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 When materials are uniaxially compressed, they typically 
expand in directions orthogonal to the applied load. Here, we 
exploit buckling to design a new class of three dimensional 
metamaterials with negative Poisson's ratio that contract in 
the transverse direction under compressive loading regimes. 
These proposed metamaterials consist of an array of patterned 
elastomeric spherical shells, which due to a mechanical insta-
bility, undergo a signifi cant isotropic volume reduction when 
deformed. The large geometric non-linearities introduced in 
the system by buckling are exploited to achieve a negative Pois-
son's ratio and retain this unusual property over a wide range 
of applied deformations. Here, we identify a library of auxetic 
building blocks and defi ne procedures to guide their selection 
and assembly. The auxetic properties of these materials are 
demonstrated both through experimental and fi nite element 
simulation approaches and exhibit excellent qualitative and 
quantitative agreement. As a result of this unusual behavior, 
these proposed metamaterials could be useful for the design of 
protective and energy absorbing materials, effi cient membrane 
fi lters with variable permeability, and acoustic dampeners. 

 Metamaterials are rationally designed artifi cial materials 
which gain their properties from structure rather than compo-
sition. Since it was fi rst shown that microstructures built from 
non-magnetic conducting sheets can exhibit effective magnetic 
permeability, [  1  ]  the metamaterial concept has been quickly 
extended to photonic, [  2  ]  acoustic [  3  ]  and mechanical, [  4  ]  systems, 
leading to the design of a variety of materials with properties 
not previously thought possible. 

 The Poisson's ratio defi nes the ratio between the transverse 
and axial strain. [  5  ]  Materials that are uniaxially compressed 
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typically expand in the directions orthogonal to the applied 
load. Counter-intuitively, materials with a negative Pois-
son's ratio (auxetic materials) contract in the transverse 
direction. [  6  ,  7  ]  The fi rst reported example of an artifi cial aux-
etic material was a foam with re-entrant cells that unfolded 
when stretched. [  8  ]  Since then, several periodic 2D geometries 
and mechanisms have been suggested to achieve a negative 
Poisson's ratio. [  9  ]  While auxetic responses have been demon-
strated in many crystals, [  10  ]  very few designs of synthetic 3D 
auxetic materials have been proposed. [  4  ]  Analytical studies 
have identifi ed 3D auxetic systems consisting of networks 
of beams, [  11  ]  multipods [  12  ]  and rigid units, [  13  ]  and only very 
recently, a metallic 3D architecture based on a bow-tie func-
tional element has been fabricated. [  14  ]  In all of these systems, 
however, the auxetic behavior is exhibited only in the limit of 
small strains, and the design of 3D auxetic systems capable 
of retaining these unusual properties at large strains still 
remains a challenge. [  4  ]  

 The design of metamaterials capable of responding revers-
ibly to changes in their environment is of fundamental impor-
tance for the development of the next generation of actuators 
and sensors, tunable optics and smart responsive surfaces. [  15  ,  16  ]  
Furthermore, a remarkable feature of responsive metamaterials 
is that any of their properties can be switched or fi ne-tuned just 
by applying a stimulus to alter their initial architecture. 

 In order to successfully design a new class of 3D auxetic 
materials capable of retaining this unusual response over a wide 
range of applied strains, we exploited the large geometric non-
linearities introduced in the system by instabilities. Through a 
combination of desktop-scale experiments and fi nite element 
(FE) simulations, we investigated the auxetic responses of these 
structures, fi nding excellent qualitative and quantitative agree-
ment. Since the 3D auxetic behavior is induced by elastic buck-
ling, we have named these new materials “Bucklicrystals”. We 
believe that these Bucklicrystals open new design avenues for 
the construction of 3D auxetic materials over a wide range of 
length scales. 

 We began by recognizing that a structural unit capable of iso-
tropic volume reduction represents the ideal building block to 
construct 3D auxetic metamaterials whose response can be con-
trolled by the application of a stimulus. Such responses have 
been recently demonstrated for patterned spherical shells, [  17  ]  
where a signifi cant change in volume has been observed as 
a result of an elastic instability. The hole arrangement on the 
spherical shell has also been explored, showing that only fi ve 
patterns comprising of 6, 12, 24, 30 and 60 holes are possible 
for such building blocks. [  17  ]  Note that these fi ve spherical struc-
tures can be classifi ed into two symmetry groups: the shells 
with 6, 12 and 24 holes have octahedral symmetry, while those 
with 30 and 60 holes have icosahedral symmetry. 
bH & Co. KGaA, Weinheim 1wileyonlinelibrary.com

http://doi.wiley.com/10.1002/adma.201301986


www.advmat.de
www.MaterialsViews.com

C
O

M
M

U
N

IC
A
TI

O
N

     Figure  1 .     Gallery of Bucklicrystals. a) Building blocks with 6, 12 and 24 holes. For the sake of 
simplicity, we always color the building blocks with 6, 12 and 24 holes with red, green and blue, 
respectively. Moreover, we also identify the junctions where the building blocks are attached to 
the surrounding units using yellow circles, black triangles, and magenta squares for  bcc ,  fcc , 
and  sc  packing confi gurations, respectively. b) Representative volume elements (RVE) for the 
Bucklicrystal in the undeformed confi guration. c) Buckled confi gurations for the RVEs under 
uniaxial compression.  
 Having identifi ed the building blocks, we then defi ned pro-
cedures to guide their assembly. Here, we focused on cubic 
crystal systems (i.e. simple cubic ( sc ), body-centered cubic ( bcc ), 
and face-centered cubic ( fcc )) because of their simplicity and 
highest symmetry order out of the seven lattice systems. Since 
we required that both the building blocks and the metamate-
rial have octahedral symmetry, only spherical shells with 6, 12 
and 24 holes were considered in this study ( Figures    1  a and S1). 
2 wileyonlinelibrary.com © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Wein
Furthermore, for the sake of simplicity and 
ease of scalability, we constructed each meta-
material from a single type of building block.  

 Since each building block has a limited 
number of sites where adjacent building 
blocks can be attached to each other (see 
markers in Figure  1 a) and metamaterials 
with octahedral symmetry can be built only 
via connecting identical junctions (i.e. junc-
tions identifi ed by the same type of markers 
in Figure  1 a), only six different Bucklicrystals 
can be built (Figures  1 b and S2):  bcc  crystals 
using building blocks with 6, 12 and 24 holes, 
 sc  crystals using building blocks with 12 and 
24 holes, and  fcc  crystal using building blocks 
with 24 holes. Having identifi ed all possible 
confi gurations for the Bucklicrystals, we 
next investigated their response through a 
combination of experiments and numerical 
simulations. 

 We fi rst fabricated and mechanically tested 
a Bucklicrystal consisting of a  bcc  array of 
building blocks with 6 holes. Using additive 
manufacturing for the fabrication of indi-
vidual molds for each unit cell, we fabricated 
the building blocks from a soft silicone-based 
rubber (vinyl polysiloxane with Young’s 
modulus, E  =  784 KPa). The geometry of the 
building block comprises a spherical shell 
(inner diameter d i   =  19.8 mm and wall thick-
ness t  =  7.1 mm) that is patterned with a reg-
ular array of 6 circular voids that are slightly 
tapered (22 mm and 13 mm maximum and 
minimum diameter, respectively - Figures  1  
and S1). Ninety one identical building blocks 
were fabricated and subsequently joined to 
form a  bcc  crystal using the same polymer as 
an adhesive agent. 

 The Bucklicrystal was then tested under 
uniaxial compression and the evolution of the 
microstructure was monitored taking tomo-
graphic images at fi ve different levels of the 
applied nominal strain (calculated as change 
of height of the sample divided by the orig-
inal height),  ε  22  applied   =   − 0.03,  − 0.08,  − 0.15, 
 − 0.20,  − 0.30, with a micro-CT X-ray scanner 
(HMXST225, X-Tek).  Figure    2   shows isometric 
and mid-cross sectional views of the structure 
in the undeformed ( ε  22  applied   =  0 - Figure  2 a) 
and deformed ( ε  22  applied   =   − 0.20 - Figure  2 b) 
confi gurations. Furthermore, a sequence 
of progressively deformed shapes of the inner-most building 
block at different levels of strain is shown in Figure  2 c. These 
snapshots clearly demonstrate that structural transformations 
induced by instabilities occur when the Bucklicrystal is com-
pressed. All the building blocks are found to shrink signifi cantly 
in all directions and their initially circular holes on the spherical 
shell transform into elongated, almost closed ellipses. Moreover, 
Figures  2 a,b clearly show that all of the lateral boundaries of the 
heim Adv. Mater. 2013, 
DOI: 10.1002/adma.201301986
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     Figure  2 .     Experimental (micro-CT) and numerical images of the 6-hole Bucklicrystal. a) Isometric and cross-sectional views of the undeformed crystal 
from micro-CT X-ray imaging machine. b) Isometric and cross-sectional views of the uniaxially compressed crystal ( ε  22  applied   =   − 0.20) from micro-CT 
volumetric data sets. In the cross sectional views, the inner-most RVE is highlighted by a red box.  Δ x i (0) and  Δ x i ,  i   =  1,2,3, are the edge length of the red 
box in the  i  direction for undeformed and buckled crystals, respectively. c) Magnifi ed views of the inner-most RVE taken from micro-CT X-ray scanning 
at different levels of strains. d) Corresponding pictures taken from simulation. (Green scale bars: 20 mm).   
deformed Bucklicrystal bend inwards, a clear indication of a 3D 
negative Poisson’s ratio.  

 Recognizing that the response of the specimens is necessarily 
infl uenced by boundary conditions at both the loaded and the 
traction-free faces, we focused on the inner-most building block, 
which can be considered as the representative volume element 
(RVE) for the corresponding infi nitely periodic structure, and 
quantitatively estimated its deformation using image post-pro-
cessing. First, each tomographic image was size-calibrated using 
the known shell thickness (t  =  7.1 mm), which was only margin-
ally affected by deformation. We then tracked the centroids of 
the four voids surrounding the RVE in both the 1–2 and the 2–3 
planes (see vertices of the red rectangle in Figures  2 a,b) and used 
them to calculate centroid-to-centroid distances along the three 
directions, denoted by  Δ x 1 ,  Δ x 2 , and  Δ x 3 . Prior to compression, 
© 2013 WILEY-VCH Verlag GmAdv. Mater. 2013, 
DOI: 10.1002/adma.201301986
the value for all of these quantities was  Δ x i (0)  ≈  38 mm, i  =  1, 2, 
3. Local normal strains were then obtained as  ε  ii   =  〈 Δ x i 〉/ Δ x i (0), 
where the angular bracket 〈 〉 denotes ensemble average over all 
distances under consideration. It is worth noting that the meas-
ured local longitudinal strains, denoted by  ε  22 , were higher than 
those applied, denoted by  ε  22  applied . This was expected since the 
building blocks in close proximity of the two plates used to com-
press the structure were highly constrained by friction and were 
unable to fully deform. 

 In  Figure    3  a, we present the dependence of the trans-
verse strains  ε  11  and  ε  33  on the longitudinal strain  ε  22 . The 
error bars on the experimental points were obtained from the 
standard deviation of the two values of  Δ x i  used in each aver-
aging. Remarkably, the data clearly show that upon increasing 
the compressive strain  ε  22 , both transverse strains decrease, 
3wileyonlinelibrary.combH & Co. KGaA, Weinheim



4

www.advmat.de
www.MaterialsViews.com

C
O

M
M

U
N

IC
A
TI

O
N

     Figure  3 .     Evolution of transverse strains and Poisson's ratios for the 
6-hole Bucklicrystal. a) Evolution of the transverse engineering strain  ε  11  
and  ε  33  as a function of the applied longitudinal strain  ε  22 . b) Evolution of 
the Poisson's ratios ( ν  21  and  ν  23 ) of the 6-hole Bucklicrystal as a function 
of compressive strain  ε  22 . The fi nite element results (solid lines) are in 
good agreement with the experimental data (square markers).  
indicating that the structure contracts in both lateral directions. 
To quantify these lateral contractions, the Poisson’s ratios were 
calculated from the engineering strain as  ν  ij   =  – ε  ii / ε  jj . The esti-
mates of  ν  ij  were plotted as a function of  ε  22  in Figure  3 b. The 
evolution of  ν  21  and  ν  23  was characterized by two subsequent 
regimes: a decreasing regime followed by a plateau. Initially 
both Poisson’s ratios monotonically decrease. They became 
negative at  ε  22   ≈   − 0.03, and eventually reached the value  ν   ≈  
 − 0.4 and plateau at   ε 22  ≈   −0.20, demonstrating that the response 
of the Bucklicrystal was auxetic over a wide range of deforma-
tions. Finally we note that, since the specimens are made of 
an elastomeric material, the process was fully reversible and 
repeatable. Upon release of the applied vertical displacement, 
the deformed structures recovered their original confi gurations.  
wileyonlinelibrary.com © 2013 WILEY-VCH Verlag G
 Next, we performed fi nite element (FE) simulations of the 
6-hole Bucklicrystal. To verify that the auxetic behavior meas-
ured in the experiments was not affected by the boundary con-
ditions, we considered the structure to be infi nite and inves-
tigated the response of the RVE under uniaxial compression 
using periodic boundary conditions. All analyses were per-
formed on the cubic RVE comprising a central building block 
connected to one-eighth of the building block at each junction 
(the junctions and the RVE are shown in Figure  1 a). 

 We fi rst investigated the stability of the Bucklicrystal through 
Bloch wave analysis [  18  ,  19  ]  and the analysis detected a mechan-
ical instability at  ε  22   =   − 0.03. The post-buckling response of 
the Bucklicrystal was then simulated by introducing a small 
imperfection in the initial geometry. In Figure  2 d, we present 
a sequence of the progressive collapse of the Bucklicrystal 
obtained from FE simulations, which is in remarkable qualita-
tive agreement with the experiments for the same geometric 
and material parameters (Figure  2 c). The snapshots clearly 
revealed that in this Bucklicrystal, mechanical instabilities 
act as a functional mode of actuation, inducing the spherical 
collapse of every building block while keeping the structure 
periodic. To better characterize the response of the structure, 
in Figure  3  we report the evolution of the lateral strains ( ε  11 , 
 ε  33 ) and Poisson’s ratios ( ν  21 ,  ν  23 ) as a function of  ε  22 , showing 
an excellent quantitative agreement with our experimental 
results. It is worth noting that, since after buckling the initial 
cubic RVE changes into a rectangular parallelepiped, for large 
values of longitudinal strain  ε  33   ≠   ε  11  and  ν  21   ≠   ν  23 . This can be 
clearly seen in Figure  2 d for  ε  22  applied   =   − 0.30, where all of the 
ligaments in the 1–2 plane are touching, while in the 2–3 plane, 
they are still separated from each other. 

 Given the excellent qualitative and quantitative agreement 
found between our experiments and simulations, we pro-
ceeded by focusing primarily on the FE simulation results to 
further explore the buckling-induced auxetic behavior of all 
the Bucklicrystals identifi ed in Figure  1 . Each building block is 
fully characterized by two adimensional parameters: porosity, 
denoted by  ψ , (defi ned as the ratio of the void volume to the 
intact spherical shell volume) and thickness over inner radius 
ratio, denoted by t/r i . [  17  ]  All crystals were constructed using 
building blocks characterized by the same parameters used for 
the 6-hole crystal investigated above,  ψ   =  0.733 and t/r i   =  5/7. 

 All analyses were performed on cubic RVEs (Figures  1 b and S2): 
(i) for  bcc  confi gurations (12- and 24-hole), they were con-
structed as described for the 6-hole  bcc  case; (ii) for the  sc  con-
fi gurations (12- and 24-hole), a single building block was used 
as RVEs; (iii) for the  fcc  confi guration (24-hole), RVEs were 
built such that they comprise of 6 half-building blocks located 
in the middle of the cube faces, attaching to 8 one-eighth of 
the building blocks at the corners. It is worth noting that the 
use of building blocks characterized by the same parameters  ψ  
and t/r i  resulted in Bucklicrystals with different initial global 
porosities, denoted by  ψ̄    (i.e.  ψ̄s c     =  0.888,  ψ̄bcc     =  0.854 and 
 ψ̄ f cc     =  0.842). In all Bucklicrystals, instabilities of short wave-
length were found to be critical, leading to spherical collapse 
of all the building blocks. The values of critical strain obtained 
from Bloch wave analysis were  ε  22  cr   =   − 0.030,  − 0.030,  − 0.041, 
 − 0.020,  − 0.026, and  − 0.023 for 6-hole  bcc , 12-hole  bcc  and  sc , 
and 24-hole  bcc ,  sc  and  fcc , respectively. Moreover, the deformed 
mbH & Co. KGaA, Weinheim Adv. Mater. 2013, 
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     Figure  4 .     Mechanical response of Bucklicrystals. a) Nominal stress-strain curves from uniaxial compression in 2-direction for all of the Bucklicrystals. 
The stress is normalized with respect to the elastic modulus of the bulk elastomeric material. b) Evolution of the Poisson’s ratios vs. nominal strain 
in 2-direction for all the Bucklicrystals. c) Cross sectional views of undeformed ( ε  22   =  0) and deformed ( ε  22   =   − 0.15) confi gurations of 12- and 24-hole 
Bucklicrystals.  
mode shapes of the RVEs are reported in Figure  1 c. Note that 
for the  sc  confi gurations, when the critical instability occurs, the 
periodicity of the crystal was altered and a new RVE comprised 
of 8 building blocks was found (RVE size  =  2  ×  2  ×  2 in 1, 2, 
and 3 directions). Furthermore, in the building blocks with 12 
or 24 holes, the identical junctions (i.e. the sites where adja-
cent building blocks can be attached to each other) rotate all 
in the same direction during folding (Figure S6). As a result, 
in Bucklicrystals comprising arrays of building blocks with 12 
or 24 holes, the folded units have two potentially different ori-
entations (Figure S7). In contrast, in the 6-hole building block, 
half of the junctions rotate clockwise and half counterclockwise 
(Figure S6). As a result, in the deformed confi guration of the 
6-hole  bcc  Bucklicrystal, all of the folded building blocks are ori-
ented in exactly the same way (Figure S8). 

 A more quantitative comparison between the responses of 
all of the Bucklicrystals can be made by inspecting the evolu-
tion of stresses and Poisson's ratios.  Figure    4   shows the evolu-
tion of the normalized nominal stress S 22 /E as a function of 
the longitudinal strain  ε  22 . The response of all confi gurations 
is characterized by a linear elastic regime followed by a stress 
plateau. The departure from linearity is the result of buckling 
and corresponds to a sudden transformation in the periodic 
pattern as shown in Figure  4 c, where snapshots of undeformed 
and deformed ( ε  22   =   − 0.15) confi gurations are presented. Note 
that all of the crystals are uniaxially compressed up to the limit 
when the ligaments surrounding the holes begin to contact one 
© 2013 WILEY-VCH Verlag GAdv. Mater. 2013, 
DOI: 10.1002/adma.201301986
another. This results in a maximum longitudinal strain   ε 22  ≈   
 − 0.30 for all the crystals, except the  bcc  crystal comprising of an 
array of 24-hole building blocks in which the ligaments come 
into contact with each other at  ε  22   ≈   − 0.15. Finally, it is worth 
noting that all the structures exhibit a typical behavior for cel-
lular solids characterized by an initial linear elastic regime and 
a stress plateau following thereafter. The fi nal steep portion of 
the curve (i.e. densifi cation) is not observed since the applied 
strain is not large enough to completely collapse the holes.  

 The evolution of the Poisson's ratios as a function of  ε  22  is 
also presented in Figure  4 b. All of the Bucklicrystals are char-
acterized by initial positive values of  ν , a steeply decreasing 
regime initiated at the onset of instability, and a fi nal negative 
plateau by further compression. Therefore, in all the Buck-
lycrystals, an evolution of the Poisson’s ratio from positive to 
negative is observed; this transition occurs fi rst in the 24-hole 
 fcc  Bucklicrystal (at  ε  22   ≈   − 0.04) and last in the 12-hole  sc  (at 
 ε  22   ≈   − 0.12). Remarkably, once the crystals become auxetic, 
they retain this unusual property even at large strains. At  ε  22   =  
 − 0.30, all confi gurations are characterized by negative Poisson’s 
ratio, ranging from  − 0.2 for the 12-hole  bcc  crystal to  − 0.5 for 
the 24-hole  fcc . Finally, we note that all the crystals, except the 
6-hole case, retain the transversely symmetric behavior (i.e. 
 ν  21   =   ν  23 ) even at large strains. 

 Our fi nding of buckling-induced auxetic behavior provides 
a fundamentally new way for generating 3D materials with a 
negative Poisson’s ratio. Our results offer a unique mechanism 
5wileyonlinelibrary.commbH & Co. KGaA, Weinheim
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 with a range of advantages: (i) the proposed design rules can 

be applied to various length-scales; (ii) the reconfi guration can 
occur upon application of different stimuli depending on the 
types of materials; (iii) the transformation can be made fully 
reversible; and (iv) the auxetic behavior is retained over a wide 
range of applied strain. While the fabrication process described 
here is not tractable for the large scale production of these 
materials, it provides an effective proof of concept method to 
construct various models and evaluate their mechanical per-
formance. Based on these initial observations, we are currently 
developing large-scale 3D-printed sacrifi cial molds from soluble 
materials which would allow the bucklicrystals to be cast in a 
single step process. This new approach reduces the produc-
tion time of these materials by more than 90% and permits 
the exploration of more complex geometries. From a practical 
perspective, the full control over the desired outcome in com-
bination with the wealth of different length scales, materials, 
stimuli, and geometrical designs provides reversibly auxetic 
architectures with a broad fi eld of applications ranging from 
energy absorbing materials to tunable membrane fi lters. 
Finally, although mechanical instabilities have been tradition-
ally viewed as a failure mode with research focusing on how to 
avoid them, here we change this perspective and exploit insta-
bilities to design a new class of 3D auxetic materials.  

 Experimental Section  
 Materials:  A silicone-based rubber (commercial name: Elite Double 

32, Zhermack) was used to cast the experimental specimen. The material 
properties were measured through tensile testing, up to the true strain 
of  ε   =  0.60. No hysteresis was found during loading and unloading. 
The constitute behavior was accurately captured by a Yeoh hyperelastic 
model, [  20  ]  whose strain energy is  U =

3∑

i = 1
Ci 0( Ī1 − 3)i + ( J −1)2i /Di   where 

 C  10   =  131 KPa,  C  20   =  0 KPa,  C  30   =  3.5 Kpa,  D  1   =   D  2   =   D  3   =  154 GPa  − 1 . 
Here,  ̄I1 = tr[dev(FT F)]  ,  J   =  det( F ), and  F  is the deformation gradient. Two 
of the Yeoh model parameters are related to the conventional shear 
modulus, denoted by  G  0 , and bulk modulus, denoted by  K  0 , at zero 
strain:  C  10   =   G  0 /2,  D  1   =  2/ K  0 .  

 Fabrication of the building blocks : A mold was fabricated using a 3D 
printer (Objet Connex500) to cast one half of a spherical shell. After 
de-molding, two halves were joined using the same polymer as adhesive 
agent. The specimen fabricated for this study has the thickness of t  =  
7.1 mm, the inner diameter of d i   =  19.8 mm, and the outer diameter of 
d o   =  34.0 mm.  

 Testing of the Bucklicrystal:  After preparing 91 spherical shells, all 
the shells were joined using the same polymer as adhesive agent. The 
dimension of the Bucklicrystal was Height  ×  Width  ×  Depth  =  144.0  ×  
141.0  ×  141.0 mm. In order to observe the evolution of the Poisson’s 
ratio of the Bucklicrystal, we applied fi ve different levels of vertical 
deformation, i.e. engineering strains of  ε  22   =   − 0.03,  − 0.08,  − 0.15, 
 − 0.20 and  − 0.30 with respect to the height of the Bucklicrystal. At the 
strain level of interest, we immobilized the specimen using a fi xture 
made of acrylic plates, nylon bolts/nuts and inch-thick closed-cell foam 
plates placed between the specimen and the fi xture (Figure S3). The 
foam plates were used as a low electron density spacer that would be 
nearly invisible in the acquired x-ray transmission images and thus not 
interfere with volume rendering of the higher electron density silicone 
elastomer Bucklicrystal. The specimen with the fi xture was put into a 
micro-CT X-ray scanner (HMXST225, X-Tek) for image data collection. 
Once the 3D volumes of the inside of the specimen were reconstructed, 
the cross-sectional views of interest were extracted.  

 Numerical Simulations : The simulations were carried out using the 
commercial Finite Element package Abaqus (SIMULIA, Providence, RI). 
6 wileyonlinelibrary.com © 2013 WILEY-VCH Verlag
The Abaqus/Standard solver was employed for all the simulations, i.e., 
for both microscopic and macroscopic instability analyses and post-
buckling analysis. Models were built using quadratic solid elements 
(Abaqus element type C3D10M with a mesh sweeping seed size of 
1 mm) and the analyses were performed under uniaxial compression. 
We used fi rst four eigenvalues from instability analysis as imperfection 
on non-linear post Buckling analysis. More details on the FE simulations 
are provided in the Supporting Information.   
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 Supporting Information is available from the Wiley Online Library or 
from the author.  
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S1 Building blocks

The building blocks for all the proposed metamaterials are patterned spherical shells [1], in
which a significant change in volume is observed as a result of elastic instabilities. Since here
we focus on cubic crystal systems and require both the building blocks and the metamaterial to
have octahedral symmetry, only patterned spherical shells with 6, 12 and 24 holes are considered.
Different views of the three building blocks discussed in this study are shown in Fig. S1.

Figure S1: Different views of the building blocks with 6, 12, and 24 holes.
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S2 Representative Volume Elements

Since each building block has a limited number of sites where adjacent building blocks can be
attached to each other and metamaterials with octahedral symmetry can only be built through
connecting identical junctions, only six different Bucklicrystals can be built: bcc crystals using
building blocks with 6, 12 or 24 holes, sc crystals using building blocks with 12 or 24 holes and
fcc crystal using building blocks with 24 holes. Different views of the representative volume
elements (RVEs) for each metamaterial in the undeformed configuration are shown in Fig. S2.

Figure S2: Different views of the undeformed RVEs for all the proposed Bucklicrys-
tals.
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S3 Experiments

To monitor the evolution of the Poisson’s ratio of the fabricated Bucklicrystal, we tested the
structure under uniaxial compression. At the strain level of interest, we immobilized the spec-
imen using a fixture made of acrylic plates, nylon bolts/nuts and inch-thick closed-cell foam
plates placed between the specimen and the fixture (see Fig. S3). The foam plates were used
as a low electron density spacer that would be nearly invisible in the acquired x-ray transmis-
sion images and thus not interfere with volume rendering of the higher electron density silicone
elastomer Bucklicrystal.

Figure S3: Testing of the Bucklicrystal. a,b, Undeformed configuration. c,d, Deformed
configuration at εapplied22 = −0.3. (scale bar: 60mm)
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S4 Numerical simulations of stability analysis for 3D periodic
structures

We investigated the buckling of 3D periodic porous structures using non-linear finite element
(FE) analyses. The FE calculations were conducted within the nonlinear code ABAQUS, version
6.8-2. In the numerical analyses, we investigated the stability of infinitely periodic structures
comprising of an array of perfectly connected building blocks. For the sake of computational
efficiency, the analyses were conducted on representative volume elements (RVEs) (see Fig. S2).

For infinite periodic structures, it is useful to make the distinction between microscopic insta-
bilities (i.e. instabilities with wavelengths that are of the order of the size of the microstructure)
and macroscopic instabilities (i.e. instabilities with much larger wavelengths in comparison to
the size of the unit cell) [2–5].

Microscopic instabilities. Although microscopic (local) buckling modes may alter the initial
periodicity of the solid, they can still be detected by studying the response of a single unit
cell and investigating the propagation of small-amplitude waves with an arbitrary wave vector
superimposed on the current state of deformation [2–4]. While a real angular frequency ω
corresponds to a propagating wave, a complex ω identifies a perturbation exponentially growing
with time. Therefore, the transition between stable and unstable configurations is detected when
the frequency vanishes (i.e. ω = 0) and the new periodicity of the solid introduced by instability
can be easily obtained by the corresponding wave vector. Here, the finite-element method was
used to perform the Bloch wave analysis [4].

Macroscopic instabilities. Following Geymonat et al. [2], we examined macroscopic insta-
bilities by detecting the loss of strong ellipticity of the overall response of the periodic structure.
Specifically, for the metamaterials considered in this study macroscopic instabilities may occur
whenever the condition

LH
ijklNjNlmimk > 0 for m⊗N 6= 0, (S1)

is first violated along the loading path, LH being the macroscopic (homogenized) tangent mod-
ulus and N and m denoting unit vectors. Note that LH is evaluated numerically by subjecting
the RVE to nine independent linear perturbations of the macroscopic deformation gradient [4].
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S5 Stability analysis for the 6-hole Bucklicrystal

We started by investigating the stability of the 6-hole Bucklicrystal. For the considered periodic
structure, the onsets of both microscopic and macroscopic instabilities were detected by studying
the response of the RVE depicted in Fig. S4-left. A microscopic instability was detected at
ε22 = −0.03, while the onset of macroscopic instability occurs at ε22 = −0.06. Therefore,
microscopic instabilities were always critical in compression, leading to a critical mode where all
building blocks underwent the same rotation (see Figs. S4-right), without altering the structure’s
periodicity.

Figure S4: Left: RVE for the undeformed 6-hole bcc. Right: Critical mode detected by the Bloch
wave analysis. Note that the deformation of the RVE is slightly different in 1 and 3 directions.
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S6 Stability analysis for all Bucklicrystals

The onsets of both microscopic and macroscopic instabilities for each Bucklicrystal was detected
by studying the response of the RVEs depicted in Fig. S2. In all Bucklicrystals, instabilities of
short wavelength were found to be critical, leading to spherical collapse of all the building blocks.
The values of critical strain obtained from the stability analysis are summarized in Table S1 and
the corresponding critical modes are shown in Fig. S5. Note that for sc configurations, buckling
leads to an enlarged RVE comprising of 8 building blocks (RVE size = 2× 2× 2 in 1, 2, and 3
directions). Moreover, it is worth noting that the non-linear deformation of the Bucklicrystals
is dictated by the folding mechanism of the corresponding building blocks. Interestingly, in the
Buckliball with 12 or 24 holes, all the junctions (i.e. the sites where adjacent building blocks can
be attached to each other) rotate all in the same direction during folding (Fig. S6). As a result,
in Bucklicrystals comprising arrays of building blocks with 12 or 24 holes, the folded units have
two potentially different orientations (Fig. S7). In contrast, in the 6-hole Buckliball, half of the
junctions rotate clockwise and half counterclockwise (Fig. S6). As a result, in the deformed
configuration of the 6-hole bcc Bucklicrystal, all of the folded building blocks are oriented exactly
in the same way (Fig. S8).

εmicro
22 εmacro

22

6H-bcc -0.030 -0.060
12H - bcc -0.030 -0.140
12H- sc -0.041 -0.265
24H-bcc -0.020 -0.062
24H-sc -0.026 -0.096
24H-fcc -0.023 -0.050

Table S1: Values of critical strain for microscopic (εmicro
22 ) and macroscopic (εmacro

22 )
instabilities.
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Figure S5: Critical modes for all the Bucklicrystals under uniaxial compression. Upon
applying a load in the 2- direction, all the ligaments undergo the first buckling mode and all
the circular holes close uniformly. Note that for sc configurations, buckling leads to an enlarged
RVE, which is comprised of 8 building blocks (RVE size = 2× 2× 2 in 1, 2, and 3 directions).

S7 Porosity of the Bucklicrystals

Each building block is fully characterized by two adimensional parameters: porosity, denoted by
ψ, and thickness over inner radius ratio, denoted by t/ri [1]. The porosity of a single building
block is defined as a ratio of volume of the voids to volume of the intact shell [1]

ψ =
Vvoids

Vintact shell
, (S2)

where

Vintact shell =
4

3
π(r3o − r3i ), (S3)

ri and ro denoting the inner and outer radius of the spherical shell, respectively. The volume
fraction of the structured shell is then simply defined as

Vshell = (1− ψ)
4

3
π(r3o − r3i ). (S4)

In this study all crystals are constructed using building blocks characterized by ψ = 0.733
and (ro − ri)/ri = 5/7. It is important to note that the use of building blocks characterized by

S7



Figure S6: Sequence of progressively deformed configurations of the building blocks.
The circular markers are used to highlight the rotation of the junctions used to build bcc Buck-
licrystals. Yellow markers indicate a counterclockwise rotation, while black markers correspond
to a clockwise rotation. In the 6-hole building block, half of the junctions rotate clockwise and
half counterclockwise, as indicated by the yellow and black markers. In contrast, for the building
block with 12 or 24 holes, all identical junctions rotate in the same direction.

the same parameters ψ and t/ri results in Bucklicrystals with different initial global porosities
ψ̄.

The global porosity for each packing configurations (sc, bcc,and fcc) is defined as

ψ̄ = 1−
Nbuilding blockVshell

VRV E
, (S5)

where Nbuilding block is the number of building blocks in the RVE and VRV E = L3 is the volume
of the cubic RVE of length L. Note that each packing configuration is characterized by a unique

pair 〈Nbuilding block, L〉. More specifically, 〈Nbuilding block, L〉 = 〈1, 2r0〉 ,
〈

2, 4r0√
3

〉
, and

〈
4, 4r0√

2

〉
for

sc, bcc,and fcc packing configurations, respectively. Combining Eqs. (S4) and (S5), the global
void volume fraction for Bucklicrystals characterized by ψ = 0.733 and (ro − ri)/ri = 5/7 can
be calculated as: ψ̄sc = 0.888, ψ̄bcc = 0.854 and ψ̄fcc = 0.842.
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Figure S7: Left: Enlarged RVE for the undeformed 12-hole bcc comprising of 35 building blocks.
Right: Reconstruction of the critical mode detected for the enlarged RVE. Note that the folded
building blocks have two different orientations, as indicated by the two colors (blue and green).
As a result, each unit is oriented differently with respect to the surrounding connected units.

Figure S8: Left: Enlarged RVE for the undeformed 6-hole bcc comprising of 35 building blocks.
Right: Reconstruction of the critical mode detected for the enlarged RVE. Note that all folded
building blocks have exactly the same orientation.
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