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Effects of geometric and material nonlinearities on tunable band gaps and low-frequency
directionality of phononic crystals
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We investigate the effects of geometric and material nonlinearities introduced by deformation on the linear
dynamic response of two-dimensional phononic crystals. Our analysis not only shows that deformation can be
effectively used to tune the band gaps and the directionality of the propagating waves, but also reveals how
geometric and material nonlinearities contribute to the tunable response of phononic crystals. Our numerical
study provides a better understanding of the tunable response of phononic crystals and opens avenues for the
design of systems with optimized properties and enhanced tunability.
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Phononic crystals (i.e., periodic structures composed of
multiple materials with contrast in mechanical properties)
have attracted considerable interest due to their ability to
tailor the propagation of waves through band gaps, frequency
ranges in which the propagation of sound and elastic waves
is forbidden.1–5 This fundamental property has been recently
exploited to design waveguides,6 frequency modulators,7

noise-reduction devices,8 and vibration isolators.9 It has also
been recognized that phononic crystals are characterized
by directional behavior that can be exploited to steer or
redirect waves in specific directions.3,10,11 The directionality
is determined by the level of anisotropy of the structure and
can be fully controlled through proper arrangement of the
material distribution at the unit cell level.12 Furthermore,
many previous studies have focused on the high frequency
propagation directionality of phononic crystals,13–15 while
the strongly directional behavior in the low frequency/long
wavelength regime is not fully explored despite important
potential applications in broadband situations.12

Motivated by technological applications, a number of
studies investigated the effects of both material properties (i.e.,
contrast in density, Young’s modulus, and Poisson’s ratio)16,17

and geometry (i.e., volume fraction and topology)18,19 on the
characteristics of phononic crystals. However, in all these
investigations the band gaps and the directionality of the
propagating waves are limited to specific values that cannot
be tuned after the manufacturing process. New strategies are
required to design phononic crystals with adaptive properties
that can be reversibly tuned.

It has been recently demonstrated that mechanical loading
can be used as a robust mechanism for in situ tunability of soft
and highly deformable two-dimensional phononic crystals.5

It was shown that both the position and width of the band
gap are strongly affected by the applied deformation.5,20,21

However, the effect of deformation on the directionality of
the propagating waves in the low frequency regime (i.e., the
first longitudinal and shear modes) has never been studied.
Finally, although it is evident that the applied deformation
induces both strong geometric and material nonlinearities,5 it
is not clear how these two factors contribute to the tunability of
the response. To shed light on these important points, here we

investigate not only the effect of the applied deformation on the
low frequency directionality of the propagating waves, but also
the contributions of geometric and material nonlinearities to
the tunable response of soft phononic crystals. The numerical
analyses performed in this study offer a better understanding of
the tunable response of phononic crystals and provide guide-
lines for the design of structures with optimized properties and
enhanced tunability.

Here we focus on two-dimensional (2D) soft phononic
crystals. Although our analysis is general and can be applied
to any architecture, in this study we present numerical results
for a square array of circular holes characterized by an
initial void volume fraction V0 = 60% [Fig. 1(a)]. Here V0

is defined as the volume of the voids divided by the total
volume of the phononic crystal. The nonlinear finite-element
code ABAQUS/STANDARD is used to deform the structures
as well as to investigate the propagation of small-amplitude
elastic waves in the predeformed phononic crystal. Detailed
description of the general formulation and the numerical
simulations are provided in the Supplementary Materials.22

For all the analyses, 2D finite element models are con-
structed and the accuracy of the mesh is ascertained through
a mesh refinement study. We focus on a phononic crystal
made of an almost-incompressible elastomeric material whose
response is captured by a Gent model23 characterized by the
following strain energy density function:

W (I1,J ) = −G

2
Jm log

(
Jm − (I1 − 3)

Jm

)
− G log(J )

+
(

K

2
− G

Jm

)
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where I1 = trace(FT F), J = det(F), F denotes the deforma-
tion gradient, G and K are the initial shear and bulk moduli,
and Jm denotes a material constant related to the strain at
saturation. We note that the strain energy tends to infinity as
I1 − 3 approaches Jm.

Here we consider an elastomeric material with G =
1.08 × 106 N/m2, K = 2.0 × 109 N/m2 (Poissson’s ratio
ν = 0.4997), and ρ0 = 1050 kg/m3, so that in the unde-
formed configuration the elastic wave speeds for shear and
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FIG. 1. (Color online) Geometry reorganization induced by insta-
bility in a soft phononic crystal comprising a square array of circular
holes subjected to equibiaxial compression. The dashed square of
size a × a in (a) indicates the primitive unit cell in the undeformed
configuration. The solid square in (b) represents the enlarged
representative volume element in the deformed configuration.

pressure waves in the material are cT = 32.07 m/s and cL =
1381 m/s, respectively. The effects of material nonlinearities
are investigated by considering three different values of Jm,
Jm = 0.5, 2.0,∞. Note that, at the limit of Jm → ∞, the strain
energy density function (1) reduces to that of a Neo-Hookean
material.22,24 In Fig. 2 the material response under uniaxial
loading is reported in terms of the nominal stress S, normalized
by G, versus the uniaxial deformation stretch. The results
clearly indicate that smaller values of Jm introduce stronger
nonlinearities in the material behavior.

It is well known that, under compression, the geometric
pattern of soft phononic crystals can suddenly change due to
either: (a) microscopic instabilities with a spatial periodicity
comparable to the size of the unit cell; or (b) macroscopic
instabilities with a spatial periodicity much larger than the
size of the unit cell.25–28 Note that a detailed description of
both micro- and macroscopic instabilities and the numerical
procedure to calculate the onset of each case is provided in
the Supplementary Materials.22 In this study we investigate
both instabilities of the phononic crystal under equibiaxial

FIG. 2. (Color online) Uniaxial stress-stretch response of a nearly
incompressible Gent material with Jm = 0.5, 2.0, and ∞ (the last
corresponding to a Neo-Hookean material).

FIG. 3. (Color online) Macroscopic nominal stress vs stretch
curves for the square array of circular holes in a Gent matrix. The
departure from linearity is the result of an elastic instability that
triggers the pattern transformation. The Von Mises stress distributions
in the phononic crystals at λ = 0.8 are shown on the right for
Jm = 0.5, 2.0, and ∞.

compression, so that the macroscopic deformation gradient F̄
is given by

F̄ = λ(e1 ⊗ e1 + e2 ⊗ e2), (2)

where λ denotes the macroscopically applied stretch and e1

and e1 are the basis vectors of two-dimensional Cartesian
coordinates. We note that the undeformed configuration is
characterized by λ = 1. Moreover, λ > 1 and λ < 1 represent
the tension and compression load, respectively.

For the considered periodic structure, the onsets of both
microscopic and macroscopic instabilities are detected by
studying the response of a single unit cell [indicated by the
dashed red square in Fig. 1(a)] along the loading path (2) by
decreasing λ from unity. For all the cases considered here
(i.e., Jm = 0.5, 2.0,∞), a microscopic instability is detected
at λMicro

cr = 0.984, while the onset of macroscopic instability
occurs at λMacro

cr = 0.961. Therefore, microscopic instabilities
are always critical in compression, leading to an enlarged
representative volume element of 2 × 2 primitive unit cells and
to the formation of a pattern of alternating, mutually orthogonal
and elongated holes [Fig. 1(b)].

The postbuckling response of the phononic crystal is then
simulated by introducing small random imperfections in the
initial geometry.22 In Fig. 3 we present the static response of
the phononic crystal for the three considered values of Jm in
terms of the macroscopically effective nominal stress S̄ versus
the applied stretch λ. Although the onset of instability is found
not to be affected by Jm, we can clearly see that Jm has a strong
influence on the postbuckling response of the structure.

To highlight the effect of the applied deformation on
the propagation of elastic waves, we present in Fig. 4 the
band structure and directionality diagrams of a phononic
crystal made of a Gent material with Jm = 0.5 in both
the undeformed [λ = 1.0, Fig. 4(a)] and deformed [λ = 0.8,
Fig. 4(b)] configurations.

Figures 4(c) and 4(d) show the band diagrams of the
undeformed and deformed configurations, respectively. The
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FIG. 4. (Color online) Dynamic response of the phononic crystal
in the undeformed (left column, λ = 1.0) and deformed (right
column, λ = 0.8) configuration. (c) and (d): effect of deformation on
the band gaps. (e) and (f): effect of deformation on the directionality
of phase velocities. (g) and (h): effect of deformation on the
directionality of group velocities.

dimensionless frequency f̃ = ωa/(2πcT ), with a denoting
the characteristic size of the unit cell in the undeformed
configuration [Fig. 1(a)], is plotted as a function of the
wave vector in the reciprocal space.22 In the undeformed
configuration, the periodic structure features a band gap at
f̃ = 0.61–0.82. It is clear from Fig. 4(d) that the compression

significantly alters the band structure. The pre-existing band
gap is shifted and widened to f̃ = 0.84–1.29. In addition, a
new band gap that does not exist in the reference state is opened
at f̃ = 0.50–0.64.

To investigate the effect of deformation on the preferential
directions of wave propagation, we focus on the low frequency
range and calculate both phase velocity and group velocity
for all directions of propagation at f̃ = 0.05 [horizontal
red line in Figs. 4(c) and 4(d)].22 In Figs. 4(e) and 4(f)
we report the phase velocity profiles and in Figs. 4(g) and
4(h) the group velocity profiles for the undeformed and
deformed configurations, respectively. In these plots all the
wave velocities are normalized, so that the magnitude of
maximum velocity vmax of any mode in any configuration is
unity. It is important to note that the wave directionality in the
low frequency range cannot be fully captured just by inspecting
the band diagrams.12 In fact, although the dispersion curves
at low frequency resemble straight lines, which seem to imply
linear dispersion relations, the approximation of an effective
nondispersive media is not applicable here, as phase and group
velocities may exhibit very different directional behaviors.12

We start by noting that, in the undeformed configuration,
the phase velocity shows a preferred direction of propagation at
θ = 45◦ for mode 1 (shear-dominated mode) and at θ = 0◦ for
mode 2 (pressure-dominated mode) [Fig. 4(e)]. Moreover, the
group velocity in the undeformed configuration exhibits two
preferred directions at θ = 10◦ and 80◦ for mode 1 [Fig. 4(g)],
whereas it does not show a significant preferential direction of
propagation for mode 2. Finally, we note that the loped pattern
in Fig. 4(g) entails two different group velocities in certain
directions [a feature that cannot be directly observed in the
standard dispersion relation in Fig. 4(c)]. In general, the group
velocity, which is defined as the gradient of the dispersion
surface,22 can be at a different direction than the direction of the
wave vector. Hence, two wave vectors of different directions
may result in two group velocities of different magnitudes in
the same direction.

In contrast, the deformed configuration does not exhibit
any strong preference in directions for both phase and group
velocities in both modes [Figs. 4(f) and 4(h)], so that it behaves
as a nearly isotropic medium. These results clearly indicate
that the deformation has a significant effect on the wave’s
directionality. Finally, we observe that the applied deformation
has a more pronounced effect on the phase and group velocity
profiles of mode 1 (shear-dominated mode), whereas the
directionality of mode 2 (pressure-dominated mode) is only
marginally affected.

The results presented above clearly show that the applied
deformation strongly affects not only the static, but also the
dynamic response of phononic crystals. However, to design
the next generation of tunable phononic crystals that take
full advantage of the changes on the dynamic response
induced by the applied deformation, this mechanism needs
to be thoroughly understood. While it is well known that the
applied deformation introduces both geometric and material
nonlinearities, it is not clear how these two effects control
the tunable dynamic response of the phononic crystal. To
gain knowledge on this front, we numerically investigate the
separate effects of geometric and material nonlinearities on
both the band gaps and wave directionality.
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FIG. 5. (Color online) Effects of geometric nonlinearities on (a) band gaps and directionality of (b) mode 1 and (c) mode 2.

Geometric nonlinearities. To evaluate the effect of geomet-
ric nonlinearities on the dynamic response of the phononic
crystal, we investigate the propagation of elastic waves in
a stress-free structure with the deformed geometry (i.e., the
shape of the structure is determined by the postbuckling
analysis). More specifically, we compress the structure up to
a certain value of λ and then set the all the components of the
stress to zero before performing the wave propagation analysis.
Thus, the inhomogeneous stress distribution is not taken into
the consideration when computing the dynamic response.

The evolution of the band gaps as a function of λ is shown
in Fig. 5(a). The change in geometry induced by the applied
deformation is found to shift and widen the main band gap
and to generate two additional band gaps, one higher and the
other lower than the main gap, which open at λ = 0.92 and
λ = 0.88, respectively. These deformation-induced band gaps
also shift and widen for decreasing values of λ. Finally, we
note that these results are independent of Jm since in order
to investigate the geometric effects alone, we have neglected
the stress distribution in the deformed configuration (note that
the incremental response for an unstressed Gent material is
independent of Jm).

To describe the evolution of the directionality of propagat-
ing waves, we define the anisotropy ratio:

η = vmax

vmin
, (3)

where vmax and vmin are the maximum and minimum wave
velocities, respectively [see Fig. 4(e)]. The trends of η for both

phase velocity and group velocity of mode 1 (shear-dominated
mode) and mode 2 (pressure-dominated mode) as a function
of λ are reported in Figs. 5(b) and 5(c), respectively.

For mode 1, the anisotropy ratios of both the group and
phase velocity profiles (ηgroup and ηphase) rise from the initial
values up to a turning point, then rapidly decrease as a function
of λ and approach unity [Fig. 5(b)]. Note that the turning point
at λ = 0.984 corresponds to the onset of structural instability.
Similar trends are observed for mode 2 [Fig. 5(c)], but the
changes induced by deformation are less dramatic in this
case. In summary, the results from both modes show that
the geometric nonlinearities induced by instability have a
significant effect on the wave directionality. They remove the
directional characteristics of both modes and make the wave
propagation more isotropic.

Material nonlinearities. It is apparent from Fig. 4(b)
that deformation not only affects the geometry, but also
induces an inhomogeneous strain/stress distribution within
the phononic crystal. Substantial stress concentrations are
developed during compression and they strongly depend on
the nonlinear material response, which is characterized by Jm

(Fig. 3).
To investigate the effect of material nonlinearities on the

propagation of elastic waves, we start by studying the response
of a phononic crystal made of a Neo-Hookean material (i.e.,
Gent material with Jm = ∞). The response of such material
is weakly nonlinear and the stiffening effect induced by the
applied deformation is negligible in this case. In Fig. 6(a)
we report the evolution of the band gaps as a function of the

FIG. 6. (Color online) Effects of material nonlinearities on the band gaps. Soft phononic crystals made of Gent materials with (a) Jm = ∞,
(b) Jm = 2.0, and (c) Jm = 0.5 are investigated.
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FIG. 7. (Color online) Comparison of the change of relative band gaps during deformation.

applied deformation λ. Comparison between Figs. 5(a) and
6(a) reveals that the dynamic response of the phononic crystal
is not affected by the inhomogeneous stress state. Therefore,
for a phononic crystal made of an Neo-Hookean elastomeric
material, the geometric nonlinearities induced by the applied
deformation fully control the position and width of the band
gaps.

Next, we investigate the evolution of the band gaps for
phononic crystals made of elastomers with stronger material
nonlinearity. As shown in Fig. 2, smaller values of Jm introduce
stronger material nonlinearities under the applied deformation.
Here we comparatively study the cases of phononic crystals
made of Gent materials with Jm = 2.0 and 0.5 [Figs. 6(b)
and 6(c)]. We notice that in both cases the band gaps are
significantly affected by material nonlinearities when λ < 0.9.
We find that smaller values of Jm provide a larger range of
tunability for the band gaps. To better quantify the effect of
material nonlinearity on the band gap tunability, we divide
the wave frequencies into three categories: (i) frequencies
that are always in the propagating band [e.g., f̃ = 0.55,
continuous horizontal line in Fig. 6(a)]; (ii) frequencies that
are always in the band gap [e.g., f̃ = 0.75, dashed horizontal
line in Fig. 6(a)]; and (iii) frequencies that can be switched
on/off by the applied deformation [e.g., f̃ = 1.05, dotted
horizontal line in Fig. 6(a)]. We start by noting that all the
three frequencies highlighted in Fig. 6(a) turn into category
(iii) when Jm = 0.5 [see dotted horizontal lines in Fig. 6(c)].
In fact, for Jm = 0.5, the frequencies in the entire region f̃ =
0.49–1.28 can be switched on/off by the applied deformation.
Therefore, since large regions of type (iii) frequencies are
desirable for the design of a highly tunable system, our
results indicate that phononic crystals made of materials
with stronger nonlinearities can offer enhanced band gap
tunability.

In addition, our analysis also reveals that material nonlinear-
ities do not affect the directionality of the propagating waves
at low frequency. The velocity profiles obtained for phononic
crystals made of Gent material with Jm = ∞, 2.0, and 0.5 are
found to be the same as those shown in Figs. 5(b) and 5(c).
The same behavior is also observed for the case of triangular
and trihexagonal arrays of circular holes (see Supplementary
Materials),22 suggesting that only changes in geometry can
be effectively used to tune the directional characteristics of
the lower bands. This is due to the fact that the wavelength

of the low frequency propagating modes are very long
compared with the length scale of the local variations of stress
field.

To further study the effect of the material parameter Jm on
the band gaps, we calculate the relative size of the band gaps
as the ratio between gap width and the midgap position,

	ωrelative = ωupper − ωlower

(ωupper + ωlower)/2
, (4)

where ωupper and ωlower are the frequencies of upper and lower
edge limits of a band gap, respectively. It has been previously
shown that the relative size defined above is a important
design parameter, and that a large relative size of the band
gap is preferable for many applications.4 The evolution of
	ωrelative as a function of the applied deformation is reported
in Figs. 7(a)–7(c) for the first, second, and third band gap,
respectively. The responses of phononic crystals made of
Gent material with Jm = 0.5, 1.0, 2.0, 5.0, 10.0, and ∞ are
considered. For all different materials considered here and for
all three band gaps 	ωrelative is found first to increase as a
function of the applied deformation, then to reach a maximum
and finally either to plateau or slightly decrease. For instance,
in the case of Jm = 0.5, 	ωrelative reaches the maximum
value at λ = 0.83, 0.94, and 0.91 for the first, second, and
third band gaps, respectively. We note that the decrease of
	ωrelative after its maximum is due to the fact that the position
shifting effect is stronger than the widening effect. That is, in
Eq. (4), the increase in the denominator becomes faster than
the increase in the numerator. As a result, although the
band gap keeps widening upon further deformation, 	ωrelative

diminishes. This feature described above becomes more
pronounced when the applied deformation is large and the
constituting material is highly nonlinear.

To summarize, we use numerical simulations to study
the propagation of small-amplitude elastic waves in highly
deformed phononic crystals and investigate the effect of defor-
mation on band gaps and directionality of propagating waves.
The contributions of geometric and material nonlinearities to
the tunable response of phononic crystals are revealed. The
band gaps are found to be affected both by geometric and
material nonlinearities, while the directional preferences of the
wave modes in the first two bands are shown to be sensitive
only to changes in geometry. Enhanced tunability of the band
gaps is found for phononic crystals made of materials with
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stronger nonlinear behavior. Finally, the changes in geometry
introduced by the applied deformation gradually remove
the directional characteristics of the lowest two propagation
modes, making the wave propagation more isotropic. The
results presented in this paper provide useful guidelines for
the design of tunable phononic devices.
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GENERAL FORMULATION

Here, we present fundamental relations (i.e., govern-
ing equations, boundary conditions and material mod-
els) which are employed in the manuscript.

Governing Equations

We consider two-dimensional (2D) infinitely periodic
solids and assume plane strain conditions. Their defor-
mation is described by the deformation gradient

F =
∂x

∂x0
, (1)

mapping a point in the material from the reference
position x0 to its current location x. The material is
assumed to be non-linear elastic, characterized by a
stored-energy function W = W (F), which is defined in
the reference configuration. The first Piola-Kirchhoff
stress S is thus related to the deformation gradient F
by

S =
∂W

∂F
. (2)

In the absence of body forces, the equation of motions
in the reference configuration can be written as

Div S = ρ0
D2x

Dt2
, (3)

where Div represents the divergence operator in the
undeformed/reference configuration, D/Dt is the ma-
terial time derivative and ρ0 denotes the reference mass
density.

To investigate the effect of the applied deformation
on the propagation of small-amplitude elastic waves,
incremental deformations superimposed upon a given
state of finite deformation are considered. Denoting
with Ṡ the increment of the first Piola-Kirchhoff stress,
the incremental forms of the governing equations is
given by

Div Ṡ = ρ0
D2ẋ

Dt2
, (4)

where ẋ denotes the incremental displacements. Fur-
thermore, linearization of the constitutive equation (2)
yields

Ṡ = L : Ḟ, with Lijkl =
∂2W

∂Fij∂Fkl
, (5)

where Ḟ denotes the the incremental deformation gra-
dient.

The incremental boundary value problem is often
formulated in an updated Lagrangian formulation,
where the deformed state is used as the reference con-
figuration for the calculation of the incremental quan-
tities [1]. Push-forward transformations allow the in-
troduction of the incremental updated stress quantity
Σ given by

Σ =
1

J
ṠFT . (6)

For a non-linear elastic material, the incremental con-
stitutive equation takes the linear form

Σ = C : grad u, (7)

to the first order, where grad denotes the gradient op-
erator in the deformed/current configuration, u

.
= ẋ

and

Cijkl = J−1FjnFlq
∂2W

∂Fin∂Fkq
. (8)

Finally, the incremental equations of motions take the
form

divΣ = ρ
d2u

dt2
, (9)

where div represents the divergence operator in the
deformed/current configuration, ρ denotes the current
material density and d/dt is the spatial time derivative.

Here, we focus on the propagation of small-
amplitude elastic waves defined by

u(x, t) = ũ(x) exp(−iωt) , (10)

where ω is the angular frequency of the propagating
wave, and ũ denotes the magnitude of the incremental
displacement. It follows from (7) that

Σ(x, t) = Σ̃(x) exp(−iωt) , (11)
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so that equations (9) become

divΣ̃ = ρω2ũ , (12)

which represent the frequency-domain wave equations.

Infinite Periodic Structures

Here we focus on 2D periodic solid of infinite extent
characterized by a primitive cell (i.e. minimum unit
identified in the periodic structure), which is specified
by the lattice vectors a1 and a2, as shown in Fig. 1A.
Thus, any spatial function field, φ(x), in the infinite
periodic structure satisfies the condition:

φ(x + p) = φ(x), (13)

where

p = p1a1 + p2a2, (14)

where p1 and p2 are arbitrary integers.

FIG. 1: Point Lattice (blue dots in A), reciprocal lattice
(black dots in B), first Brillioun zone (square area in B)
and irreducible Brillioun zone (IBZ, Triangle GXM in B).

For later use, we define the reciprocal lattice speci-
fied by the reciprocal lattice vectors b1 and b2 defined
such that

ai · bj = 2πδij , (15)

where δij is the Kronecker delta. It follows that b1 and
b2 are defined as

b1 = 2π
a2 × z

‖ z ‖2
, b2 = 2π

z× a1

‖ z ‖2
, (16)

where z = a1×a2. As shown in Fig. 1B, the reciprocal
lattice is characterized by spatial periodicity g

g = g1b1 + g2b2, (17)

with g1 and g2 being arbitrary integers. Therefore, any
function ψ(k) defined in the reciprocal space satisfies
the condition

ψ(k + g) = ψ(k). (18)

Next, in the reciprocal space we identify the first
Brillioun zone (area inside the square in Fig. 1B) [2],
defined by the reciprocal lattice points. For the analy-
sis of waves propagating in periodic structures, it has
been shown that only wave vectors in first Brillioun
zone need to be considered. In addition, we may fur-
ther reduce the domain taking advantage of its reflec-
tional and rotational symmetries. The reduced domain
is referred as the irreducible Brillioun zone (IBZ) (tri-
angle GXM in Fig. 1B) [3].

Material Models

Here we focus on isotropic, nearly incompressible
and hyper-elastic rubber-like materials. Both the Gent
[4] and the Neo-Hookean [5] models are considered to
investigate the effect of material non-linearity on wave
propagation.

Gent Model

The compressible version of the strain energy func-
tion proposed by Gent [4] is given by

W (I1, J) =− G

2
Jm log

(
1− I1 − 3

Jm

)
−G log(J)

+

(
K

2
− G

Jm

)
(J − 1)2,

(19)

where I1 = trace
(
FTF

)
, J = det(F), G and K are

the initial shear and bulk moduli, and Jm denotes a
material constant related to the strain at saturation,
since since the stress become infinite as Jm − I1 + 3
approaches zero.

Substituting (19) into (2) and (5), the nominal stress
S and the incremental modulus L are obtained as

S =
GJm

Jm − I1 + 3
F+

[(
K − 2G

Jm

)
J(J − 1)−G

]
F−T ,

(20)
and

L =
GJm

Jm − I1 + 3
I +

2GJm
(Jm − I1 + 3)2

F⊗ F

+ J(2J − 1)

(
K − 2G

Jm

)
F−T ⊗ F−T

+

[
J(J − 1)

(
K − 2G

Jm

)
−G

]
A,

(21)

where

Iijkl =
∂Fkl

∂Fij
= δikδjl, (22)
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and

Aijkl =
∂F−T

kl

∂Fij
= −F−T

il F−T
kj . (23)

In Fig. 2 we report the material response for an al-
most incompressible material with K/G = 2000. Uni-
axial loading conditions are considered, so that

F = λe1 ⊗ e1 + λ̃e2 ⊗ e2 + e3 ⊗ e3, (24)

λ denoting the applied stretch and λ̃ being such that
S22 = 0. In Fig. 2 the material response in terms of
the dimensionless nominal stress S11/G versus applied
stretch λ is reported for three different values of Jm.
The results clearly indicate that small values of Jm
introduce strong non-linearities.

FIG. 2: Uniaxial stress-stretch response of a nearly incom-
pressible Gent material with Jm = 0.5, 2.0 and ∞ (the last
corresponding to a Neo-Hookean material).

Neo-Hookean Model

We note that as Jm → +∞ the Gent model reduces
to the Neo-Hookean model [5], for which the compress-
ible version of the strain energy density function is
given by

W (I1, J) =
G

2
(I1 − 3)−G log(J) +

K

2
(J − 1)2 , (25)

It also follows that S and L for a Neo-Hookean ma-
terial are given by

S = GF + [KJ(J − 1)−G] F−T , (26)

and

L = GI +KJ(2J − 1)F−T ⊗ F−T

+ [KJ(J − 1)−G] IT .
(27)

NUMERICAL PROCEDURE AND
IMPLEMENTATION

The finite element framework is used to deform the
structures as well as to investigate the propagation of

elastic waves at different level of applied deformation.
Each simulation consists of the following three steps:
A) buckling analysis, B) post-buckling analysis, and
C) wave propagation analysis. In this Section we pro-
vide a detailed description of the numerical analysis
performed in these three steps.

Buckling Analysis

As the first step in the numerical simulation, the
buckling analysis is performed on a primitive unit cell.
The structural integrity of periodic structures under
applied deformation is a critical issue which is fre-
quently overlooked. In fact, when periodic porous
structures are deformed their spatial periodicity can
suddenly change due to mechanical instability and it
is useful to make the distinction between microscopic
instabilities (i.e. instabilities with wavelengths that
are of the order of the size of the microstructure) and
macroscopic instabilities (i.e. instabilities with much
larger wavelengths comparable to the size of the unit
cell) [6–9].

Microscopic Instabilities

Although microscopic (local) buckling modes may al-
ter the initial periodicity of the solid, they can be still
detected by studying the response of a single unit cell
and investigating the propagation of small-amplitude
waves with arbitrary wave vector ǩ superimposed on
the current state of deformation [6–8]. While a real an-
gular frequency ω corresponds to a propagating wave,
a complex ω identifies a perturbation exponentially
growing with time. Therefore, the transition between a
stable and an unstable configuration is detected when
the frequency vanishes (i.e. ω = 0) and the new pe-
riodicity of the solid introduced by instability can be
easily obtained by the corresponding wave vector.

To detect the onset of microscopic instabilities, we
first deform the primitive unit cell to a certain extent
and then investigate the propagation of elastic waves
with different wave vector

ǩ = ǩ1b1 + ǩ2b2, (28)

ǩ1 and ǩ2 being two real numbers. For each wave vector
ǩ, the angular frequency ω is determined by solving the
frequency domain equation (12). In this analysis quasi-
periodic boundary conditions are applied, so that

u(x + ř) = u(x) exp(iǩ · ř), (29)

ř denoting the distance in the current configuration
between each pair of nodes periodically located on the
boundary. Since most commercial finite-element pack-
ages do not support the complex-valued displacements
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introduced by (29), following Aberg and Gudmundson
[10] we split any complex-valued spatial function φ(x)
into a real and an imaginary part,

φ(x) = φ(x)re + iφ(x)im. (30)

The problem is then solved using two identical finite-
element meshes for the unit cell, one for the real part
and the other for the imaginary part, coupled by

ure(x + ř) = ure(x) cos(ǩ · ř)−uim(x) sin(ǩ · ř), (31)

uim(x+ ř) = ure(x) sin(ǩ · ř)+uim(x) cos(ǩ · ř). (32)

A microscopic instability is detected at the first
point along the loading path for which a wave vector
ǩcr = ǩ1,crb1 + ǩ2,crb2 exist such that the correspond-
ing angular frequency ω is zero. The instability will
result in an enlarged unit cell with n1 × n2 primitive
unit cells, where

n1 =
1

ǩ1,cr
, and n2 =

1

ǩ2,cr
. (33)

Macroscopic Instabilities

Following Geymonat et al. [6], we examine macro-
scopic instabilities by detecting loss of strong ellipticity
of the overall response of the periodic structure. Specif-
ically, macroscopic instabilities may develop whenever
the condition

(m⊗M) :
[
LH : (m⊗M)

]
> 0 ,

for all m⊗M 6= 0
(34)

is first violated along the loading path, LH denoting
the homogenized incremental modulus.

Operationally, after determining the principal solu-
tion, the components of LH are identified by subjecting
the unit cells to four independent linear perturbations
of the macroscopic deformation gradient [8]. Then loss
of ellipticity is examined by checking condition (34) at
every π/360 radian increment.

Post-buckling Analysis

As the second step, the post-buckling analysis is per-
formed to capture the response of the structure beyond
instability. Models with n1×n2 primitive unit cells are
built, where n1 and n2 are determined in the buckling
analysis. We first introduce a small random imperfec-
tion in the initial geometry by perturbing the position
of each node. Here, we use a uniform random perturba-
tion on each node with amplitude equal to one percent
of the smallest element edge in the mesh.

Periodic boundary conditions are then applied, so
that the positions of each pair of nodes periodically
located on the boundary satisfy

x(x0 + r0)− x(x0) = F · r0 (35)

where F̄ denotes the macroscopic deformation gradient
and r0 the distance in the undeformed configuration
between each pair of periodically located nodes.

Wave Propagation Analysis

In order to obtain the dispersion relation and evalu-
ate the directionality of the propagating waves for the
phononic crystals, frequency domain wave propagation
analysis are performed on the deformed configurations
generated by the post-buckling analysis. Bloch-type
boundary conditions (eqns. (31) and (32)) are applied
with the propagating bloch-wave vector k and updated
spatial periodicity r, so that

ure(x + r) = ure(x) cos(k · r)−uim(x) sin(k · r), (36)

uim(x+r) = ure(x) sin(k ·r)+uim(x) cos(k ·r). (37)

Focusing on the propagation of small-amplitude
waves, we solve eqn. (12) using a perturbation method
to obtain the dispersion relations ω = ω(k).

For a 2D infinite periodic structure with spatial peri-
odicity defined by (13) and (14), the periodicity in the
reciprocal k-space of the dispersion relation is given by
[2]:

ω(k + g) = ω(k), (38)

with g defined in (17). Hence, due to translational
symmetry specified by (38), we only need to study ω(k)
for k vectors in the first Brillouin zone [2]. Moreover,
the domain can be further reduced by taking advantage
of rotational, reflectional and inversional symmetries of
the first Brillouin zone. This allows us to define the
irreducible Brillouin zone (IBZ) (see yellow triangle in
Fig. 1) [3].

The phononic bandgaps are identified by checking
all eigen-frequencies ω(k) for k vectors on the perime-
ter of the IBZ. The bandgaps (i.e. range in frequen-
cies for which the propagation of waves is barred) are
given by the frequency ranges within which no ω(k)
exist. Numerically, a discrete set of k vectors on the
IBZ perimeter need to be chosen in the band-gap cal-
culation. For the simulations presented in this paper,
twenty uniformly spaced points on each edge of the IBZ
are used for the purpose of identifying band-gaps.

For the propagation directionality of the elastic wave
in passing band of the phononic crystal, we investigate
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the eigen-frequency surfaces over the entire IBZ to get
the iso-frequency plots of the first two modes of the
lowest passing bands: mode 1 being a shear-dominated
mode and mode 2 representing a pressure-dominated
mode. The phase velocity vp and group velocity vg of
the propagating wave are then calculated as

vp =
ωk

‖ k ‖2
, vg =

∂ω

∂k
. (39)

Numerically, a discrete set of k vectors in the IBZ
need to be chosen in the analysis. For the simulations
presented in this paper, the results from four hundred
uniformly distributed points inside the IBZ are used to
interpolate the dispersion surface in k−space. Then,
the value of dimensionless frequency f̃ = ωa/(2πcT ) =
0.05 is fixed for the calculation of the wave velocities of
the low frequency modes (the first and second modes).
Lastly, a standard central difference scheme is adopted
for the calculation of the group velocity.

ADDITIONAL RESULTS FOR
LOW-FREQUENCY DIRECTIONALITY

The results included in the main text suggest that
material nonlinearity only affects the band gap and
does not affect the propagation direction at low fre-
quencies. Although in the main text we only include
results for a square array of circular holes, we observed
the same behavior also for different lattice patterns,
non-linear material models and void volume fractions.
Here, we report the results obtained not only for a
square (Fig. 3), but also for triangular (Fig. 4) and
trihexagonal (Fig. 5) arrays of circular holes with 60%
initial porosity. The details and deformation configu-
rations of these patterns can be found in [11]. In the
figures, iso-frequency plots of the first shear-dominated
(Mode 1) and pressure-dominated (Mode 2) modes are
reported for the undeformed (top) and deformed (cen-
ter and bottom) configurations. Moreover, for the de-
formed configurations both the Neo-Hookean model
(i.e. Gent material with Jm =∞, center) and the Gent
model with Jm = 0.5 (bottom) are considered. It is im-
portant to note that for the deformed configurations
the iso-frequency profiles obtained for phononic crys-
tals made of Gent material with Jm = ∞ and 0.5 are
found to be the same for all patterns. In contrast, we
find a significant difference in the iso-frequency profiles
between the undeformed and deformed configurations.
These results suggest that only changes in geometry
can be effectively used to tune the directional charac-
teristics of the lowest two modes. This is due to the
fact that the wavelength of the low frequency propa-
gating modes are very long compared with the length
scale of the local variations of stress field.
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FIG. 3: Iso-frequency plots of the first two modes for the square lattice of circular voids. The results are reported in terms
of the normalized frequency f̃ = ωa/(2πcT )
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FIG. 4: Iso-frequency plots of the first two modes for the triangular lattice of circular voids. The results are reported in
terms of the normalized frequency f̃ = ωa/(2πcT )
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FIG. 5: Iso-frequency plots of the first two modes for the trihexagonal lattice of circular voids. The results are reported in
terms of the normalized frequency f̃ = ωa/(2πcT )
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GENERAL FORMULATION

Here, we present fundamental relations (i.e., govern-
ing equations, boundary conditions and material mod-
els) which are employed in the manuscript.

Governing Equations

We consider two-dimensional (2D) infinitely periodic
solids and assume plane strain conditions. Their defor-
mation is described by the deformation gradient

F =
∂x

∂x0
, (1)

mapping a point in the material from the reference
position x0 to its current location x. The material is
assumed to be non-linear elastic, characterized by a
stored-energy function W = W (F), which is defined in
the reference configuration. The first Piola-Kirchhoff
stress S is thus related to the deformation gradient F
by

S =
∂W

∂F
. (2)

In the absence of body forces, the equation of motions
in the reference configuration can be written as

Div S = ρ0
D2x

Dt2
, (3)

where Div represents the divergence operator in the
undeformed/reference configuration, D/Dt is the ma-
terial time derivative and ρ0 denotes the reference mass
density.

To investigate the effect of the applied deformation
on the propagation of small-amplitude elastic waves,
incremental deformations superimposed upon a given
state of finite deformation are considered. Denoting
with Ṡ the increment of the first Piola-Kirchhoff stress,
the incremental forms of the governing equations is
given by

Div Ṡ = ρ0
D2ẋ

Dt2
, (4)

where ẋ denotes the incremental displacements. Fur-
thermore, linearization of the constitutive equation (2)
yields

Ṡ = L : Ḟ, with Lijkl =
∂2W

∂Fij∂Fkl
, (5)

where Ḟ denotes the the incremental deformation gra-
dient.

The incremental boundary value problem is often
formulated in an updated Lagrangian formulation,
where the deformed state is used as the reference con-
figuration for the calculation of the incremental quan-
tities [? ]. Push-forward transformations allow the in-
troduction of the incremental updated stress quantity
Σ given by

Σ =
1

J
ṠFT . (6)

For a non-linear elastic material, the incremental con-
stitutive equation takes the linear form

Σ = C : grad u, (7)

to the first order, where grad denotes the gradient op-
erator in the deformed/current configuration, u

.
= ẋ

and

Cijkl = J−1FjnFlq
∂2W

∂Fin∂Fkq
. (8)

Finally, the incremental equations of motions take the
form

divΣ = ρ
d2u

dt2
, (9)

where div represents the divergence operator in the
deformed/current configuration, ρ denotes the current
material density and d/dt is the spatial time derivative.

Here, we focus on the propagation of small-
amplitude elastic waves defined by

u(x, t) = ũ(x) exp(−iωt) , (10)

where ω is the angular frequency of the propagating
wave, and ũ denotes the magnitude of the incremental
displacement. It follows from (7) that

Σ(x, t) = Σ̃(x) exp(−iωt) , (11)
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so that equations (9) become

divΣ̃ = ρω2ũ , (12)

which represent the frequency-domain wave equations.

Infinite Periodic Structures

Here we focus on 2D periodic solid of infinite extent
characterized by a primitive cell (i.e. minimum unit
identified in the periodic structure), which is specified
by the lattice vectors a1 and a2, as shown in Fig. 1A.
Thus, any spatial function field, φ(x), in the infinite
periodic structure satisfies the condition:

φ(x + p) = φ(x), (13)

where

p = p1a1 + p2a2, (14)

where p1 and p2 are arbitrary integers.

FIG. 1: Point Lattice (blue dots in A), reciprocal lattice
(black dots in B), first Brillioun zone (square area in B)
and irreducible Brillioun zone (IBZ, Triangle GXM in B).

For later use, we define the reciprocal lattice speci-
fied by the reciprocal lattice vectors b1 and b2 defined
such that

ai · bj = 2πδij , (15)

where δij is the Kronecker delta. It follows that b1 and
b2 are defined as

b1 = 2π
a2 × z

‖ z ‖2
, b2 = 2π

z× a1

‖ z ‖2
, (16)

where z = a1×a2. As shown in Fig. 1B, the reciprocal
lattice is characterized by spatial periodicity g

g = g1b1 + g2b2, (17)

with g1 and g2 being arbitrary integers. Therefore, any
function ψ(k) defined in the reciprocal space satisfies
the condition

ψ(k + g) = ψ(k). (18)

Next, in the reciprocal space we identify the first
Brillioun zone (area inside the square in Fig. 1B) [? ],
defined by the reciprocal lattice points. For the analy-
sis of waves propagating in periodic structures, it has
been shown that only wave vectors in first Brillioun
zone need to be considered. In addition, we may fur-
ther reduce the domain taking advantage of its reflec-
tional and rotational symmetries. The reduced domain
is referred as the irreducible Brillioun zone (IBZ) (tri-
angle GXM in Fig. 1B) [19].

Material Models

Here we focus on isotropic, nearly incompressible
and hyper-elastic rubber-like materials. Both the Gent
[23] and the Neo-Hookean [24] models are considered to
investigate the effect of material non-linearity on wave
propagation.

Gent Model

The compressible version of the strain energy func-
tion proposed by Gent [23] is given by

W (I1, J) =− G

2
Jm log

(
1− I1 − 3

Jm

)
−G log(J)

+

(
K

2
− G

Jm

)
(J − 1)2,

(19)

where I1 = trace
(
FTF

)
, J = det(F), G and K are

the initial shear and bulk moduli, and Jm denotes a
material constant related to the strain at saturation,
since since the stress become infinite as Jm − I1 + 3
approaches zero.

Substituting (19) into (2) and (5), the nominal stress
S and the incremental modulus L are obtained as

S =
GJm

Jm − I1 + 3
F+

[(
K − 2G

Jm

)
J(J − 1)−G

]
F−T ,

(20)
and

L =
GJm

Jm − I1 + 3
I +

2GJm
(Jm − I1 + 3)2

F⊗ F

+ J(2J − 1)

(
K − 2G

Jm

)
F−T ⊗ F−T

+

[
J(J − 1)

(
K − 2G

Jm

)
−G

]
A,

(21)

where

Iijkl =
∂Fkl

∂Fij
= δikδjl, (22)
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and

Aijkl =
∂F−T

kl

∂Fij
= −F−T

il F−T
kj . (23)

In Fig. 2 we report the material response for an al-
most incompressible material with K/G = 2000. Uni-
axial loading conditions are considered, so that

F = λe1 ⊗ e1 + λ̃e2 ⊗ e2 + e3 ⊗ e3, (24)

λ denoting the applied stretch and λ̃ being such that
S22 = 0. In Fig. 2 the material response in terms of
the dimensionless nominal stress S11/G versus applied
stretch λ is reported for three different values of Jm.
The results clearly indicate that small values of Jm
introduce strong non-linearities.

FIG. 2: Uniaxial stress-stretch response of a nearly incom-
pressible Gent material with Jm = 0.5, 2.0 and ∞ (the last
corresponding to a Neo-Hookean material).

Neo-Hookean Model

We note that as Jm → +∞ the Gent model reduces
to the Neo-Hookean model [24], for which the com-
pressible version of the strain energy density function
is given by

W (I1, J) =
G

2
(I1 − 3)−G log(J) +

K

2
(J − 1)2 , (25)

It also follows that S and L for a Neo-Hookean ma-
terial are given by

S = GF + [KJ(J − 1)−G] F−T , (26)

and

L = GI +KJ(2J − 1)F−T ⊗ F−T

+ [KJ(J − 1)−G] IT .
(27)

NUMERICAL PROCEDURE AND
IMPLEMENTATION

The finite element framework is used to deform the
structures as well as to investigate the propagation of

elastic waves at different level of applied deformation.
Each simulation consists of the following three steps:
A) buckling analysis, B) post-buckling analysis, and
C) wave propagation analysis. In this Section we pro-
vide a detailed description of the numerical analysis
performed in these three steps.

Buckling Analysis

As the first step in the numerical simulation, the
buckling analysis is performed on a primitive unit cell.
The structural integrity of periodic structures under
applied deformation is a critical issue which is fre-
quently overlooked. In fact, when periodic porous
structures are deformed their spatial periodicity can
suddenly change due to mechanical instability and it
is useful to make the distinction between microscopic
instabilities (i.e. instabilities with wavelengths that
are of the order of the size of the microstructure) and
macroscopic instabilities (i.e. instabilities with much
larger wavelengths comparable to the size of the unit
cell) [25–28].

Microscopic Instabilities

Although microscopic (local) buckling modes may al-
ter the initial periodicity of the solid, they can be still
detected by studying the response of a single unit cell
and investigating the propagation of small-amplitude
waves with arbitrary wave vector ǩ superimposed on
the current state of deformation [25–27]. While a
real angular frequency ω corresponds to a propagat-
ing wave, a complex ω identifies a perturbation expo-
nentially growing with time. Therefore, the transition
between a stable and an unstable configuration is de-
tected when the frequency vanishes (i.e. ω = 0) and
the new periodicity of the solid introduced by instabil-
ity can be easily obtained by the corresponding wave
vector.

To detect the onset of microscopic instabilities, we
first deform the primitive unit cell to a certain extent
and then investigate the propagation of elastic waves
with different wave vector

ǩ = ǩ1b1 + ǩ2b2, (28)

ǩ1 and ǩ2 being two real numbers. For each wave vector
ǩ, the angular frequency ω is determined by solving the
frequency domain equation (12). In this analysis quasi-
periodic boundary conditions are applied, so that

u(x + ř) = u(x) exp(iǩ · ř), (29)

ř denoting the distance in the current configuration
between each pair of nodes periodically located on the
boundary. Since most commercial finite-element pack-
ages do not support the complex-valued displacements
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introduced by (29), following Aberg and Gudmundson
[? ] we split any complex-valued spatial function φ(x)
into a real and an imaginary part,

φ(x) = φ(x)re + iφ(x)im. (30)

The problem is then solved using two identical finite-
element meshes for the unit cell, one for the real part
and the other for the imaginary part, coupled by

ure(x + ř) = ure(x) cos(ǩ · ř)−uim(x) sin(ǩ · ř), (31)

uim(x+ ř) = ure(x) sin(ǩ · ř)+uim(x) cos(ǩ · ř). (32)

A microscopic instability is detected at the first
point along the loading path for which a wave vector
ǩcr = ǩ1,crb1 + ǩ2,crb2 exist such that the correspond-
ing angular frequency ω is zero. The instability will
result in an enlarged unit cell with n1 × n2 primitive
unit cells, where

n1 =
1

ǩ1,cr
, and n2 =

1

ǩ2,cr
. (33)

Macroscopic Instabilities

Following Geymonat et al. [25], we examine macro-
scopic instabilities by detecting loss of strong ellipticity
of the overall response of the periodic structure. Specif-
ically, macroscopic instabilities may develop whenever
the condition

(m⊗M) :
[
LH : (m⊗M)

]
> 0 ,

for all m⊗M 6= 0
(34)

is first violated along the loading path, LH denoting
the homogenized incremental modulus.

Operationally, after determining the principal solu-
tion, the components of LH are identified by subjecting
the unit cells to four independent linear perturbations
of the macroscopic deformation gradient [27]. Then
loss of ellipticity is examined by checking condition (34)
at every π/360 radian increment.

Post-buckling Analysis

As the second step, the post-buckling analysis is per-
formed to capture the response of the structure beyond
instability. Models with n1×n2 primitive unit cells are
built, where n1 and n2 are determined in the buckling
analysis. We first introduce a small random imperfec-
tion in the initial geometry by perturbing the position
of each node. Here, we use a uniform random perturba-
tion on each node with amplitude equal to one percent
of the smallest element edge in the mesh.

Periodic boundary conditions are then applied, so
that the positions of each pair of nodes periodically
located on the boundary satisfy

x(x0 + r0)− x(x0) = F · r0 (35)

where F̄ denotes the macroscopic deformation gradient
and r0 the distance in the undeformed configuration
between each pair of periodically located nodes.

Wave Propagation Analysis

In order to obtain the dispersion relation and evalu-
ate the directionality of the propagating waves for the
phononic crystals, frequency domain wave propagation
analysis are performed on the deformed configurations
generated by the post-buckling analysis. Bloch-type
boundary conditions (eqns. (31) and (32)) are applied
with the propagating bloch-wave vector k and updated
spatial periodicity r, so that

ure(x + r) = ure(x) cos(k · r)−uim(x) sin(k · r), (36)

uim(x+r) = ure(x) sin(k ·r)+uim(x) cos(k ·r). (37)

Focusing on the propagation of small-amplitude
waves, we solve eqn. (12) using a perturbation method
to obtain the dispersion relations ω = ω(k).

For a 2D infinite periodic structure with spatial peri-
odicity defined by (13) and (14), the periodicity in the
reciprocal k-space of the dispersion relation is given by
[? ]:

ω(k + g) = ω(k), (38)

with g defined in (17). Hence, due to translational
symmetry specified by (38), we only need to study ω(k)
for k vectors in the first Brillouin zone [? ]. Moreover,
the domain can be further reduced by taking advantage
of rotational, reflectional and inversional symmetries of
the first Brillouin zone. This allows us to define the
irreducible Brillouin zone (IBZ) (see yellow triangle in
Fig. 1) [19].

The phononic bandgaps are identified by checking
all eigen-frequencies ω(k) for k vectors on the perime-
ter of the IBZ. The bandgaps (i.e. range in frequen-
cies for which the propagation of waves is barred) are
given by the frequency ranges within which no ω(k)
exist. Numerically, a discrete set of k vectors on the
IBZ perimeter need to be chosen in the band-gap cal-
culation. For the simulations presented in this paper,
twenty uniformly spaced points on each edge of the IBZ
are used for the purpose of identifying band-gaps.

For the propagation directionality of the elastic wave
in passing band of the phononic crystal, we investigate
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the eigen-frequency surfaces over the entire IBZ to get
the iso-frequency plots of the first two modes of the
lowest passing bands: mode 1 being a shear-dominated
mode and mode 2 representing a pressure-dominated
mode. The phase velocity vp and group velocity vg of
the propagating wave are then calculated as

vp =
ωk

‖ k ‖2
, vg =

∂ω

∂k
. (39)

Numerically, a discrete set of k vectors in the IBZ
need to be chosen in the analysis. For the simulations
presented in this paper, the results from four hundred
uniformly distributed points inside the IBZ are used to
interpolate the dispersion surface in k−space. Then,
the value of dimensionless frequency f̃ = ωa/(2πcT ) =
0.05 is fixed for the calculation of the wave velocities of
the low frequency modes (the first and second modes).
Lastly, a standard central difference scheme is adopted
for the calculation of the group velocity.

ADDITIONAL RESULTS FOR
LOW-FREQUENCY DIRECTIONALITY

The results included in the main text suggest that
material nonlinearity only affects the band gap and
does not affect the propagation direction at low fre-
quencies. Although in the main text we only include
results for a square array of circular holes, we observed
the same behavior also for different lattice patterns,
non-linear material models and void volume fractions.
Here, we report the results obtained not only for a
square (Fig. 3), but also for triangular (Fig. 4) and
trihexagonal (Fig. 5) arrays of circular holes with 60%
initial porosity. The details and deformation configu-
rations of these patterns can be found in [? ]. In the
figures, iso-frequency plots of the first shear-dominated
(Mode 1) and pressure-dominated (Mode 2) modes are
reported for the undeformed (top) and deformed (cen-
ter and bottom) configurations. Moreover, for the de-
formed configurations both the Neo-Hookean model
(i.e. Gent material with Jm =∞, center) and the Gent
model with Jm = 0.5 (bottom) are considered. It is im-
portant to note that for the deformed configurations
the iso-frequency profiles obtained for phononic crys-
tals made of Gent material with Jm = ∞ and 0.5 are
found to be the same for all patterns. In contrast, we
find a significant difference in the iso-frequency profiles
between the undeformed and deformed configurations.
These results suggest that only changes in geometry
can be effectively used to tune the directional charac-
teristics of the lowest two modes. This is due to the
fact that the wavelength of the low frequency propa-
gating modes are very long compared with the length
scale of the local variations of stress field.
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FIG. 3: Iso-frequency plots of the first two modes for the square lattice of circular voids. The results are reported in terms
of the normalized frequency f̃ = ωa/(2πcT )
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FIG. 4: Iso-frequency plots of the first two modes for the triangular lattice of circular voids. The results are reported in
terms of the normalized frequency f̃ = ωa/(2πcT )
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FIG. 5: Iso-frequency plots of the first two modes for the trihexagonal lattice of circular voids. The results are reported in
terms of the normalized frequency f̃ = ωa/(2πcT )
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