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Punch indentation experiments are performed on 10 mm thick polyurea layers on a steel
substrate. A total of six different combinations of punch velocity, punch size and the lateral
constraint conditions are considered. Furthermore, the time integration scheme for a
newly-developed rate-dependent constitutive material model is presented and used to
predict the force–displacement response for all experimental loading conditions. The com-
parison of the simulations and the experimental results reveals that the model is capable to
predict the loading behavior with good accuracy for all experiments which is seen as a par-
tial validation of the model assumptions regarding the pressure and rate sensitivity. As far
as the unloading behavior is concerned, the model predicts the characteristic stiff and soft
phases of unloading. However, the comparison of simulations and experiments also indi-
cates that the overall model response is too stiff. The results from cyclic compression
experiments suggest that the pronounced Mullins effect needs to be taken into account
in future models for polyurea to improve the quantitative predictions during unloading.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Polyurea is a highly viscoelastic rubber material that is
used for the impact protection of vehicle structures. It is
considered for the armor protection and retrofitting of mil-
itary vehicles that are exposed to the blast loading of
improvised explosive devices. The anticipated effect of
polyurea coatings on the blast resistance of steel plates is
twofold. Firstly, the polyurea can directly absorb a portion
of the blast energy as it undergoes large deformations. Sec-
ondly, the onset of ductile fracture of a steel plate may be
retarded through the use of a polyurea coating, thereby
increasing the energy absorption of the steel structure.
The amount of energy dissipation through polyurea coat-
ing is relating to the hysteresis area of the stress–strain
. All rights reserved.
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curve under loading–unloading conditions. Recent experi-
mental results (e.g. Ayoub et al., 2009) reported that some
elastomers show asymmetric rate-sensitivity, i.e. strong
rate-sensitivity during loading but weak rate-sensitivity
during unloading. Thus, the proper prediction of unloading
behavior is important to obtain a good estimation of the
amount of energy dissipation.

As discussed by Xue and Hutchinson (2008), necking
occurs under uniaxial tension when the average true stress
becomes equal to the overall tangent hardening modulus
(Considere criterion). In the case of a coated ductile sub-
strate, a high strain hardening coating material can in-
crease the effective hardening modulus of the bilayer
material such that necking is retarded with respect to the
Considere strain of the uncoated material. The bifurcation
analysis of Guduru et al. (2006) reveals that an added sur-
face layer can increase the resistance of a structural ele-
ment to fragmentation. Moreover, their results show that
the addition of a soft coating with high strain hardening
can improve the weight specific energy absorption of the
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structural element. Xue and Hutchinson (2008) demon-
strate that the ratio of the elastomer modulus to the flow
strength of the substrate controls the effect of necking
retardation. McShane et al. (2008) performed tension and
bulge tests on copper/polyurethane bilayers under static
and dynamic conditions. Their experimental measure-
ments indicate that coatings do not provide dynamic per-
formance benefits on an equal mass basis. While the total
blast resistance increases, the weight specific energy
absorption of the structure may actually decrease through
the application of a polymer coating. Dynamic ring expan-
sion experiments have been performed by Zhang et al.
(2009) on polyurea coated aluminum 6061-O and copper
101 at very high strain rates (4000–15,000/s). Their exper-
imental results show that there is no significant effect of
the polyurea coating on the strain at the onset of
localization.

It appears that the neck retardation effect in coated
ductile substrates is difficult to achieve when using poly-
urea in combination with typical engineering materials.
However, as pointed out by McShane et al. (2008), poly-
urea coatings may still be seen as a practical solution for
enhancing the blast resistance of metallic structures be-
cause of the ease of applying polyurea on existing struc-
tures (retrofitting). Even though the performance of the
steel substrate may remain unaffected, a very thick poly-
urea layer can still increase the energy absorption in abso-
lute terms. The impulsive loading experiments of Amini
et al. (2010c) reveal that polyurea coatings have a strong
effect on the energy transfer to the steel plate. In particular,
they demonstrate that the positioning of polyurea on the
impact side promotes failure of the steel plate under shock
loading while a polyurea layer on the back of the plate
attenuates the shock. In the present paper, we deal with
the prediction of the large deformation behavior of poly-
urea in structural applications. Xue and Hutchinson
(2008) made use of a Moonley–Rivlin model for the poly-
mer coating in their numerical analysis of the polymer/me-
tal bilayers. Zhang et al. (2009) modeled the behavior of
polyurea using a non-linear hyperelastic material model.
However, both uniaxial compression and tension tests
have demonstrated that the mechanical response of poly-
urea is highly strain-rate dependent (e.g. Amirkhizi et al.,
2006; Roland et al., 2007; Sarva et al., 2007; Shim and
Mohr, 2009). Amini et al. (2010d) make use of the temper-
ature-, rate- and pressure-sensitive constitutive model by
Amirkhizi et al. (2006) to provide supporting simulation
results of their direct pressure pulse experiments. They
also recently reported the effect of asymmetric tension–
compression response and the hydrostatic pressure on
the blast resistance of polyurea/steel plates (Amini et al.,
2010a, 2010b).

Finite viscoelasticity models of elastomers may be for-
mulated using the so-called hereditary integral approach
(Coleman and Noll, 1961; Bernstein et al., 1963; Lianis,
1963; McGuirt and Lianis, 1970; Leonov, 1976; Johnson
et al., 1994; Haupt and Lion, 2002; Amirkhizi et al., 2006)
but their validity is often limited to a narrow range of
strain rates (Yang et al., 2000; Shim et al., 2004; Hoo Fatt
and Ouyang, 2007). As an alternative to the hereditary
integral approach, the framework of multiplicative
decomposition of the deformation gradient (Kröner,
1960; Lee, 1969) is frequently used in finite viscoelasticity
(e.g. Sidoroff, 1974; Lubliner, 1985; Le Tallec et al., 1993;
Reese and Govindjee, 1998; Huber and Tsakmakis, 2000).
In that framework, the non-linear viscoelasticity of
elastomers is commonly described through a rheological
spring-dashpot models of the Zener type (e.g. Roland,
1989; Johnson et al., 1995; Bergström and Boyce, 1998;
Huber and Tsakmakis, 2000; Quintavalla and Johnson,
2004; Bergström and Hilbert, 2005; Qi and Boyce, 2005;
Areias and Matous, 2008; Hoo Fatt and Ouyang, 2008;
Tomita et al., 2008).

For the coating applications to blast and ballistic miti-
gations, the hydrostatic pressure and temperature as well
as strain rates play a critical role to determine the mechan-
ical properties of the polyurea under the loading. It is
known that two different types of viscoelastic behavial
modes are observed in polymeric materials including poly-
urea: global chain mode responsible for rubbery and flow
properties and local segmental mode responsible for
behavior below glass transition temperature (e.g. Roland
and Casalini, 2007). The temperature–pressure dependenc-
es are strongly influenced by those viscoelastic modes,
however, very limited experimental studies have been
reported on the effect of pressure and temperature
(Amirkhizi et al., 2006; Roland and Casalini, 2007; Roland
et al., 2010). Although the universal constitutive model
for polyurea should include all the effects, the proposed
model in the paper, as the first engineering approach, con-
siders only the effect of strain rates for the rubbery visco-
elastic behavior. In the present work, we present the
time integration scheme for a newly developed rate-
dependent constitutive model for polyurea (Shim and
Mohr, 2011). After implementing the model as a user
material subroutine into a commercial finite element soft-
ware, the model is used to predict the mechanical response
of thick polyurea layers under punch loading. Experiments
are performed on 10 mm thick polyurea layers for different
punch velocities and different hemispherical punch radii. It
is found that the model provides an accurate description of
the loading phase, which validates the assumptions made
with respect to strain-rate and pressure sensitivity. How-
ever, the predicted response deviates from the experimen-
tal result during unloading which is discussed in detail.
2. Punch experiments

2.1. Specimens

The polyurea specimens used in the study are extracted
from a 5 mm thick steel armor plate with a 12.7 mm thick
layer of polyurea DragonShield-HT Explosive Resistant
Coating (ERC). Rectangular samples of 46 � 40 mm are
cut from the coated armor plate using conventional
machining. The coated polyurea is not separated from the
steel as the steel substrate serves as specimen support
throughout the punching experiments. However, to guar-
antee a uniform layer thickness for all specimens, the
thickness of the polyurea layer is reduced to 10 mm
though conventional machining (milling at room



Fig. 1. Photos of the experiments with (a) the small punch and (b) the large punch. The second row shows the set up for (c) free boundaries in all lateral
directions and (d) for constrained boundary conditions in the width direction.
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temperature). All experiments are performed on polyurea
in its virgin state (no prior loading) after a shelf life of
about four years.
Fig. 2. Applied loading profiles: (a) Applied velocity history; the velocity
axis is normalized by the applied initial velocity of either v0 = 1 or
100 mm/s; the time axis is normalized by |2u0/v0| with u0 = 7 mm; (b)
Corresponding applied displacement history.
2.2. Experimental procedure

The specimens are clamped on the table of a hydraulic
testing machine (Model 8080, Instron). The specimens
are loaded through hemispherical indenters that are at-
tached to the moving actuator of the upper crosshead.
Two hemispherical indenters of different sizes are em-
ployed: D = 12.7 mm (Fig. 1a) and D = 44.45 mm (Fig. 1b).
In addition, we consider two different types of lateral
boundary conditions: (1) free in all lateral directions
(Fig. 1c), and (2) constrained in the width direction
(Fig. 1d). For the latter case, the polyurea specimen is
placed between two steel blocks which prevents bulging
in the width direction, but does not prevent possible
shrinking of the specimen in width direction. The friction
at the interface between the indenters and the polyurea
is reduced by grease and multiple 0.1 mm thick Teflon lay-
ers (which are partially torn apart during the test). The
experiments are performed under displacement control
at constant deceleration using the control software MAX
(Instron, Canton). Starting with an initial velocity v0, the
velocity-time profile decreases linearly until the experi-
ment is stopped at a velocity of �v0 (Fig. 2a). The initial po-
sition of the actuator is chosen such that the loading
direction is reversed (point v = 0) when the punch depth
reaches 7 mm (Fig. 2b). Experiments are performed for
v0 = 1 mm/s and v0 = 100 mm/s. Throughout all experi-
ments, the punch force is measured using a 50 kN load cell.
The punch displacement is measured using an LVDT that is
integrated in the actuator. The overall stiffness of the test-
ing frame is about 100 kN/mm (Shim and Mohr, 2009). All
displacements reported in the following have been
corrected by the deformation associated with the finite
machine stiffness.
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2.3. Experimental results

Fig. 3a summarizes the results for the experiments with
the small hemispherical indenter (D = 12.7 mm). The mea-
sured force–displacement curves are monotonically
increasing up to the point of load reversal. During unload-
ing, the force reaches zero at a displacement of about
3.2 mm. Beyond that point, the punch moves faster than
the surface of the creeping polyurea specimen. The force
level is about 40% higher in a punch test at v0 = 100 mm/
s than at v0 = 1 mm/s which is mostly due to the rate
dependent material behavior. Note that the loading condi-
tions are of quasi-static nature since the speed of elastic
waves in polyurea is much faster (of the order of
106 mm/s) than the loading velocities. It is interesting to
observe the convergence of the force–displacement curves
for both velocities upon unloading which is consistent with
the results from uniaxial compression experiments (Shim
and Mohr, 2011). The results with and without constraint
in the width direction are almost identical. For clarity,
Fig. 3a presents the results for free lateral boundary
conditions only.
Fig. 3. Measured load–displacement curves for experiments with (a) the
small punch, (b) the large punch.
In close analogy with the results from the small punch
experiments, the measured force–displacement curves for
the large hemispherical punch experiments (see Fig. 3b)
are loading velocity sensitive and display a higher force le-
vel for the higher loading velocity. Moreover, the large
punch experiments also show the characteristic conver-
gence of the force–displacement curves during unloading.
For the large punch, the force level is zero at a punch dis-
placement of 3.4 mm. The effect of the boundary condition
in width direction becomes apparent when using the large
hemispherical punch (D = 44.45 mm): the force level with
the constraint (solid lines) is higher than that with the free
lateral boundary conditions (dotted lines). Regardless of
the applied velocity profiles, the constraint in the width
direction increases the force level by about 3 kN at the
maximum punching depth. The effect of strain rate yields
an increase of the force level of up to 7 kN when changing
the loading velocity from v0 = 1 mm/s to v0 = 100 mm/s.

3. Constitutive model

In the following, we present the algorithmic version of a
recently-developed constitutive model for polyurea. The
reader is referred to Shim and Mohr (2011) for details on
the differential formulation and the underlying physical
arguments for specific constitutive equations. The algo-
rithm is implemented as a user material subroutine for
the finite element software Abaqus/explicit. In order to de-
scribe the viscoelastic behavior of elastomers, some
researchers adopted Zener-type models, which are com-
posed of a spring (rate-independent part for average
stress–strain behavior) in parallel with a Maxwell element
(rate-dependent part). However, due to the strong asym-
metric rate-sensitivity of polyurea, the concept of equilib-
rium path (represented by the average stress-strain
behavior) breaks down in the case of polyurea. Conse-
quently, conventional Zener-type models are not suitable
for the modeling of the viscoelastic response of polyurea.
Here, the proposed constitutive equations are based on a
rheological model of two Maxwell elements that act in par-
allel (Fig. 4). The first Maxwell element represents the soft
part (Network A) of polyurea and is composed of a non-lin-
ear viscous damper and a non-linear Gent spring. The hard
part (Network B) is represented by another non-linear
viscous damper and a Hencky spring. The equations are
cast in a framework of finite strains with multiplicative
Kröner–Lee decomposition (Kröner, 1960; Lee, 1969) of
Fig. 4. Rheological model of the rate dependent constitutive model for
polyurea.
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the deformation gradient for each Maxwell element. The
specific evolution laws for individual model components
are given in algorithmic form below. The Euler forward
numerical integration method is employed within the
subroutine, because of numerical challenges associated
with Euler backward integration schemes for Maxwell
models with non-linear rubber springs and non-linear
dashpots (e.g. Areias and Matous, 2008).

In the material model, the macroscopic deformation
gradient Ftot is decomposed into a volumetric part Fvol,

Fvol ¼ J1=31 with J ¼ det Ftot ð1Þ

and an isochoric part F,

F ¼ J�1=3Ftot: ð2Þ

The isochoric deformation gradients within both networks,
FA and FB equal the macroscopic isochoric deformation
gradient

F ¼ FA ¼ FB: ð3Þ

For a Maxwell element K, the isochoric deformation gradi-
ent can be multiplicatively decomposed into an elastic part
Fe

K and viscous part Fv
K

FK ¼ Fe
K Fv

K where K ¼ A;B: ð4Þ

The material model comprises the viscous deformation
gradients of Networks A and B, Fv

A and Fv
B , as internal state

variables. We consider the strain driven time integration
problem, where the variables at time s = t + Dt are calcu-
lated based on the solution at time t. In other words, given
the total deformation gradient Ftot(s) and the internal state
variables Fv

AðtÞ and Fv
BðtÞ, we evaluate the total Cauchy

stress T(s) along with the updated state variables Fv
AðsÞ

and Fv
BðsÞ. The hydrostatic part of the Cauchy stress tensor

is directly related to the change in total volume,

JðsÞ ¼ det FtotðsÞ; ð5Þ

trTðsÞ
3
¼ j

ln JðsÞ
JðsÞ ; ð6Þ

with j denoting the bulk modulus. The deviatoric part of
the macroscopic stress tensor corresponds to the sum of
the deviatoric stresses TA and TB acting on Networks A
and B, respectively,

TðsÞ ¼ devfTðsÞg þ trTðsÞ
3

1

¼ TAðsÞ þ TBðsÞ þ
trTðsÞ

3
1: ð7Þ
Table 1
Summary of material parameters identified from monotonic loading–
unloading experiments at five different strain rates.

Isochoric part of Network A Gent spring lA 7.00 MPa
JA 10.7

Dashpot A PA 4.42 MPa
nA 0.0646

Isochoric part of Network B Hencky spring lB 82.3 MPa
Dashpot B QB 0.0447

nB 0.0755

Volumetric part j 829 MPa
For the evaluation of the stresses and internal variables in
Networks A and B, it is useful to define the isochoric defor-
mation gradient

FðsÞ ¼ ½JðsÞ��1=3FtotðsÞ ð8Þ

as well as the strain-like deformation measure

fðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfFTðsÞFðsÞg � 3

q
: ð9Þ
3.1. Response of Network A

The viscous deformation gradient Fv
AðsÞ is approximated

by the Euler forward form

Fv
AðsÞ ¼ ½1þ DtLv

AðtÞ�F
v
AðtÞ; ð10Þ

where Lv
AðtÞ is the rate of viscous deformation at time t, and

it is assumed to be spin-free, i.e. Lv
AðtÞ :¼ Dv

AðtÞ. Subse-
quently, we calculate the isochoric deformation gradient
of the elastic deformation in Network A,

Fe
AðsÞ ¼ FAðsÞ½Fv

AðsÞ�
�1
: ð11Þ

Using Fe
AðsÞ, we determine the deviatoric Cauchy stress for

Network A based on Gent’s (1996) free energy function

TAðsÞ ¼
lA

JðsÞ 1� trfFeT
A ðsÞF

e
AðsÞg � 3

JA

 !�1

devfFe
AðsÞF

eT
A ðsÞg;

ð12Þ

with the material parameters lA > 0 (initial modulus) and
JA > 1 (locking stretch).

The viscous rate of deformation tensor Dv
AðsÞ is obtained

from the non-linear viscous evolution law. For this, we cal-
culate the driving Mandel stress

MAðsÞ ¼ JðsÞdevfFeT
A ðsÞTAðsÞFe�T

A ðsÞg; ð13Þ

along with the corresponding equivalent stress

�mAðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

MAðsÞ : MAðsÞ
r

: ð14Þ

The equivalent rate of viscous deformation �dAðsÞ is then gi-
ven by the power-law

�dAðsÞ ¼ d0
�mAðsÞ

PA exp fðsÞ � 1½ �

� �1=nA

ð15Þ

with the reference rate of deformation d0 = 1/s and the
material properties PA > 0 (viscosity constant) and the
exponent nA > 0. The flow rule assumes that the rate of vis-
cous deformation tensor Dv

A is aligned with the driving
Mandel stress MA,

Dv
AðsÞ ¼

3
2

�dAðsÞ
�mAðsÞ

MAðsÞ: ð16Þ
3.2. Response of Network B

In close analogy with the procedure for Network A, the
constitutive equations for Network B are solved numeri-
cally. We assume
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Fv
BðsÞ ¼ ½1þ Dt Dv

BðtÞ�F
v
BðtÞ ð17Þ

and

Fe
BðsÞ ¼ FBðsÞ½Fv

BðsÞ�
�1: ð18Þ

The stiff elastic response of Network B is described by Hen-
cky’s strain energy function. Thus, elastic right stretch ten-
sor Ue

BðsÞ and the rotation tensor Re
BðsÞ are calculated from

the polar decomposition of the elastic deformation
gradient,
Fig. 5. Comparison of simulation results and experiments for continuous load
_e ¼ 100=s, (e) _e ¼ 101=s (reproduced from Shim and Mohr (2011)).
Fe
BðsÞ ¼ Re

BðsÞU
e
BðsÞ with ReT

B ðsÞR
e
BðsÞ ¼ 1 ð19Þ

before calculating the deviatoric Cauchy stress

TBðsÞ ¼
2lB

JðsÞRe
BðsÞ½ln Ue

BðsÞ�R
eT
B ðsÞ ð20Þ

with the shear modulus lB > 0 (initial modulus). Subse-
quently, we write

MBðsÞ ¼ JðsÞdev FeT
B ðsÞTBðsÞFe�T

B ðsÞ
n o

ð21Þ
ing–unloading cycles. (a) _e ¼ 10�3=s, (b) _e ¼ 10�2=s, (c) _e ¼ 10�1=s, (d)
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and

�mBðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

MBðsÞ : MBðsÞ
r

: ð22Þ

The rate of viscous deformation �dBðsÞ is approximated by

�dBðsÞ¼ d0
�mBðsÞffiffiffi
3
p

lBQ B

1�exp �fðsÞ
Q B

�dBðtÞ
d0

 !�nB
" #( )�1* +1=nB

;

ð23Þ

where QB > 0 and nB > 0 are material model parameters
that control the rate sensitivity of Network B. As for Net-
work A, the rate of viscous deformation tensor Dv

B is
aligned with the driving Mandel stress MB,

Dv
BðsÞ ¼

3
2

dBðsÞ
mBðsÞ

MBðsÞ: ð24Þ
3.3. Model parameter identification

The constitutive model requires the identification of
eight material parameters: four parameters (lA, JA, PA, nA)
for Network A, three parameters (lB, QB, nB) for Network
B, and one parameter (j) describing the elastic volumetric
response. All model parameters have been identified based
on the results from uniaxial compression experiments at
five different strain rates between 10�3/s and 101/s up to
a true strain of �1.0. Digital image correlation has been
used to measure both the axial and transverse strains. De-
tails on the parameter identification procedure are given in
Fig. 6. The contour plots of the logarithmic strain in thickness-direction from si
hemispherical indenter, and (b) large hemispherical indenter. The detail in Fig.
Fig. 8.
Shim and Mohr (2011). Table 1 summarizes the identified
material parameters which are used in the present struc-
tural validation study. The comparison of the measured
and predicted stress–strain curves for uniaxial compres-
sion is shown in Fig. 5. It is noted that the present choice
of material model parameters provides a good description
of the monotonic loading response of polyurea, while the
model predictions are systematically too stiff during
unloading.

4. Numerical simulations of the punch experiments

Finite element simulations are performed of all punch
experiments. We make use of the symmetry of the
mechanical system by using a quarter model. The polyurea
block is meshed with eight-node reduced integration solid
elements (type C3D8R of the Abaqus element library)
while using the user material option is used to describe
the constitutive behavior. The punches are modeled using
rigid elements. The meshes comprise eight elements in
thickness direction and a small geometric bias in the hori-
zontal plane with a smaller element size near the center
than at the specimen boundaries. Frictionless interface
conditions are assumed between the punch and the
polyurea. The motion of all nodes at the bottom of the
polyurea (which corresponds to the interface with the steel
substrate in the experiment) is set to zero. We applied the
same punch velocity histories as in the experiments and
omitted the addition of bulk viscosity.

The deformed meshes at the point of maximum pene-
tration (u = 7 mm) are shown in Fig. 6 for the simulation
mulations with v0 = 100 mm/s at an indentation depth of 7 mm: (a) small
6a shows the locations for which the strain rates �dA and �dB are plotted in
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without lateral constraint along the width direction. The
comparison of Figs. 6a and b clearly shows that the bulging
effect; observe that the lateral expansion of the polyurea
block is more pronounced for the large than for the small
punch. In the latter case, we observe a small lateral dis-
placement of 0.5 mm. The bulging has little effect on the
load–displacement curves for the small punch and we
found nearly the same force–displacement curve for free
and constrained lateral boundary conditions.

The predicted force–displacement curves for the small
punch are shown in Fig. 7a. The simulations results are in
good agreement with the measured force–displacement
curves during the loading phase. A similar conclusion
may be drawn from comparing the simulations and exper-
iments for the large punch (Figs. 7b and c). The comparison
shows that the numerical model can predict (a) the effect
of the punch size, (b) the effect of the lateral boundary
constraint, and (c) the effect of loading velocity on the
force–displacement curve during loading. Fig. 8 shows
the histories of the strain-like variable, f, and the viscous
rates, �dA and �dB, for the simulation of a small punch with
v0 = 100 mm/s (the corresponding locations are high-
lighted in Fig. 6a). The profiles elucidate the strong varia-
tions in local viscous strain rate during the punch
experiments. It is interesting to see that the local viscous
strain rate can be as high as 30/s which is close to the
strain rate of the fastest calibration experiment (Fig. 5e).
Fig. 7. Comparison of simulations and experiments. Force–displacement curves
free lateral boundaries, (c) large punch with constraint in the width direction.
However, unlike for the calibration experiments, the strain
rates are non-constant throughout a punch tests which is
seen as an important validation of the model assumptions
with respect to the effect of strain rate. At a punching
depth of 7 mm, the simulation results overestimate the
force level by about 0.5 kN in the case of the small punch
(Fig. 7a) and 2.5 kN in the case of the large punch
(Figs. 7b and c). This overestimation (which corresponds
to less than 10% of the current force level) is consistent
with the model calibration results. Recall from Fig. 5 that
the model systematically overestimates the stress level at
very large compressive strains.

The model predictions during unloading deviate from
the experimentally-measured force–displacement re-
sponses. The simulations predict the characteristic conver-
gence of the load–displacement curves, but the predicted
response during unloading is too stiff for both velocities
and both punch sizes. Consequently, the instantaneous
residual displacement at zero force is overestimated in
the simulations. This deviation is again consistent with
the calibration experiments, indicating an inherent short-
coming of the model formulation for unloading.

5. Discussion

The loading response of the model agrees well with the
test results except for an overestimation of the force at
for (a) small punch with free lateral boundaries, (b) large punch with the
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large punch displacements. However, during unloading,
the model overestimates the stiffness. The simulation re-
sults indicate that the material is subject to strains of up
to �2.0 as the punching depth reaches 7 mm (see Fig. 6).
Since this is twice as high as in the experiments for the
material model parameter identification, we performed
additional material tests at a strain rate of 10�2/s. Fig. 9a
shows the resulting stress–strain curve from three differ-
ent experiments. Each virgin-state specimen is subject to
a single loading–unloading cycle up to a maximum strain
of �0.5, �1.0 and �1.5, respectively. The corresponding
simulations (Fig. 9b) reveal that the numerically-predicted
locking behavior is more severe than that observed in the
experiments.

The unloading path in the stress–strain curves
comprises two characteristic regimes: a stiff part at the
beginning of unloading followed by a soft part as the stress
approaches zero. Both the experiments and the numerical
simulations exhibit this feature. The numerical model does
not show the smooth transition between these two re-
gimes, but this is seen as an acceptable engineering
approximation of the physical behavior. However, the
apparent main deficiency of the current model is its inabil-
ity to capture the increase of the hysteresis loop width as
Fig. 8. Results from the small punch simulation with v0 = 100 mm/s and free late
in Fig. 6a): histories of (a) the strain-like deformation measure f, (b) the viscous s
that the loading direction is reversed at t = 0.14 s.
the strain increases. As the applied maximum strain in-
creases, the simulations predict almost constant stress
drops (marked by a0, b0, and c0 in Fig. 9b) while the exper-
iments show a substantial increase in the magnitude of the
stress drops as a function of strain (marked by a, b, and c in
Fig. 9a).

Recall that Network A in the current constitutive model
is mainly responsible for the rubbery behavior while Net-
work B describes the high initial stiffness and the time-
dependent hysteresis. The contributions of Networks A
and B are in opposite direction as far as the hysteresis
width is concerned. To shed more light on this particular
feature, Fig. 10 shows a direct comparison of the model re-
sponse and the experiments. In addition, we plotted the
individual contributions of Networks A and B to the
stress–strain curve (dashed curves in Fig. 10). Note that
the magnitude of the stress contribution of Network B de-
pends on the compressive strain only, while its sign
changes from compression to tension upon unloading.
The contribution of Network A on the other hand is a com-
pressive stress irrespective of the loading direction. Thus,
as the compressive strain increases, Network B makes the
hysteresis wider while the opposite holds true for Network
A. In order to replicate the experimental observation of a
ral boundary conditions at three different locations (labeled by A, B and C
train rate of network A, �dA , (c) the viscous strain rate of network B, �dB . Note



Fig. 9. Stress–strain curves for a single loading–unloading cycle at
_e ¼ 10�2=s as obtained from (a) experiments and (b) simulations.

Fig. 10. Comparison of simulation results and experiments for loading–
unloading cycles at _e ¼ 10�2=s. (a) ef = �0.5, (b) ef = �1.0, (c) ef = �1.5.
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hysteresis width increase as a function of the maximum
compressive strain (Fig. 9a), the contribution of Network
B should be dominant. Moreover, the contribution of Net-
work B would need to increase as the compressive strain
increases. However, due to the specific choice of the vis-
cous evolution law for Network B, the stress contribution
of Network B is more or less constant once the compressive
strain has exceeded �0.1 (see the stress plateau in the re-
sponse curves for Network B in Fig. 10). An attempt was
made to change the calibration of the response of Network
B using the present modeling framework, but the
subsequent simulation results were no longer satisfactory
for the phase of loading.

A constitutive model with a different rheological com-
position needs to be used to improve the predictions for
unloading. A previous study (Shim and Mohr, 2011) has
shown that models of the Zener-type (spring in parallel
with a single Maxwell element) cannot describe the large
deformation behavior of polyurea over a wide range
of strain rates. The present results indicate that the
assumption of two Maxwell elements in parallel provides
an accurate description for monotonic loading only. It
can describe the two characteristic stiff and soft regimes
during unloading over a wide range of strain rates, but
the model predictions are only in poor quantitative agree-
ment during unloading.
Throughout our model development, we focused on a
single loading–unloading cycle on virgin-state specimens.
However, even though the loading of the material in its vir-
gin state appears to be the most important with respect to
the real-life applications of polyurea, the material response
to cyclic loading may be instructive as far as the choice of
the rheological model is concerned. Fig. 11 shows the
stress–strain curve for polyurea for five consecutive load-
ing–unloading cycles. After each loading–unloading cycle
at a constant true strain rate of 10�2/s, we let the specimen



Fig. 11. Illustration of the Mullins effect. Five compression loading and
unlading cycles are performed at the constant strain rate of 10�2/s up to
the maximum strain of �1.0. The stress is zero between subsequent
cycles for about 5 min.
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creep at zero stress for about 300 s before applying the
subsequent loading–unloading cycle. The significant differ-
ence between the first and subsequent loading cycles illus-
trates the Mullins effect for polyurea. The stress–strain
curve for the first loading is characterized by the high ini-
tial stiffness and the high peak stress marked as A. After
the first loading–unloading cycle, however, the shape of
the loading path changes noticeably while nearly the same
unloading path is observed. Additional loading–unloading
cycles create very little changes in both loading and
unloading. This observation suggests that the constitutive
model should comprise an internal variable that reflects
the amount of ‘‘microstructural damage’’ associated with
the Mullins effect. The Mullins effect has been investigated
by many research groups using either damage-based con-
stitutive models (e.g. Simo, 1987; Govindjee and Simo,
1991, 1992; Lion, 1996, 1997; Miehe and Keck, 2000) or
the concept of hard/soft domain reorganization (e.g. John-
son and Beatty, 1993a, 1993b; Beatty and Krishnaswamy,
2000; Qi and Boyce, 2004, 2005). Here, the explicit account
of the Mullins effect is deferred to future work since fur-
ther experimental data is needed to analyze the effect of
loading velocity over a wide range of strain rates.

6. Conclusion

Punch experiments have been performed on 10 mm
thick polyurea samples at punch velocities of up to
100 mm/s which resulted in maximum local viscous strain
rates of up to 30/s inside the polyurea layers. A newly-
developed rate-dependent constitutive model for polyurea
has been implemented into a finite element program and
used to predict the experimentally-measured force–dis-
placement curves for different punch sizes and velocities.
Furthermore, the effect of lateral constraints has been
investigated. The model provides accurate predictions of
the loading response for all six test configurations which
is interpreted as a partial validation of the assumptions
made with respect to strain-rate and pressure sensitivity.
During unloading, the model exhibits the characteristic
stiff and soft responses of polyurea; however, it systemat-
ically overestimates the depth of the quasi-instantaneous
residual punch imprint after unloading.
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