ on the instability of the structured plates.
For the sake of computation efficiency, we focused
on infinite periodic structures, and performed all the
analysis on a single unit cell using appropriate boundary
conditions [3, 4]. It is well known that along the loading
path periodic structures can suddenly change their
periodicity due to either microscopic instability (i.e.,
instability with wavelengths that are of the order of the
size of the microstructure) or macroscopic instability
(i.e, instability with much larger wavelengths than the
size of the microstructure) [3, 4]. In the following we
provide a detailed description of the numerical analysis
performed to detect both microscopic and macroscopic
instabilities.

Infinite periodic structures In this section, we con-
sider infinite planar periodic solids under plane strain
conditions (Fig. S5-A). The periodic solid is character-
ized by a unit cell spanned by the lattice vectors A1 and
A2 in the undeformed configuration (Fig. S5-B) and any
spatial function V (X) must satisfy the periodic condition

V (X + R) = V (X) (S7)

where with R = p1A1 + p2A2, p1 and p2 being integers.
For later use, we also introduce the reciprocal lattice vec-
tors (Fig. S5-C)

B1 = 2π
A2 ×A3

||A1 ×A2||
, B2 = 2π

A3 ×A1

||A1 ×A2||
(S8)

where A3 = (A1 ×A2) /||A1 × A2||, so that
Ai · Bj = 2πδij , δij being the Kronecker delta.
Thus, the reciprocal lattice vector G can be expressed
by G = q1B1 + q2B2, q1 and q2 being integers. Figure
S5-C illustrates the reciprocal unit spanned by the
primitive reciprocal lattice vectors B1 and B2.

Incremental formulation The deformation of the unit
cell is described by the deformation gradient

F =
∂x

∂x0
, (S9)

mapping a point in the material from the reference posi-
tion x0 to its current location x. The material is assumed
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Figure S5: (A) Schematic of infinite periodic structure in two
dimensional space. (B) Primitive unit spanned by the prim-
itive lattice vectors A1 and A2. Basis vectors are denoted by
e1 and e2. (C) The corresponding reciprocal unit spanned
by the primitive reciprocal lattice vectors B1 and B2. Basis
vectors ẽi are defined by ẽi = 2π

||A1×A2||
ei for i = 1, 2.

to be non-linear elastic, characterized by a stored-energy
function W = W (F), which is defined in the reference
configuration. The first Piola-Kirchhoff stress S is thus
related to the deformation gradient F by

S =
∂W

∂F
. (S10)

In the absence of body forces, the equation of motions in
the reference configuration can be written as

DivS = ρ0
D2x

Dt2
, (S11)

where Div represents the divergence operator in the un-
deformed/reference configuration, D/Dt is the material
time derivative and ρ0 denotes the reference mass density.

To investigate the stability of the periodic solid, incre-
mental deformations superimposed upon a given state of
finite deformation are considered. Denoting with Ṡ the
increment of the first Piola-Kirchhoff stress, the incre-
mental forms of the governing equations is given by

Div Ṡ = ρ0
D2ẋ

Dt2
, (S12)

where ẋ denotes the incremental displacements. Fur-
thermore, linearization of the constitutive equation (S10)
yields

Ṡ = L : Ḟ, with Lijkl =
∂2W

∂Fij∂Fkl
, (S13)

where Ḟ denotes the incremental deformation gradi-
ent, and L denotes incremental modulus (i.e. elasticity
tensor).

To detect microscopic instabilities, we investigate the
propagation of small-amplitude elastic waves defined by

ẋ(X, t) = ˙̃x(X) exp(−iωt) , (S14)

where ω is the angular frequency of the propagating wave,
and ˙̃x denotes the magnitude of the incremental displace-
ment. It follows from (S13) that

Ṡ(X, t) =
˙̃
S(X) exp(−iωt) , (S15)

so that equations (S12) become

Div
˙̃
S = ρ0 ω

2 ˙̃x , (S16)

which represent the frequency-domain wave equations.
Microscopic instabilities Although microscopic

(local) buckling modes may alter the initial periodicity
of the solid, they can be still detected by studying
the response of a single unit cell and investigating the
propagation of small-amplitude waves with arbitrary
wave vector K̂ superimposed on the current state of
deformation [5, 6]. While a real angular frequency
ω corresponds to a propagating wave, a complex ω
identifies a perturbation exponentially growing with
time. Therefore, the transition between a stable and an
unstable configuration is detected when the frequency
vanishes (i.e. ω = 0) and the new periodicity of the solid
introduced by instability can be easily obtained by the
corresponding wave vector.

To detect the onset of microscopic instabilities, we first
deform the primitive unit cell to a certain extent and then
investigate the propagation of elastic waves with different
wave vector

K̂ = K̂1B1 + K̂2B2, (S17)

K̂1 and K̂2 being two real numbers. For each wave vector
K̂, the angular frequency ω is determined by solving the
frequency domain equation (S16). In this analysis quasi-
periodic boundary conditions are applied, so that

˙̃x(X + R̂) = ˙̃x(X) exp(iK̂ · R̂), (S18)

R̂ denoting the distance in the current configuration
between each pair of nodes periodically located on the
boundary. Since most commercial finite-element pack-
ages do not support the complex-valued displacements
introduced by (S18), following Aberg and Gudmundson
[7] we split any complex-valued spatial function φ(X) into
a real and an imaginary part,

φ(X) = φ(X)re + iφ(X)im. (S19)

The problem is then solved using two identical finite-
element meshes for the unit cell, one for the real part
and the other for the imaginary part, coupled by

˙̃x
re

(X + R̂) = ˙̃x
re

(X) cos(K̂ · R̂)− ˙̃x
im

(X) sin(K̂ · R̂),
(S20)

˙̃x
im

(X + R̂) = ˙̃x
re

(X) sin(K̂ · R̂) + ˙̃x
im

(X) cos(K̂ · R̂).
(S21)

A microscopic instability is detected at the first point
along the loading path for which a wave vector K̂cr =
K̂1,crB1 + K̂2,crB2 exist such that the corresponding an-
gular frequency ω is zero. The instability will result in
an enlarged unit cell with n1 × n2 primitive unit cells,
where

n1 =
1

Ǩ1,cr

, and n2 =
1

Ǩ2,cr

. (S22)
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Macroscopic instabilities Following Geymonat et al.
[5], we investigate macroscopic instabilities by detecting
loss of strong ellipticity of the overall response of the
periodic structure. Specifically, macroscopic instabilities
may develop whenever the condition

(m⊗M) :
[
LH : (m⊗M)

]
> 0 ,

for all m⊗M 6= 0
(S23)

is first violated along the loading path, LH denoting the
homogenized incremental modulus.

In this study, 2D FE simulations on the primitive
cell (see Fig. S6) are performed to detect macroscopic
instabilities applying periodic boundary conditions (S7).
Operationally, after determining the principal solution,
the components of LH are identified by subjecting the
unit cells to four independent linear perturbations of
the macroscopic deformation gradient [6]. Then loss of
ellipticity is examined by checking condition (S23) at
every π/360 radian increment.

Results Here, FE simulations are performed to com-
pute both microscopic and macroscopic instabilities un-
der uniaxial compression for structures characterized by a
wide range of void-volume-fractions, ψ ∈ (0.4, 0.6). Note
that higher levels of porosity would lead to structures
characterized by very thin ligaments, making them fra-
gile. On the other hand, for smaller values of porosity
the response of the structures would be highly affected
by the material nonlinearity.

Figure S6: Nominal strain ε at the onset of microscopic and
macroscopic instabilities as a function of the void-volume-
fraction ψ. The results confirm that microscopic buckling
is always critical with for the considered range of ψ.

The results of the instability analyses are summarized
in Fig. S6, where the critical strain for both macroscopic
and microscopic instability is reported as a function of ψ.
As expected, the critical nominal strains at instability de-
crease for increasing values of ψ due to the reduction of
the structural stiffness regardless of the types of instabil-
ity. Interestingly, within the considered range of void-
volume-fraction for all configurations the critical nominal
strains for microscopic instability is found to be always
smaller than that for macroscopic instability. Thus, these
results indicate that for all configurations the folded pat-
terns induced by microscopic buckling will emerge for a
wide range of void-volume-fraction.
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