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Abstract

Ultra-High Performance Concrete [UHPC] has remarkable performance in mechanical proper-
ties, ductility, economical benefit, etc., but early-age cracking of UHPC can become an issue
during the manufacturing process due to the high cement content and the highly exothermic
hydration reaction. Because of the risk of early-age UHPC cracking, there is a need to develop
a material model that captures the behavior of UHPC at early-ages.

The objective of this research is to develop a new material model for early-age UHPC
through a thermodynamics approach. The new model is a two-phase thermo-chemo-mechanical
model, which is based on two pillars: the first is a hardened two-phase UHPC material model,
and the second is a hydration kinetics model for ordinary concrete. The coupling of these two
models is achieved by considering the evolution of the strength and stiffness properties in the
two-phase UHPC material model in function of the hydration degree.

The efficiency of the model and finite element implementation is validated with experimental
data obtained during the casting of a DuctalTM optimized bridge girder. Based on some
decoupling hypothesis, the application of the early-age UHPC model can be carried out in a two-
step manner: the thermo-chemical problem is solved first, before solving the two-phase thermo-
chemo-mechanical problem. It is shown that the newly developed model is able to accurately
predict temperature history and deformation behavior of the bridge girder. Furthermore, with
this versatile engineering model, it is possible to predict the risk of cracking, and eventually to
reduce it.

Thesis Supervisor: Franz-Josef Ulm
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

INTRODUCTION

1.1 Project Description

Ultra-High Performance Concrete [UHPC] is a new generation of fiber reinforced cementi-

tious materials with enhanced mechanical and aesthetic properties. An example of UHPC is

DuctalTM , made by Lafarge, shown in Figure 1-1. It is composed of 710 kg/m3 of cement and

160 kg/m3 of steel fibers. Moreover, it has a very low water cement ratio of roughly 20 %,

and superplasticizer is employed in this material to ensure workability. A typical mix design

for DuctalTM -Steel Fiber is given in Table 1.1. Its remarkable properties can be summarized

as follows:

• It has 3− 7 times the compressive, flexural, and tensile strength of normal concrete;

• It behaves as an elasto-plastic ductile material in tension;

• It allows smaller section sizes which do not require secondary steel reinforcement;

• It has high workability which enables structural elements to be cast in any shape.

Thus, UHPC eventually enables the reduction of global construction costs by using less

materials, allowing faster construction, reducing labour, reducing maintenance, increasing usage

life, etc. However, due to the high cement content and highly exothermal hydration reaction,

early-age cracking can become an issue during the manufacturing process.

12



(a) (b)

Figure 1-1: (a) Comparison of the flexural strength of UHPC (DuctalTM) and Conventional
Concrete (HPC), (b) Enhanced rheology of DuctalTM [12].

Material
Mass/Volume

[kg/m3]
Mass Ratio

Cement 710 1.000
Silica Fume 230 0.324

Ground Quartz 210 0.296
Sand 1020 1.437

Metallic Fibers 160 0.225
Superplasticizer 13 0.018

Water 140 0.197

Table 1.1: A typical mix design for DuctalTM -Steel Fiber [12].
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As a part of a UHPC bridge development program, Prestress Service Inc. [PSi] cast four

DuctalTM optimized bridge girders at Lexington, Kentucky. These tests were carried out under

contract of the Federal Highway Administration [FHWA] over the period of October 11, 2003

to January 31, 2004 (Figure 1-2). The optimized girder section was developed at MIT using a

model-based simulation approach [18], with the collaboration of FHWA, PSi and Lafarge North

America. During casting of the girders, early-age cracks were observed, and one of them is

shown in Figure 1-3. Thus, it becomes clear that an accurate modeling of the behavior of

UHPC at early ages is necessary to avoid early-age cracking, which affects the durability of

UHPC structures.

1.2 Research Objective and Approach

The ultimate industrial goal of this research is the prevention of early-age cracking in UHPC

structures. The first step toward this goal is to predict when and where early-age cracking

occurs in a structure so that one can reduce the risk of cracking. To reach this goal, there is

a necessity to develop a material model which captures the behavior of UHPC at early ages.

This development, which is focus of this research, is based on two previous developments: a

hardened UHPC material model and a hydration kinetics model.

More precisely, a two-phase constitutive model for hardened UHPC materials has been

recently developed at MIT [7]. This nonlinear constitutive model for UHPC was implemented in

a commercial finite element program, CESAR-LCPC, and validated for 2-D and 3-D structures

[7] [21]. The model has been also used for the design of a prototype UHPC highway bridge

girder for the U.S. market place [18].

Hydration of concrete is a highly exothermic and thermally activated reaction, so that a

thermochemical model is necessary for the modeling of hydration reaction. A simple hydration

kinetics model for ordinary early-age concrete is the one developed by Ulm and Coussy [25]

[26]. In this model, it is assumed that the diffusion of water through the layers of hydrates

is the dominant mechanism of the hydration kinetics. The hydration process of concrete is

viewed, from a macroscopic perspective, as a single chemical reaction in which the free water

is a reactant phase that combines with the unhydrated phase to form solid material.

14



Figure 1-2: Construction of the DuctalTM bridge girders at Lexington, Kentucky [9].
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Figure 1-3: Early-age cracking observed during casting of on UHPC bridge girder [9].

Given these backgrounds, the objective of the presented research is to develop a new material

model for early-age UHPC, which combines these two approaches: the MIT-UHPC model and

the Ulm-Coussy hydration model. In order to achieve the research objectives, the following

tasks need to be performed:

1. To understand the hardened UHPC material model;

2. To combine the hydration kinetics model with the hardened UHPC material model;

3. To implement the new material model into a finite element program;

4. To validate the proposed material model through an application to a UHPC structure.

1.3 Outline of Report

This report is divided into seven chapters, starting with the hardened UHPC material model

and the hydration kinetics model, moving on to the development of the novel early-age UHPC

material model and its finite element implementation, and finishing with the validation of the

proposed model.
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Chapter 2 begins with a brief review of the two-phase hardened UHPC material model.

The two-phase model reflects the material composition with one phase representing the matrix

and the other representing the reinforcing fibers. This separation of the overall composite

behavior into individual matrix and fiber phases is very effective because the plastic strain in

the composite matrix is used to represent the cracking in the UHPC material.

Chapter 3 reviews the hydration kinetics model for ordinary concrete. One important

assumption of this kinetics model is the decoupling hypothesis, which neglects the effect of

mechanical change on the thermal and chemical process.

In Chapter 4, the newly developed early-age UHPC material model is presented in detail.

The coupling of the two mentioned models requires to consider the evolution of the strength

and stiffness properties in the two-phase UHPC material model.

Chapter 5 presents details of the implementation of the early-age UHPC models in a fi-

nite element environment. The implementation is verified for consistency and stability with

respect to analytical models and mesh size to demonstrate the viability of the finite element

implementation.

Chapter 6 is devoted to structural simulations using the finite element program. The effec-

tiveness of the model and finite element program is validated with experimental data. Thanks

to the decoupling hypothesis, the application of the early-age UHPC model is carried out in

a two-step manner: thermo-chemical problem and then two-phase thermo-chemo-mechanical

problem. In this Chapter, the simulation results from both problems are compared with

experimental data from the Kentucky casting.

Finally, Chapter 7 summarizes the results of this project, and discusses current limitations

and suggestions for future research.
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Part I

BACKGROUND WORKS
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Chapter 2

HARDENED UHPC MATERIAL

MODEL

One of the great benefits of UHPC is that it shows considerable tensile strength that can be

taken into account in the design of UHPC structures. Thus, the tensile behavior of UHPC

needs to be captured correctly in a UHPC constitutive model. This Chapter reviews the UHPC

material model that has been developed at MIT [7]. The model is a two-phase model; one phase

representing the matrix and the other phase representing the reinforcing fibers. In addition,

the matrix-fiber interaction is taken into account as an internal coupling effect between the

irreversible deformation of the composite constituents.

2.1 Hardened UHPC Material Behavior

A typical tensile response of hardened UHPC is shown in Figure 2-1 (a). It can be simplified into

four domains shown in Figure 2-1 (b); first a linear elastic behavior, second a brittle strength

drop, third a post-cracking behavior, and fourth a composite yielding. Figure 2-2 shows the

simplified macroscopic stress-strain behavior of UHPC (macroscopic stress, Σ, and macroscopic

strain, E) and the evolution of the matrix and the fiber stresses ( σF and σM ) for the modeling

of UHPC. This simplified stress-strain behavior can be described by the following three stages:

1. Initial Elasticity: When the composite is first loaded, UHPC behaves elastically with a

stiffness of K0 until the composite stress reaches an initial tensile strength Σ−t,1. At this
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Figure 2-1: (a) Experimental notched tensile test data of a UHPC material with steel fibers [5],
(b) Stress-displacement response extracted from the test data.

point, significant cracking in the matrix develops causing a stress drop to a post-cracking

tensile strength Σ+t,1.

2. Post-cracking Behavior: After the matrix cracks, there is a second linear behavior with a

stiffness of K1 until the fibers start to yield.

3. Yielding and Failure: Finally, the composite yields and ultimately fails at an ultimate

tensile yield strength Σt,2. Tension softening behavior is neglected in the material model.

The complex tensile behavior is condensed into five macroscopic material properties (K0,

K1, Σ−t,1, Σ
+
t,1, and Σt,2), which can be extracted from tensile test data.

2.2 Hardened 1-D UHPC Model

In order to represent the simplified UHPC material behavior, Chuang and Ulm [8] proposed the

1-D Think Model displayed in Figure 2-3. In this model, matrix and fiber phases are modeled

as separate phases with the same macroscopic strain, E, but with different stress states, σM

and σF . In turn, the macroscopic stress, Σ, is always the sum of the composite matrix stress,

σM , and the composite fiber stress, σF .
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Figure 2-2: Simplified stress-strain curve for the two-phase model.

The macroscopic material model is composed of three parts: a brittle-plastic matrix phase,

an elasto-plastic fiber phase and an elastic coupling spring. The matrix phase consists of an

elastic spring of stiffness CM , a tensile plate element of strength ft, and a frictional element

of strength kM . From a micro-mechanical point of view, the elastic spring represents the

elastic contribution of the matrix, the plate device represents the brittle behavior of the matrix

and the frictional device represents the fracture resistance of the matrix. The fiber phase

behavior is represented by an elastic spring of stiffness CF , and a frictional element of strength

fy. The elastic spring represents the elastic contribution of the fibers and the friction element

can be associated with the plastic pullout behavior of the fibers during composite yielding. In

addition, the two parallel phases are coupled by an elastic spring of stiffnessM , which links the

irreversible matrix behavior (plastic strain εpM) with the irreversible reinforcing fiber behavior

(plastic strain εpF ). At the micro-scale, this elastic coupling can be associated with a possible

shear stress transfer from the matrix to the fiber over their interface, and intact matrix ligaments

which transfer stresses even after cracking. The 6 model parameters (CM , CF , M , ft, kM and

fy) govern the tensile behavior of the composite material.

While a single tensile stress-strain relation provides five macroscopic material properties
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Figure 2-3: 1D Think Model of a two-phase matrix-fiber composite material for hardened
UHPC.

(K0, K1, Σ−t,1, Σ
+
t,1 and Σt,2), the composite model involves six model parameters (CM , CF ,M ,

ft, kM and fy). They are related by the following equations:

K0 = CM + CF

K1 = CF +
CMM
CM+M

(2.1)

Σ−t,1 =
³
1 + CF

CM

´
(ft + kM) with E−1 =

ft+kM
CM

Σ+t,1 = Σ
−
t,1 − CM

CM+M
ft with E+1 =

ft+kM
CM

Σt,2 = fy + kM with E2 =
kMM+fy(CM+M)
CF (CM+M)+CMM

(2.2)

Thus, in order to close the identification problem of model parameters, another relation is

required. A typical UHPC material has a characteristic low fiber volume fraction, cF =
VF
V ≤

6%. For cF ≤ 6% and typical elastic moduli of the matrix and the fiber phases, the composite

stiffness ratio, κ = CF
CM
, shows the following range of values:

0.02 ≤ κ ≤ 0.13 (2.3)
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Thus, the six model parameters can be practically obtained by an asymptotic analysis, setting

the composite stiffness ratio κ→ 0. Then, (2.1) and (2.2) reduce to:

K0 ' CM

K1 ' CMM
CM+M

(2.4)

Σ−t,1 ' ft + kM with E−1 =
ft+kM
CM

Σ+t,1 ' kM with E+1 =
ft+kM
CM

Σt,2 = fy + kM with E2 ' kMM+fy(CM+M)
CMM

(2.5)

2.3 Hardened 3-D UHPC Model

The 1-D Think Model has the ability to continuously model the stress-strain behavior of UHPC

materials while capturing the micro-mechanical behavior of the composite material. Since

the UHPC material model is a macroscopic model, the extension to 3-D is straightforward,

essentially requiring to substitute for 1-D macroscopic parameters and functions with their 3-D

counterparts. The 3-D macroscopic model is constructed around three main components:

• The 3-D constitutive relations: The 3-D stress-strain relation is derived from the energy

consideration for a stress-strain expression which is thermodynamically consistent with

the 1-D result.

• Plasticity of the 3-D model: The 3-D failure criteria and the corresponding plastic flow

rules are considered. The 3-D loading functions require 3-D strength limits, i.e. tension,

compression, shear, etc. An associated plastic flow rule is adopted.

• Consistency with the 1-D model: The uniaxial behavior of the 3-D model is calibrated

with the 1-D model so that the 3-D model gives tension output which is consistent with

that of the 1-D model.

These different components, developed in detail in [7], are briefly recalled below.
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2.3.1 The 3-D Constitutive Relations

The starting point of the 3-D model is the Clausius-Duhem inequality, which for isothermal

conditions reads [24]:

ϕdt = Σ : dE− dΨ ≥ 0 (2.6)

where ϕdt stands for the dissipation; Σ and E are the 2nd order macroscopic stress tensor and

macroscopic strain tensor, respectively; and Ψ is the free energy. For UHPC materials, using

the elastic contribution of the different springs in Figure 2-3, the free energy reads:

Ψ = Ψ
¡
E, εpM , εpF

¢
(2.7)

=
1

2

¡
E− εpM

¢
: CM :

¡
E− εpM

¢
+
1

2

¡
E− εpF

¢
: CF :

¡
E− εpF

¢
+
1

2

¡
εpM − ε

p
F

¢
: M :

¡
εpM − ε

p
F

¢
where CM , CF , andM are the 4th order stiffness tensors of the composite matrix, the composite

fiber, and the matrix-fiber coupling, respectively. Use of (2.7) in (2.6) yields the incremental

form of the general 3-D stress-strain relations, which is an incremental form read:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dΣ

dσM

dσF

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎣
CM CF

CM +M −M

−M CF +M

⎤⎥⎥⎥⎦ :
⎧⎨⎩ dE− dεpM

dE− dεpF

⎫⎬⎭ (2.8)

We verify that the macroscopic stress, Σ, is always the sum of the matrix stress, σM , and fiber

stress, σF :

dΣ = dσM + dσF (2.9)

= (CM +M) :
¡
dE− dεpM

¢
−M :

¡
dE− dεpF

¢
+(CF +M) :

¡
dE− dεpF

¢
−M :

¡
dE− dεpM

¢
The general 3-D constitutive model with matrix-fiber interaction involves 3 × 21 stiffness

parameters associated with the stiffness tensors, CM , CF , and M. In a first approach to

24



UHPC materials with random fiber orientation, the behavior can be assumed to be isotropic.

Similarly, using the assumption of randomly oriented cracks after matrix cracking, the post-

cracking stiffness behavior of the modeled material can also be approximated as isotropic. In

this case, the stiffness tensors can be described with two unique scalar values:

CM = 3KMK+2GMJ

CF = 3KFK+2GFJ

M = 3KIK+2GIJ

(2.10)

where K =Kijkl =
1
3δijδkl is the volumetric part of the 4

th order unit tensor I, and J = I − K

is the deviatoric part 1. KM , KF and KI are the bulk moduli of the composite matrix, the

composite fiber and the matrix-fiber coupling; GM , GF and GI are the shear moduli of the

composite matrix, the composite fiber and the matrix-fiber coupling. The bulk moduli and the

shear moduli are related to elastic moduli of the composite matrix, CM , the composite fiber,

CF , and matrix-fiber coupling, M , by:

KM = CM
3(1−2νM ) ; GM = CM

2(1+νM )
;

KF =
CF

3(1−2νF ) ; GF =
CF

2(1+νF )
;

KI =
M3D

3(1−2νI) ; GI =
M3D

2(1+νI)

(2.11)

where νM , νF and νI are the Poisson’s ratios of the composite matrix, the composite fiber and

the matrix-fiber coupling, respectively; andM3D is the 3-D counterpart of M in the 1-D model

(Figure 2-3). However, unlike the composite matrix stiffness and the composite fiber stiffness,

the 3-D coupling stiffness tensor M is not directly related to its 1-D counterpart M . The 3-D

coupling stiffness tensor must be formulated in such a way that the 3-D model gives the same

macroscopic uniaxial response as the 1-D model, as detailed later on.

1The symmetric 4th order tensors can be written in the following matrix forms:

I =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ; K =

⎡⎢⎢⎢⎢⎢⎢⎣

1
3

1
3

1
3

0 0 0
1
3

1
3

1
3

0 0 0
1
3

1
3

1
3 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ; J =

⎡⎢⎢⎢⎢⎢⎢⎣

2
3

− 1
3

− 1
3

0 0 0
− 1
3

2
3

− 1
3

0 0 0
− 1
3 − 1

3
2
3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
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Equation (2.8) can be restated in an isotropic format:

dΣ =dΣv1+dΣd

dσM = dσvM1+ dsM

dσF = dσvF1+dsF

(2.12)

where 1 is the 2nd order unit tensor; dΣv = 1
3tr (dΣ), dσ

v
M = 1

3 tr (dσM) and dσvF =
1
3tr (dσF )

are volumetric stress increments; and dΣd, dsM and dsF are deviatoric stress increments. The

volumetric stress-strains are represented by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dΣv

dσvM

dσvF

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 3

⎡⎢⎢⎢⎣
KM KF

KM +KI −KI

−KI KF +KI

⎤⎥⎥⎥⎦
⎧⎨⎩ dEv − d�pM

dEv − d�pF

⎫⎬⎭ (2.13)

where dEv = 1
3 tr (dE), d�

p
M = 1

3tr
¡
dεpM

¢
and d�pF =

1
3tr
¡
dεpF

¢
are volumetric strain increments.

Similarly, the deviatoric stress-strain relations are given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dΣd

dsM

dsF

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 2

⎡⎢⎢⎢⎣
GM GF

GM +GI −GI

−GI GF +GI

⎤⎥⎥⎥⎦ :
⎧⎨⎩ dEd − depM

dEd − depF

⎫⎬⎭ (2.14)

where dEd = dE − dEv1, depM = dεpM − d�pM1 and depF = dεpF − d�pF1 are deviatoric strain

increments.

In a randomly oriented fiber system, there are six composite elastic properties to be deter-

mined. Four of them (GM , GF , νM and νF ) are associated with the elasticity of the matrix

and the fiber, and they are parameters that relate to the elastic composite matrix behavior.

However, two of them (M3D and νI) are associated with the elasticity of the matrix-fiber cou-

pling, and they are the constants related to the irreversible composite matrix behavior, i.e.

post-cracking behavior. Thus, it is first necessary to consider the strength domain and post-

cracking plasticity behavior of the model in order to obtain meaningful expressions forM3Dand

νI .
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Figure 2-4: UHPC strength domain in the Σxx ×Σyy plane (Σzz = 0) [7].

2.3.2 Plasticity of the 3-D Model

The 3-D Strength Domain

The UHPC strength domain is characterized by two different strength limits, an initial limit

and a yield limit. This triaxial strength domain can be captured by 6 macroscopic strength

values, as shown in Figure 2-4, represented by the following: (1) initial tensile strength, Σ−t,1;

(2) initial compressive strength, Σ−c,1; (3) initial biaxial compressive strength, Σ
−
b,1; (4) tensile

yield strength, Σt,2; (5) compressive yield strength, Σc,2; (6) biaxial compressive yield strength,

Σb,2.

From a modeling point of view, the strength domain DE of UHPC, which is described by

the 3-D loading function F , is governed by the individual behaviors of the composite matrix

and the composite fiber:

Σ ∈ DE ⇔ F = max [FM , FF ] ≤ 0 ⇔
*
σM ∈ DM ⇔ FM (σM) ≤ 0

σF ∈ DF ⇔ FF (σF ) ≤ 0

+
(2.15)

where DM and DF are the strength domains of the matrix and the fiber; FM and FF are the
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(a) (b)

Figure 2-5: (a) Composite matrix strength domain in the σM,xx×σM,yy plane (σM,zz = 0), (b)
Loading function of the composite matrix before and after cracking [7].

3-D loading function of the matrix and the fiber, respectively.

The composite matrix strength domain The elasto-brittle-plastic behavior of the matrix

phase is captured by the matrix strength domain with a higher initial limit and a lower yield

limit. This strength domain is depicted by 6 characteristic values shown in Figure 2-5 (a):

1. The initial tensile strength, σMt. This is the same as the matrix cracking strength of the

1-D UHPC model, σMt = ft + kM .

2. The initial compressive strength, σMc.

3. The initial biaxial compressive strength, σMb.

4. The tensile post-cracking yield strength, σcrMt. This is equivalent to the matrix post-

cracking strength of the 1-D UHPC model, σcrMt = kM .

5. The compressive yield strength, σcrMc.

6. The biaxial compressive yield strength, σcrMb.

Before matrix cracking, the initial strength parameters govern the loading function of the

composite matrix. To describe these initial strength limits, a tension cut-off [TC] criterion is
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considered to capture the tension-tension stress states
³
fTC,0M

´
; a Drucker-Prager [DP] criterion

is considered for the compression-tension stress states
³
fUN,0
M

´
; and another DP criterion is

considered for the compression-compression stress states
³
fBI,0M

´
. The initial loading functions

read:
fTC,0M = I1,M − σMt ≤ 0

fUN,0
M = αUNM I1,M + |sM |− cUN,0

M ≤ 0

fBI,0M = αBIM I1,M + |sM |− cBI,0M ≤ 0

(2.16)

where

I1,M = trσM (2.17)

αUNM =

√
2/3(σMc−σMc)

σMc+σMc
; cUN,0

M =
³q

2
3 − σUNM

´
σMc;

αBIM =

√
2/3(σMb−σMc)

2σMb−σMc
; cBI,0M =

³q
2
3 − σBIM

´
σMc

(2.18)

After cracking, the post-cracking strength parameters govern the loading function of the

composite matrix. In order to reduce modeling parameters, it is assumed that the post-cracking

composite strengths are reduced by the same factor:

γcr =
σcrMt

σMt
=

σcrMc

σMc
=

σcrMb

σMb
(2.19)

where the superscript "cr" denotes a cracked state. Now, the post-cracking loading functions

read:
fTC,crM = I1,M − σcrMt ≤ 0

fUN,cr
M = αUNM I1,M + |sM |− cUN,cr

M ≤ 0

fBI,crM = αBIM I1,M + |sM |− cBI,crM ≤ 0

(2.20)

where

cUN,cr
M = γcrcUN,0

M ; cBI,crM = γcrcBI,0M
(2.21)

These loading functions are illustrated in Figure 2-5 (b) in the I1 − |s| plane. In summary, we

can describe the strength domain of the composite matrix as follows:

σM ∈ DM ⇔ FM (σM) =

*
F 0M = max

h
fTC,0M , fUN,0

M , fBI,0M

i
before cracking

F cr
M = max

h
fTC,crM , fUN,cr

M , fBI,crM

i
after cracking

+
≤ 0

(2.22)
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(a) (b)

Figure 2-6: (a) Composite fiber strength domain in the σF,xx × σF,yy plane (σF,zz = 0), (b)
Loading function of the composite fiber before and after cracking [7].

The composite fiber strength domain Second, an elasto-plastic behavior of the composite

fiber phase is captured by three characteristic values shown in Figure 2-6 (a):

1. The tensile strength, σFt. This is the same as the fiber strength of the 1-D UHPC model,

σFt = fy.

2. The compressive strength, σFc.

3. The biaxial compressive strength, σFb.

Like the elastic spring of the composite fiber in the 1-D UHPC model, the characteristic

compressive strengths of the composite fiber are not the compressive strengths of the reinforcing

fiber but the compressive contributions added to the overall UHPC composite strength as a

result of reinforcing fibers. As a simplifying assumption, one single criterion is not specifically

designated to limit the composite fiber’s biaxial compressive strength, σFb. Thus, to describe

the strength limits, a TC criterion is chosen for the tension-tension stress states
¡
fTCF

¢
and a

DP criterion governs the compression-tension stress states
¡
fDP
F

¢
:

fTCF = I1,F − σFt ≤ 0

fDP
F = αUNF I1,F + |sF |− cDP

F ≤ 0
(2.23)
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where

I1,F = trσF (2.24)

αDP
F =

√
2/3(σFc−σFc)
σFc+σFc

; cDP
F =

³p
2/3− σDP

F

´
σFc; (2.25)

With these relations, we can describe the strength domain of the composite fiber as follows:

σF ∈ DF ⇔ FF (σF ) = max
£
fTCF , fDP

F

¤
≤ 0 (2.26)

Plastic Flow Rule

The composite matrix and composite fiber are both governed by the following Kuhn-Tucker

conditions:

FM (σM) ≤ 0; dλM ≥ 0; FM (σM) dλM = 0 (2.27)

FF (σF ) ≤ 0; dλF ≥ 0; FF (σF ) dλF = 0 (2.28)

where dλM and dλF are the plastic multipliers that represent the intensity of the plastic yielding

in the composite matrix and the composite fiber, respectively. In this study, an associated

plastic flow rule is adopted, so that plastic deformations occurs in the normal direction to the

loading function ( ∂FM∂σM
and ∂FF

∂σF
). Since the two types of loading function (TC and DP) are

used to describe the plasticity of the early-age UHPC, the direction of the plastic flow for each

loading function now reads:

∂fTC (σ)

∂σ
= 1;

∂fDP (σ)

∂σ
= α1+Ns (2.29)

where Ns =
s
|s| is the normalized deviatoric stress tensor. Now, the permanent deformations

of the composite matrix and the composite fiber read:

dεpM =
X
i

dλM,i
∂FM,i (σM , ξ)

∂σM
(2.30)

= dλTCM
∂fTCM

∂σM
+ dλUNM

∂fUNM

∂σM
+ dλBIM

∂fBIM

∂σM

= dλTCM 1+ dλUNM
£
αUNM 1+NsM

¤
+ dλBIM

£
αBIM 1+NsM

¤
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Before Matrix Cracking After Matrix Cracking

fTCM = fTC,0M fTC,crM

fUNM = fUN,0
M fUN,cr

M

fBIM = fBI,0M fBI,crM

Table 2.1: Loading functions for the composite matrix depending on the cracking condition of
the composite matrix.

dεpF =
X
i

dλF,i
∂FF,i (σF , ξ)

∂σF
(2.31)

= dλTCF
∂fTCF

∂σM
+ dλDP

F

∂fDP
F

∂σM

= dλTCF 1+ dλDP
F

£
αUNF 1+NsF

¤
where the loading functions of the composite matrix are defined in Table 2.1; and NsM = sM

|sM |

and NsF = sF
|sF | is the normalized deviatoric stress tensor of the composite matrix and the

composite fiber, respectively.

Due to the intrinsic characteristics of the TC and DP, the loading criteria for 3-D UHPC

model defines the following dilatation behavior in plastic deformation:

tr (dεp) = tr

ÃX
i

dλi
∂Fi (σ)

∂σ

!
(2.32)

= tr

⎛⎝X
j

dλTCj
∂fTCj (σ)

∂σ
+
X
k

dλDP
k

∂fDP
k (σ)

∂σ

⎞⎠
=

X
j

3dλTCj +
X
k

3αdλDP
k

where j and k are the numbers of TC loading function and DP loading function employed for

each composite phase, respectively. This plastic dilatation behavior does not allow to capture

crack closure in the composite matrix.

2.3.3 Consistency with the 1-D Model

Unlike the elastic properties of the composite matrix and the composite fiber, the properties of

the matrix-fiber coupling (M3D and νI) are not directly related to the 1-D model parameters.

The strength domain needs to be considered to obtain meaningful coupling properties in order
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for the 3-D model to generate the same uniaxial response as the 1-D model. The uniaxial

loading for the 3-D model requires the following conditions:

• A loading strain is applied in one direction (x-direction) and there are no shear strains:

Exx 6= 0;

Eyy = Ezz 6= 0;

Exy = Eyz = Ezx = 0

(2.33)

• The loading strain produces the corresponding stresses:

Σxx = Σxx (Exx) ;

Σyy = Σzz = 0;

Σxy = Σyz = Σzx = 0

(2.34)

• The 3-D loading function defined by (2.15) must be obeyed:

F = max [FM , FF ] ≤ 0 (2.35)

When loading functions are activated, plastic strains occur through the plastic multipliers,

i.e. dλTCM , dλUNM , dλBIM , dλTCF and dλDP
F .

Stress-Strain Curve of the 3-D Model

During the first cracking under uniaxial loading, cracking occurs in all directions including

transverse cracks perpendicular to the load direction and randomly oriented fiber debonding

cracks. The reinforcing fibers restrict the opening of cracks in the composite matrix. Due to

the intrinsic characteristics of the Tension-Cut Off and the Drucker-Prager loading functions,

the macroscopic UHPC model represents these cracks as dilating plastic strains in the composite

matrix, see relation (2.32). Figure 2-7 shows the stress evolution of the composite matrix and

composite fiber during uniaxial loading as predicted by the 3-D hardened UHPC model. While

the stress-strain curve in the 1-D model shows only one post-cracking stiffness (K1), the 3-D

model shows two different post-cracking stiffnesses (K3D
1 and K3D

2A ) after the first cracking in
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Figure 2-7: Evolution of composite matrix and composite fiber stresses given by the uniaxial
output from the 3-D hardened UHPC model (in this graph, the subscripts "xx" are omitted
for simplicity) [7].

matrix. The second post-cracking behavior of slope K3D
2A was called "kinking" by Chuang [7].

In order to accomplish the consistency of the 3-D model with the 1-D model, we need to first

obtain analytically the stress-strain behavior of the 3-D model, i.e. the Exx−Σxx curve. There

are four points and three stiffnesses to be identified:

³
Exx,1, Σ

−
xx,1

´
;

³
Exx,1, Σ

+
xx,1

´
;

(Exx,2A, Σxx,2A) ; (Exx,2B, Σxx,2)
(2.36)

K3D
0 ; K3D

1 ; K3D
2A

(2.37)

Stress-Strain Points Before the first cracking in the composite matrix (0 ≤ Exx < Exx,1),

the 3-D model shows elastic behavior. The first noteworthy point in the stress-strain curve

is when the macroscopic stress meets the initial tensile strength, Σxx = σMt. At this point,
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there are two unknowns (Exx and Eyy) and two equations (Σxx = σMt and Σyy = 0). Thus,

the unknown macroscopic strains can be obtained from the following equations:⎧⎨⎩ Exx

Eyy

⎫⎬⎭ = [J1]−1
⎧⎨⎩ σMt

0

⎫⎬⎭ (2.38)

where:

[J1] =

⎡⎢⎢⎢⎢⎢⎢⎣

*
(KM +KF )

+4
3 (GM +GF )

+ *
2 (KM +KF )

−43 (GM +GF )

+
*

(KM +KF )

−23 (GM +GF )

+ *
2 (KM +KF )

+2
3 (GM +GF )

+
⎤⎥⎥⎥⎥⎥⎥⎦ (2.39)

Solving (2.38) yields the macroscopic strain and the macroscopic stress:

³
Exx,1, Σ

−
xx,1

´
= (Exx, Σxx)|Σxx=σMt, Σyy=0

(2.40)

Moreover, right after the first cracking at the macroscopic strain E1, the abrupt stress drop

leads to the post-cracking tensile strength Σxx = σcrMt. This second point is denoted by:

³
Exx,1, Σ

+
xx,1

´
=
³
Exx|Σxx=σMt, Σyy=0

, Σxx|Σxx=σcrMt

´
(2.41)

The kinking behavior of the 3-D model occurs in the macroscopic strain range Exx,1 ≤

Exx < Exx,2A. At the third point, we have three unknowns (Exx, Eyy and λUNM ) and three

equations (Σyy = 0, f
UN,cr
M = 0 and fTCF = 0). The unknown quantities can be solved from:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Exx

Eyy

λUNM

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = [J2]−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0

cUN,cr
M

σFt

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.42)
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where:

[J2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

*
(KM +KF )

−23 (GM +GF )

+ *
2 (KM +KF )

+2
3 (GM +GF )

+
−3αUNM KM +

q
2
3GM

3αUNM KM +
q

8
3GM 6αUNM KM −

q
8
3GM

*
−9
¡
αUNM

¢2
(KM +KF )

−2 (GM +GF )

+
3KF 6KF 9αUNM KI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.43)

Furthermore, the corresponding macroscopic stress reads:

Σxx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(KM +KF ) +

4
3 (GM +GF )

2 (KM +KF )− 4
3 (GM +GF )

−3αUNM KM −
q

8
3GM

⎫⎪⎪⎪⎬⎪⎪⎪⎭
T ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Exx

Eyy

λUNM

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.44)

leading to the third stress-strain point:

(Exx,2A, Σxx,2A) = (Exx, Σxx)|Σyy=0, fUN,crM =0, fTCF =0
(2.45)

At the fourth point, both the composite matrix and the composite fiber are at yield, and

there are four unknowns (Exx, Eyy, λUNM and λTCF ) and four equations (Σyy = 0, fTC,crM = 0,

fUN,cr
M = 0 and fTCF = 0). We obtain the unknown quantities from:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Exx

Eyy

λUNM

λTCF

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= [J3]−1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0

σcrMt

cUN,cr
M

σFt

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(2.46)
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where

[J3] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

*
(KM+KF )

−23 (GM+GF )

+ *
2 (KM+KF )

+2
3 (GM+GF )

+
−3αUNM KM+

q
2
3GM −3KF

3KM 6KM −9αUNM (KM+KI) −9KI

3αUNM KM+
q

8
3GM 6αUNM KM−

q
8
3GM

*
−9
¡
αUNM

¢2
(KM+KF )

−2 (GM+GF )

+
−9αUNM KI

3KF 6KF 9αUNM KI −9 (KF+KI)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.47)

The corresponding macroscopic stress reads:

Σxx =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(KM +KF ) +
4
3 (GM +GF )

2 (KM +KF )− 4
3 (GM +GF )

−3αUNM KM −
q

8
3GM

−3KF

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

T ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Exx

Eyy

λUNM

λTCF

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= σcrMt + σFt (2.48)

This last point in the stress-strain curve is denoted by:

(Exx,2B, Σxx,2) = (Exx, Σxx)|Σyy=0, fTC,crM =0,

fUN,crM =0, fTCF =0

(2.49)

=

⎛⎝Exx|Σyy=0, fTC,crM =0,

fUN,crM =0, fTCF =0

, Σxx|Σxx=σcrMt+σFt

⎞⎠
Stiffnesses Next, the three stiffnesses are solved analytically. The initial stiffness K0, which

controls the elastic behavior of the material over the macroscopic region 0 ≤ Exx < Exx,1,

reads:

K3D
0 =

∂Σxx
∂Exx

¯̄̄̄
Σyy=0

(2.50)

=

⎧⎨⎩ (KM +KF ) +
4
3 (GM +GF )

2 (KM +KF )− 4
3 (GM +GF )

⎫⎬⎭
T ⎧⎨⎩ 1

∂Eyy
∂Exx

⎫⎬⎭
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where
∂Eyy

∂Exx
=
− (KM +KF ) +

2
3 (GM +GF )

2 (KM +KF ) +
2
3 (GM +GF )

(2.51)

The first post-cracking stiffness which controls the plastic behavior before the kinking

(Exx,1 ≤ Exx < Exx,2A) reads:

K3D
1 =

∂Σxx
∂Exx

¯̄̄̄
Σyy=0, fUNM =0

(2.52)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(KM +KF ) +

4
3 (GM +GF )

2 (KM +KF )− 4
3 (GM +GF )

−3αUNM KM −
q

8
3GM

⎫⎪⎪⎪⎬⎪⎪⎪⎭
T ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

∂Eyy
∂Exx
∂λUNM
∂Exx

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where ⎧⎨⎩

∂Eyy
∂Exx
∂λUNM
∂Exx

⎫⎬⎭ = [M1]
−1

⎧⎨⎩ − (KM +KF ) +
2
3 (GM +GF )

−3αUNM KM −
q

8
3GM

⎫⎬⎭ (2.53)

[M1] =

⎡⎢⎢⎢⎢⎢⎢⎣

*
2 (KM +KF )

+2
3 (GM +GF )

+
−3αUNM KM +

q
2
3GM

6αUNM KM −
q

8
3GM

*
−9
¡
αUNM

¢2
(KM +KF )

−2 (GM +GF )

+
⎤⎥⎥⎥⎥⎥⎥⎦ (2.54)

The second post-cracking stiffness which relates to the kinking behavior of the material

(Exx,2A ≤ Exx < Exx,2B) reads:

K3D
2A =

∂Σxx
∂Exx

¯̄̄̄
Σyy=0, fUNM =0, fTCF =0

(2.55)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(KM +KF ) +
4
3 (GM +GF )

2 (KM +KF )− 4
3 (GM +GF )

−3αUNM KM −
q

8
3GM

−3KF

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

T ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

∂Eyy
∂Exx
∂λUNM
∂Exx
∂λTCF
∂Exx

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂Eyy
∂Exx
∂λUNM
∂Exx
∂λTCF
∂Exx

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = [M2]
−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− (KM +KF ) +

2
3 (GM +GF )

−3αUNM KM −
q

8
3GM

−3KF

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.56)

[M2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

*
2 (KM +KF )

+2
3 (GM +GF )

+
−3αUNM KM +

q
2
3GM −3KF

6αUNM KM −
q

8
3GM

*
−9
¡
αUNM

¢2
(KM +KF )

−2 (GM +GF )

+
−9αUNM KI

6KF 9αUNM KI −9 (KF +KI)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.57)

For uniaxial loading, the stress-strain curve can be constructed analytically using the stress-

strain points and stiffnesses just derived.

Determination of the 3-D Coupling Modulus

In order for the 3-D model results to be consistent with the 1-D model results, the following

conditions need to be satisfied:

• The four stress-strain points determined here before must be on the stress-strain curve of

the 1-D hardened UHPC model:³
Exx,1, Σ

−
xx,1

´
=
¡
E1, Σ

−
1

¢
;³

Exx,1, Σ
+
xx,1

´
=
¡
E1, Σ

+
1

¢ (2.58)

(Exx,2A, Σxx,2A)

(Exx,2B, Σxx,2)

⎫⎬⎭ ∈ (E,Σ) of 1-D model (2.59)

• Except for the kinking region, the initial stiffness and the first cracking stiffness of the

3-D model must coincide with those of the 1-D model:

K3D
0 = K0 (2.60)

K3D
1 = K1 (2.61)
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Figure 2-8: Comparison of the 1-D and 3-D model output for uniaxial tensile loading [7].

Since the quantities in (2.58) and (2.60) relate only to the elastic properties, the results of

the 3-D model naturally coincide with those of the 1-D model. However, in the plastic region,

we need to tune the 3-D model results to the 1-D model results. This tuning is achieved

by solving (2.61) in order to obtain the 3-D coupling modulus M3D. By substituting (2.52)

and (2.1) into (2.61) and assuming that the Poisson’s ratios of the different phases are equal

(νM = νF = νI = ν), Chuang derived the following expression [7]:

M3D = βM + (β − 1) CMCF

CM + CF
(2.62)

where

β =

³
αUNM +

p
2/3
´2
(1− ν) (1 + ν)

3
¡
αUNM

¢2
(1 + ν) + (1− 2ν)

(2.63)

Figure 2-8 compares the uniaxial stress-strain output from the 1-D and the 3-D model.

The 3-D UHPC material model was implemented in a commercial finite element program,

CESAR-LCPC, which makes it possible to simulate the nonlinear response of UHPC structures.

Furthermore, the model was validated for 2-D and 3-D structures [7] [18].
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2.4 Determination of Hardened Model Parameters

The two-phase UHPC model captures the overall composite behavior, at the macroscopic scale,

with a brittle-plastic matrix phase and an elasto-plastic fiber phase. Here, each phase is

considered as a macroscopic representation of the stiffness and the yield strength that are

added to obtain the stiffness and the strength of the overall UHPC composite. Due to the

macroscopic nature of the material model, all 3-D model parameters can be determined from

the macroscopic response of a UHPC material. The determination procedure of the model

parameters is achieved in the following way:

• Macroscopic material properties: The results of a tensile test and a compressive test are

used to identify the macroscopic stress-strain points of the idealized macroscopic stress-

strain response.

• Assumptions for the 3-D model parameters: Three simplifying assumptions are introduced

to reduce the number of model parameters of the isotropic UHPC material behavior.

• Determination of the 3-D model parameters: The 10 independent 3-D model parameters

are determined from the macroscopic stress-strain points.

2.4.1 Macroscopic Material Properties

UHPC materials can vary with the type of fibers a supplier chooses to use. The manufacturer

of DuctalTM (Lafarge) produces two types of UHPC material: one is DuctalTM -Steel Fiber,

and the other DuctalTM -Organic Fiber. DuctalTM -Steel Fiber was used in the test girders of

the Federal Highway Administration [FHWA] [7] and for the bridge girders optimized by MIT

for the FHWA [9]. The macroscopic material properties are obtained from a compression and

a tension test supplied by the manufacturer, which can be found in Reference [7]. One of the

tensile test results is shown in Figure 2-9. The macroscopic material properties of DuctalTM -

Steel Fiber that were extracted from this curve are summarized in Table 2.2. A simplified

stress-strain curve for the entire stress range is illustrated in Figure 2-10, with corresponding

strains presented in Table 2.3.
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Figure 2-9: Average notch stress-displacement curve for DuctalTM -Steel Fiber [7].

Notation DuctalTM-SF
Macroscopic K0 53.9 GPa
Stiffness K1 1.6 GPa

(≈ 3 % of K0)

Macroscopic Tension Σ−t,1 7.6 MPa

Strength Σ+t,1 6.9 MPa

Σt,2 11.5 MPa
Compression Σ−c,1 190 MPa

Σ+c,1 173 MPa

Σc,2 183 MPa

Table 2.2: Macroscopic material properties of UHPC material and typical values for DuctalTM -
Steel Fiber [18].

Tension Compression
Initial

Strain Limit
Et,1 = 1.41× 10−4 Ec,1 = 3.40× 10−4

Yield
Strain Limit

Et,2 = 3.02× 10−3 Ec,2 = 1.40× 10−2

Table 2.3: Macroscopic strain limits in the simplified stress-strain curve for DuctalTM -Steel
Fiber
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Figure 2-10: Simplified stress-strain curve of UHPC in uniaxial tension and compression.

2.4.2 Review of the Assumptions for the 3-D Model Parameters

The isotropic UHPC material behavior is completely described by 15 material properties: 6

elastic properties (CM , νM , CF , νF , M3−D, and νI) and 9 strength properties (σMt, σMc,

σMb, σcrMt, σ
cr
Mc, σ

cr
Mb, σFt, σFc, and σFb). In order to further reduce the number of model

parameters, three assumptions are introduced:

1. The Poisson’s ratio is the same in the matrix, the fiber, and the matrix-fiber coupling,

which makes νF and νI dependent parameters.

2. The post-cracking matrix strengths are reduced by the same factor, γcr defined by (2.19),

which makes σcrMc and σcrMb dependent parameters.

3. The loading function related to the biaxial compressive strength of the fiber is disregarded,

which makes σFb unnecessary.

These assumptions reduce the number of model parameters to 10 independent model pa-

rameters which can be obtained from the macroscopic stress-stain relationship. These model

parameters are summarized in Table 2.4.
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2.4.3 Determination of the 3-D Model Parameters

Using (2.4) and (2.5), the six model parameters related to the tensile behavior of UHPC (CM ,

CF , M , σMt, σcrMt and σFt) are derived from the results of a tensile test.

In order to close the determination of the 3-D model parameters, we need to obtain the

four additional model parameters related to the compressive behavior and the Poisson’s ratio

of UHPC. The two model parameters related to the compressive behavior of UHPC (σMc and

σFc) are derived from the results of a uniaxial compression test using the following equations:

Σ−c,1 =
³
1 + CF

CM

´
σMc ' σMc

Σ+c,1 = Σ
−
c,1 − CM

CM+M
(σMc − σcrMc) ' σcrMc = γcrσMc

Σc,2 = σFc + σcrMc = σFc + γcrσMc

(2.64)

These equations have a form similar to the tensile strength relations in (2.2) and (2.5). The

composite matrix biaxial strength (σMb) can be determined from an additional test, a biaxial

compression test on an unreinforced cementitious specimen. More simply, it can be estimated

from known biaxial strength factors for unreinforced concrete as follows [11]:

σMb ≈ 1.2σMc (2.65)

Finally, the composite Poisson’s ratio (ν) can also be estimated from standard Poisson’s ratios

of cementitious materials:

ν = νM ≈ 0.17 (2.66)

In summary, the 3-D model parameters is obtained from a single tensile test and a single

compression test. Typical values for DuctalTM -Steel Fiber are summarized in Table 2.4. These

input model parameters are used throughout this report.

2.5 Chapter Summary

This chapter reviews the two-phase macroscopic model for the stress-strain behavior of hard-

ened UHPC material. A typical tensile response of hardened UHPC can be simplified in four

regions: an elastic behavior, a brittle strength drop, a post-cracking behavior, and a composite
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Notation DuctalTM-SF
Elastic CM 53.9 GPa
Parameter CF 0.0 GPa

M 1.65 GPa
ν 0.17

Strength Matrix σMt (= ft + kM) 7.6 MPa
Parameter σcrMt (= kM) 6.9 MPa

σMc 190 MPa
σMb 220 MPa

Fiber σFt (= fy) 4.6 MPa
σFc 10 MPa

Table 2.4: Input material parameters of the 3D UHPC model and typical values DuctalTM -Steel
Fiber [18].

yielding. The 1-D model parameters properly capture the simplified UHPC material behavior

by introducing separately a composite matrix and a composite fiber phase. The 1-D hardened

UHPC model is easily extended to 3-D, by replacing the scalar quantities in the governing equa-

tions by their tensorial counterparts. The 3-D macroscopic model is constructed around three

main components: the 3-D constitutive relations, plasticity of the 3-D model, and consistency

with the 1-D model. The hardened 3-D UHPC model has the following interesting properties:

• The macroscopic nature of the two-phase model allows us to capture typical feature of

UHPC material behavior, with six material parameters of clear physical significance. The

stress drop modeled by this model allows the representation of progressive cracking with

increased loading. This makes it easy to fit the six material parameters of the model to

experimental test results.

• The two phase modeling of fibers and matrix allows a quantification of their individual

behaviors and their interaction. The cracking in UHPC is represented as permanent

plastic strains in the composite matrix, which allows one to evaluate the risk of cracking.
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Chapter 3

HYDRATION KINETICS MODEL

FOR ORDINARY CONCRETE

The focus of the research presented here is the modeling of UHPC at early ages. Like for

all cement-based materials, the particular behavior of UHPC at early ages stems from the

hydration of cement, which is a highly exothermic and thermally activated reaction. The hy-

dration reaction leads to heat generation inducing thermal shrinkage during the cooling process.

Moreover, chemical shrinkage occurs because the volume of hydration products is less than the

original volume of cement and water. Concrete cracking at early ages is mainly caused by

both thermal and chemical shrinkage, which induce a severe state of stress beyond the mate-

rial strength developed. In this chapter, we review a hydration kinetics model for ordinary

concrete, which we extend in the sequel to UHPC materials.

3.1 Hydration of Cement

Ordinary Portland cement consists of various clinker phases, which react with water during

hydration. Most dominant clinker phases are1 tricalcium silicates (C3S), dicalcium silicates

(C2S), tricalcium aluminates (C3A) and tetracalcium aluminum ferrites (C4AF ). A typical

mineralogical composition and mass ratios of clinker phases in Portland cements are given in

1The notation of cement chemists is used; C = CaO; S = SiO2; A = Al2O3; F = Fe2O3; S̄ = SO3;
H = H2O.
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Name of
Compound

Oxide
Composition

Abbreviation
Mass

Ratio [%]
Tricalcium Silicates

(Alite)
3CaO · SiO2 C3S 50-70

Dicalcium Silicates
(Belite)

2CaO · SiO2 C2S 15-30

Tricalcium Aluminates
(Aluminates)

3CaO ·Al2O3 C3A 5-10

Tetracalcium Aluminum Ferrites
(Ferrites)

4CaO ·Al2O3 · Fe2O3 C4AF 5-15

Table 3.1: Main Compounds of Portland Cement [17].

Table 3.1. We describe briefly the hydration of silicates and aluminates, because the main

hydrates, which can be broadly classified as calcium silicate hydrates (C-S-H) and calcium

aluminate hydrates (C-A-H), form the most important part of the microstructure of a cement

paste. This section briefly reviews the simplified stoichiometric reactions for the hydration of

the four dominant compounds in Portland cement as suggested by Tennis and Jennings [23].

3.1.1 Silicate Hydration

The main products of the cement hydration are from the hydration of silicates, and they define

the quantity of calcium silicate hydrates (C-S-H) formed. The hydration reaction of C3S and

C2S can be written as follows:

2C3S + 10.6H → C3.4S2H8 + 2.6CH (3.1)

2C2S + 8.6H → C3.4S2H8 + 0.6CH (3.2)

In both cases, the products of the hydration are composed of calcium silicate hydrates (C-S-H)

and calcium hydroxide (CH). C-S-H constitutes approximately 50-70 % of the hydration

product volume, and its physical properties are of interest in connection with setting and

hardening properties of cement. CH, which is also called Portlandite, constitutes typically

20-25 % of the hydration product volume [10].
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3.1.2 Aluminate Hydration

In the presence of sulfate (SO2−4 ) and water, C3A forms Ettringite (AFt phase):

C3A+ 3CS̄H2 + 26H → C6AS̄3H32 (3.3)

After the sulfate (SO2−4 ) is consumed, C3A and Ettringite (AFt phase) become monosulfoalu-

minates (AFm phase):

2C3A+ 3C6S̄3H32 + 4H → 3C6AS̄H12 (3.4)

After all the Ettringite (AFt) is consumed, the rest of C3A continues to hydrate as follows:

C3A+ CH + 12H → C4AH13 (3.5)

Many investigations have shown that the hydration of C4AF is very similar to that of C3A.

As in the case of C3A, the first crystalline products to form in the absence and presence of the

sulfate (SO−24 ) are AFm phase and AFt phase, respectively, and the AFt phase is later replaced

by AFm phase. Eventually, the product of the ferrite reaction is a hydrogarnet (C3 (A,F )H6)

described by the following equation:

C4AF + 2CH + 10H → 2C3 (A,F )H6 (3.6)

3.2 Macroscopic Modeling of Hydration Reaction for Ordinary

Concrete

As the hydration reaction progresses, the material stiffness increases, and the evolving stiffness

leads to the development of stresses in the material. The hydration reaction also affects the

strength of material, which influences the crack threshold at early age. Hence, there is a com-

petition between the stress development due to the evolving stiffness and the crack threshold

development due to strength growth. In order to capture the effects of thermal and chemi-

cal phenomena related to hydration reaction on the mechanical properties, a thermodynamic

framework is necessary for the modeling. This section reviews the thermo-chemo-mechanical
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modeling of the hydration reaction proposed by Ulm and Coussy [25] [26].

3.2.1 Simplification of Hydration Reaction Modeling

Given the complexity of the hydration of cement as presented in Section 3.1, it is useful to

simplify the different process in a first engineering approach. Ulm and Coussy suggest the

diffusion of water through the layers of hydrates as the dominant mechanism of the hydration

kinetics2. For the reaction to occur, water diffuses through the layers of hydrates. Once water

meets the unhydrated cement, new hydrates are formed instantaneously compared to the time

scale of the diffusion process. Figure 3-1 illustrates this hydration reaction process, and the

hydration reaction can be simplified as follows:

Free Water → Combined Water (3.7)

where the reactant phase corresponds to the free water and the product phase to the water

combined in the hydrates. Furthermore, as a measure of the reaction extent, a hydration

degree (ξ) is introduced and it is defined by the following equation:

ξ (t) =
m (t)

m∞
(3.8)

where m∞ is the asymptotic value of combined water mass, and m (t) is the combined water

mass at time t. At the beginning of the reaction, the hydration degree is zero. As the hydration

progresses, it increases. Eventually, the hydration degree becomes one when the reaction is

complete. The hydration degree is controlled by the chemical affinity A, which represents

the thermodynamic imbalance between the chemical potentials of reactant phase and product

phase.

2Kinetics is the branch of chemistry that is concerned with the rates of change in the concentration of reactants
in a chemical reaction.
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Figure 3-1: Diffusion of water through layers of hydrates [25].

3.2.2 Thermodynamic Framework for Ordinary Concrete at Early Ages

Like the hardened 3-D UHPC model, the starting point of the hydration kinetics model is the

Clausius-Duhem inequality3 [24]:

ϕdt = Σ : dE− SdT − dΨ ≥ 0 (3.9)

where ϕdt stands for the dissipation; Σ and E are the 2nd order macroscopic stress tensor and

macroscopic strain tensor, respectively; S and T stand for the entropy and absolute temperature,

respectively; and Ψ is the free energy. Assuming the elementary system to be closed, the

hydration degree, ξ (t), can be considered as an internal state variable. For concrete at early

ages, there are three state variables, E, T and ξ , which describe the energy state of the system.

In the framework of physical linearization, the free energy is limited to a 2nd order expansion

with respect to external state variables, E and T , and it reads:

Ψ = Ψ (ε, T, ξ) (3.10)

= Ψ0 +Ψ2 +Ψ1

3The Clausius-Duhem inequality states that the external energy supplied in form of work is not entirely stored
in the system in form of elastic energy that can be recovered later on; but dissipated into heat form.
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where Ψ0 is the free energy relating to the initial state of stress, entropy, and chemical affinity;

Ψ2 relates to the elastic potential energy which is a second-order tensor expansion with respect

to strain, absolute temperature and hydration degree; and Ψ1 is the free energy associated with

the coupling of phenomena of different origins:

Ψ0 = Σ0 : E− S0 (T − T0)−A0ξ

Ψ2 =
1
2E : C (ξ) : E−

1
2
C
T0
(T − T0)

2 + 1
2κξ

2

Ψ1 = −C (ξ) : E : α (T − T0)− C (ξ) : E : βξ + L
T0
ξ (T − T0)

(3.11)

where subscript "0" means initial state of each driving force; C (ξ) is the 4th order stiffness

tensors of the aging concrete; C is the volume heat capacity; κ is a coefficient relating to the

hydration kinetics; α is the 2nd order thermal dilatation coefficient tensor; β is the 2nd order

chemical dilatation coefficient tensor; and L is the latent heat of the hydration reaction. Here,

for the sake of simplicity, the thermal and chemical dilatation coefficient tensors (α and β)

are constant, and the volume heat capacity, the hydration kinetics coefficient and the latent

heat (C, κ and L) are also considered to be constant. Use of (3.10) in (3.9) yields the state

equations, which read in an incremental form:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dΣ

dS

dA

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎣
C (ξ) −C (ξ) : α −C (ξ) : β

C (ξ) : α C
T0

− L
T0

C (ξ) : β − L
T0

−κ

⎤⎥⎥⎥⎦ :
⎧⎪⎪⎪⎨⎪⎪⎪⎩

dE

dT

dξ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.12)

where the hypothesis of infinitesimal deformation is applied so that each driving force can be

expressed by only the terms of the same order of magnitude as strain. In this derivation, the

strains due to elastic, thermal, and chemical change are infinitesimal:

trε¿ 1

trεt = tr (α (T − T0))¿ 1

trεc = tr (βξ)¿ 1

(3.13)

where εt and εc denote the strains due to thermal change and chemical change, respectively.

It is generally found that the thermal changes and chemical changes affect the mechanical
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Figure 3-2: Thermo-chemo-mechanical coupling in early-age ordinary concrete and introduction
of decoupling hypothesis.

problem, producing stresses and strains. It is also generally found that the chemical changes

affect the thermal problem, producing heat. This means that the coupling terms in the upper

off-diagonal region in (3.12) are of non-negligible order. However, it is also found for concrete

materials that the mechanical change has little effect on the thermal and the chemical problem.

In addition, it is found for concrete materials that thermal change has little effect on the

chemical problem. As a consequence, there are weak coupling terms in the lower off-diagonal

region in (3.12). Thus, to simplify the formulation, a partial decoupling hypothesis is applied

by considering only the strong couplings and by neglecting the weak couplings (Figure 3-2).

This decoupling hypothesis allows us to obtain the following partially decoupled constitutive

relations: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
dΣ

dS

dA

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎢⎣
C (ξ) −C (ξ) : α −C (ξ) : β

0 C
T0

− L
T0

0 0 −κ

⎤⎥⎥⎥⎦ :
⎧⎪⎪⎪⎨⎪⎪⎪⎩

dE

dT

dξ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.14)

The equation for the affinity (A) enters the hydration kinetics law, and the equation for entropy

(S) enters the heat equation. For the mechanical problem, the equation for the stress (Σ) enters

the equilibrium equation. The next subsections are devoted to the details of each problem.
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Hydration Kinetics

From the partially decoupled constitutive relations (3.14), the affinity is given by:

dA = −κdξ (3.15)

If we integrate both sides of the equation, it is readily found that the affinity which depends on

the hydration degree:

A = A (ξ) (3.16)

The form of A (ξ) specifies the reaction order. It is the driving force of the reaction kinetics.

This reaction kinetics is specified by a kinetics law, which for a thermally activated chemical

reaction reads:

dξ

dt
=

A (ξ)

τ∗ (T0)
exp

∙
−Ea

R

µ
1

T
− 1

T0

¶¸
(3.17)

=
A (ξ)

τ (T0)
exp

∙
− Ea

RT

¸

where

τ (T0) = τ∗ (T0) exp

∙
− Ea

RT

¸
(3.18)

Here, τ∗ and τ are the characteristic reaction times4; Ea is the activation energy of the hy-

dration reaction5; and R is the universal gas constant. The value of Ea/R can be found in

cement chemistry handbooks [13]. Once known, the chemical affinity, A (ξ), can be obtained

from experiments which allow us to access the hydration reaction rate, dξ/dt, and the charac-

teristic reaction time, τ . The experiments can be one of adiabatic calorimetric experiments or

isothermal strength evolution tests as detailed below.

4The characteristic time (τ∗ or τ) depends typically on the type of cement.
5The activation energy over the universal gas constant (Ea/R) is a constant for most cement and is known

to be roughly 4, 000 K.
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Heat Equation

From the partially decoupled constitutive relations (3.14), the equation for entropy can be

written as follows:

dS =
C

T0
dT − L

T0
dξ (3.19)

This entropy expression enters the 2nd law of thermodynamics of the closed system reading:

T0
dS

dt
− ϕ = −divq (3.20)

where ϕ is the dissipation rate, divq is the external rate of heat supply to the elementary system

provided by conduction, and q is the heat flux vector. For the heat condition, a linear law is

adopted reading:

q = −K·∇T = −K∇T (3.21)

where K = K1 is the thermal conductivity tensor in the isotropic case. The thermal con-

ductivity, K, might depend on the hydration degree, but it is assumed to be constant in this

model.

Assuming that the latent heat due to deformation and the heat due to chemical dissipation

are negligible with respect to the latent hydration heat L, substituting (3.19) and (3.21) into

(3.20) yields the following heat equation:

C
dT

dt
= K∇2T + L

dξ

dt
(3.22)

where the left side of the equation, C dT/dt, means change in energy stored within the system,

the first term on the right side, K∇2T , is the net heat rate provided from the outside by

conduction, and the term, L dξ/dt, is the heat generated by hydration. Thus, this heat

equation states that the stored energy change due to the temperature variation is equal to

the sum of the external heat supply due to thermal conductivity and the latent heat of the

hydration reaction.

The heat equation needs to be completed by thermal boundary conditions, which prescribe
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either the temperature or the heat flux through the boundary, ∂Ω:

T = T d on ∂ΩT

q · n = qd on ∂Ωq

q · n = λ (T − Text) on ∂Ωλ

(3.23)

∂ΩT ∪ ∂Ωq ∪ ∂Ωλ = ∂Ω

∂ΩT ∩ ∂Ωq = ∂Ωq ∩ ∂Ωλ = ∂Ωλ ∩ ∂ΩT = 0
(3.24)

where n is the normal unit vector toward the outside of ∂Ωq or ∂Ωλ; T d and qd are the

prescribed temperature and the heat flux, respectively; λ is the exchange coefficient6; and Text

is the external temperature. Solving simultaneously the heat equation (3.22) and the hydration

kinetics law (3.17) for the boundary conditions (3.23) allows one to determine a materials or

structural system.

Equilibrium Equation

From (3.14), the constitutive equation for stress reads:

dΣ = C (ξ) : dE− C (ξ) : αdT −C (ξ) : βdξ (3.25)

Three effects relative to early-age concrete behavior are considered in (3.25):

• The aging elasticity, C (ξ), representing the increase of the stiffness as a function of the

hydration degree;

• The thermal stresses, −C (ξ) : αdT , related to restrained thermal dilatation;

• The chemical stresses, −C (ξ) : βdξ, related to restrained autogenous shrinkage.

The general 3-D constitutive model involves 39 (= 21 + 2× 9) parameters associated with

the stiffness tensor C (ξ) , the thermal dilatation coefficient tensor α, and the chemical dilatation

6The exchange coefficients for various external conditions can be found in Reference [27].
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tensor β. In the isotropic case, the stiffness tensor can be described by two unique scalar values:

C (ξ) = 3K (ξ)K+2G (ξ) J (3.26)

where K (ξ) is the aging bulk modulus, and G (ξ) is the aging shear modulus of concrete. The

aging bulk modulus and the aging shear modulus are related to the aging Young’s modulus of

the concrete, E (ξ), by:

K (ξ) = E(ξ)
3(1−2ν)

G (ξ) = E(ξ)
2(1+ν)

(3.27)

where ν is the Poisson’s ratios of the concrete. The Poisson’s ratio is assumed to be constant

in the modeling. Isotropy of the material also implies:

α=α1; β = β1 (3.28)

where α and β are the thermal and the chemical dilatation coefficient, respectively. Equation

(3.25) can be restated in an isotropic format:

dΣ = dΣv1+ dΣd (3.29)

where dΣv = 1
3 tr (dΣ) is the volumetric stress increment; and dΣd is the deviatoric stress

increment. The volumetric stress-strains are represented by:

dΣv = 3K (ξ) (dEv − αdT − βdξ) (3.30)

where dEv = 1
3tr (dE) is the volumetric strain increment. Similarly, the deviatoric stress-strain

relations are given by:

dΣd = 2G (ξ) dEd (3.31)

where dEd = dE− dEv1 is deviatoric strain increment.

The constitutive relations are complete by applying the results of the hydration kinetics

and the heat equation, i.e. the time history of the temperature and the hydration degree in the

system. With this constitutive relation , the stress equilibrium equation is solved in order to
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find statically admissible stress fields:

divΣ+ ρf = 0

where ρ is the mass density; and f is the volume force density.

3.3 Macroscopic Investigation of Hydration Kinetics for Ordi-

nary Concrete

As shown in Section 3.2.2, the hydration kinetics is the starting point of modeling ordinary

concrete at early ages. Thus, the determination of the chemical affinity function, A (ξ), plays

an important role in the modeling. In order to determine experimentally the chemical affinity

expressed in (3.17), the evolution of the hydration degree, ξ(t), and the time history of tem-

perature, T (ξ), must be measured. Here, two generally accepted experiments are reviewed;

adiabatic calorimetry experiment and isothermal strength evolution.

3.3.1 Adiabatic Calorimetric Experiment

The adiabatic calorimetric experiment is a standard method for accessing hydration kinetics.

It is generally admitted that the increase rate of adiabatic temperature is proportional to the

hydration reaction rate as follows:
dξ

dt
∝ dT ad

dt
(3.32)

where T ad is the adiabatic temperature. Writing the heat equation (3.22) for adiabatic condi-

tions (divq = 0) yields after integration:

ξ (t) =
T ad (t)− T ad

0

L/C
(3.33)
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where L/C = T ad
∞ − T ad

0 is the adiabatic temperature rise; and T ad
0 and T ad

∞ are the initial and

the final temperatures in the experiment. Then, writing (3.33) in the kinetic law (3.17) yields:

dξ

dt
=

1

T ad
∞ − T0

dT ad

dt
(3.34)

=
A (ξ)

τ
¡
T ad
0

¢exp ∙− Ea

RT ad (t)

¸

Eventually, the normalized chemical affinity, Ã (ξ), is identified from the adiabatic calorimetric

experiment:

Ã (ξ) =
A (ξ)

τ
¡
T ad
0

¢ (3.35)

= exp

∙
Ea

RT ad (t)

¸
1

T ad
∞ − T ad

0

dT ad

dt

Ulm and Coussy [26] suggested that Ã (ξ) was an intrinsic kinetic function; i.e. on that does

not depends on boundary conditions.

3.3.2 Isothermal Strength Evolution

The strength growth is another manifestation of the hydration reaction. It is generally admitted

that the increase rate of isothermal strength growth is proportional to the hydration rate:

dξ

dt
∝ df iso

dt
(3.36)

where f iso is the isothermal strength value. Similarly to (3.33), the hydration degree is deter-

mined from strength measurements:

ξ (t) =
f iso (t)− f0
fad∞ − f0

(3.37)

where f iso0 (≤ 0) is a reference strength value for ξ = 0, which relates to the percolation thresh-

old; and fad∞ is the asymptotic strength at complete hydration. Then, using (3.37) in (3.17)
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yields a second means to a access the hydration rate from:

dξ

dt
=

1

f iso∞ − f0

df iso

dt
(3.38)

=
A (ξ)

τ
¡
T iso
0

¢exp ∙− Ea

RT iso
0

¸

Eventually, the normalized chemical affinity, Ã (ξ), is identified from the isothermal strength

evolution test:

Ã (ξ) =
A (ξ)

τ
¡
T iso
0

¢ (3.39)

= exp

∙
Ea

RT iso
0

¸
1

f iso∞ − f0

df iso

dt

3.4 Chapter Summary

In this chapter, we reviewed a hydration kinetics model for ordinary concrete, which allows the

modeling of thermo-chemo-mechanical couplings of concrete at early ages at the macro-level of

material description. The main points to be noted are:

• The diffusion of free water through the layers of hydrates is considered as the dominant

mechanism of the hydration with respect to the kinetics. The model for ordinary con-

crete at early ages accounts explicitly for the hydration reaction at the macroscopic scale

through the hydration degree ξ.

• By means of some simplifying decoupling hypothesis, it is possible to obtain partially de-

coupled constitutive relations which are easy to handle: hydration kinetics, heat equation

and stress constitutive equation.

• In this model, the normalized affinity Ã considered to be an intrinsic kinetic function,

which characterizes the macroscopic hydration kinetics of concrete. This function can be

determined from standard material tests, such as calorimetric tests or material strength

evolution tests.
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Part II

MATERIAL MODELING
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Chapter 4

EARLY-AGE UHPC MATERIAL

MODEL

This Chapter is dedicated to the development of a new material model for early-age UHPC,

which combines the hardened UHPC model reviewed in Chapter 2 and the hydration kinetics

model reviewed in Chapter 3. We start by considering the additional features we consider

in the modeling of early-age UHPC behavior. The model is then developed in a consistent

thermodynamic framework, and consistent decoupling hypothesis are introduced to obtain an

appropriate engineering model for the prediction of temperature, stresses and strains in early-

age UHPC.

4.1 Evolving UHPC Material Model

Unlike hardened UHPC, the properties of UHPC at early ages are not constant, but evolve

as the hydration progresses. In terms of the 1-D Think model of UHPC, displayed in Figure

4-1 (a), the strength and stiffness properties relating to the matrix phase now depend on the

hydration degree:

CM → CM (ξ)

ft → ft (ξ)

kM → kM (ξ)

(4.1)
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Figure 4-1: (a) 1-D Think Model of a two-phase matrix-fiber composite material for UHPC at
early-ages, (b) Stress-strain response for UHPC at early ages.

Furthermore, since the composite fiber phase in the 1-D model represents the plastic pullout

behavior of the fibers during composite yielding (see Section 2.2), it is readily understood that

this pullout behavior also depends on the hydration state of the matrix phase:

fy → fy (ξ) (4.2)

Similarly, the coupling modulus M , which links the irreversible matrix behavior (plastic strain

εpM) with the irreversible reinforcing fiber behavior (plastic strain εpF ), is also affected by the

hydration state of the matrix phase. This is expressed by considering the coupling modulus

M as a function of the hydration degree:

M →M (ξ) (4.3)

These modifications regarding the stiffness and strength parameters of the 1-D UHPC model

are depicted in Figure 4-1 (a).
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Like in the case of the hardened UHPC model, the following relations between macroscopic

material properties and model parameters are obtained (see Figure 4-1 (b)):

K0 (ξ) ' CM (ξ)

K1 (ξ) ' CM (ξ)M(ξ)
CM (ξ)+M(ξ)

(4.4)

Σ−t,1 (ξ) ' ft (ξ) + kM (ξ) with E−1 =
ft(ξ)+kM (ξ)

CM (ξ)

Σ+t,1 (ξ) ' kM (ξ) with E+1 =
ft(ξ)+kM (ξ)

CM (ξ)

Σt,2 (ξ) = fy (ξ) + kM (ξ) with E2 ' kM (ξ)M(ξ)+fy(ξ)[CM (ξ)+M(ξ)]
CM (ξ)M(ξ)

(4.5)

The mechanical properties (compressive strength, tensile strength, and modulus of elastic-

ity) all increase as functions of the hydration degree. The stiffness and strength properties are

zero prior to the percolation of the solid matrix phase, and evolve to their asymptotic values

which correspond to the values of the hardened UHPC material. In between these two as-

ymptotes, an interpolation is necessary. Unfortunately, there has been little research on the

evolution of strength and stiffness for UHPC. In a first approach, we will adopt interpolation

laws developed for ordinary concrete to UHPC, namely Laube’s law for strength growth and

Byfors’ law for stiffness.

4.1.1 Evolution of Strength

It is often found, for ordinary concrete materials [3], that the tensile strength at early ages grows

faster than the compressive strength. However, Bernard et al. [4] showed that this effect was

due to the presence of large aggregates activating friction in compression (but not in tension).

Since UHPC have no large aggregates, it is appropriate, therefore, to adopt one single evolution

law for both tensile and compressive strength. As a first engineering approximation for the

strength parameters in the UHPC model we adopt a linear relationship known as Laube’s Law

[14]. If a strength is denoted by f (ξ), Laube’s law has the following form:

f (ξ) = f∞kf (ξ) (4.6)
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Figure 4-2: Evolution of strength and stiffness adopted in the modeling of UHPC at early-ages.

where f∞ is the strength of the hardened material, and kf (ξ) is the aging factor for strength.

The aging factor reads:

kf (ξ) =

⎧⎨⎩
ξ0
10ξ if ξ ≤ ξ0
1− ξ0

10
1−ξ0 (ξ − ξ0) +

ξ0
10 if ξ > ξ0

(4.7)

where ξ0 stands for the percolation threshold. Solid diamonds in Figure 4-2 illustrate Laube’s

law which we adopt for the strength growth of UHPC at early ages. Significant strength starts

to develop only after setting1.

4.1.2 Evolution of Stiffness

It is generally agreed that Young’s modulus increases faster than the compressive and tensile

strength [3]. This is due to the change of morphology of the hydration products. This

1 It should be noted that the non-zero value of the strength below the percolation threshold is introduced for
stability reason only.
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difference between stiffness and strength development is a manifestation of early-age cracking

sensitivity, because the generated stress depends on the Young’s modulus, whereas the resistance

to cracking depends on the tensile strength.

Inspired by developments for ordinary concrete, a nonlinear relationship known as Byfors’

law [6] is adopted for the stiffness growth of the UHPC model. If a stiffness is denoted by

C (ξ) , Byfors’ law has the following form:

C (ξ) = C∞kc (ξ) (4.8)

where C∞ is the Young’s modulus of the hardened material, and kc (ξ) is the aging factor for

the stiffness. The aging factor reads:

kc (ξ) =
1 + 1.37 [Rc∞]

2.204

1 + 1.37 [Rc (ξ)]
2.204

∙
Rc (ξ)

Rc∞

¸2.675
(4.9)

where Rc∞ is the compressive strength of the hardened material [unit: MPa], and Rc (ξ) is the

compressive strength of the aging material as a function of the hydration degree ξ. A bilinear

relation is introduced for Rc (ξ) as follows:

Rc (ξ) =

⎧⎨⎩ ξRc0 if ξ ≤ ξ0
Rc∞−Rc0
1−ξ0

(ξ − ξ0) +Rc0 if ξ > ξ0

(4.10)

where ξ0 is the threshold of the hardened material and Rc0 =
1
10ξ0Rc∞. Hollow squares in

Figure 4-2 illustrate the adopted evolution law for the stiffness of UHPC at early ages. It is

worthwhile to note that significant mechanical properties start to develop only after setting.

4.2 Thermodynamic Framework for UHPC at Early Ages

In the previous section, we introduced some ad-hoc modification to the hardened UHPCmaterial

model. At this stage of the development, a closer look on the thermodynamic consistency of

the model is in order.
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4.2.1 Free Energy and State Equations

Like for the hardened 3-D UHPC (see Section 2.3.1) and the hydration kinetics model (see

Section 3.2.2), the starting point of our modeling is the Clausius-Duhem inequality [24]:

ϕdt = Σ : dE− SdT − dΨ ≥ 0 (4.11)

where ϕdt stands for the dissipation; Σ and E are the 2nd order macroscopic stress tensor and

macroscopic strain tensor, respectively; S and T stand for the entropy and absolute temperature,

respectively; and Ψ is the free energy. Like in the early-age model for ordinary concrete (see

Chapter 3), assuming the elementary system as closed, the hydration degree, ξ (t), is considered

as an internal state variables [25] [26]. For UHPC at early ages, however, there are five state

variables, E, εpM , ε
p
F , T and ξ , which describe the energy state of the system. The free energy

is assumed of the form:

Ψ = Ψ
¡
E− εpM ,E− εpF , ε

p
M − ε

p
F , T, ξ

¢
(4.12)

= Ψ0 +Ψ2 +Ψ1

where:

Ψ0 = σM,0 :
¡
E− εpM

¢
+ σF,0 :

¡
E− εpF

¢
− S0 (T − T0)−A0ξ (4.13)

Ψ2 =
1
2

£
E− εpM

¤
: CM (ξ) :

£
E− εpM

¤
+ 1

2

£
E− εpF

¤
: CF (ξ) :

£
E− εpF

¤
+1
2

£
εpM − ε

p
F

¤
: M (ξ) :

£
εpM − ε

p
F

¤
− 1

2
C
T0
(T − T0)

2 − 1
2κξ

2

Ψ1 = −CM (ξ) :
£
E− εpM

¤
: αM (T − T0)− CF (ξ) :

£
E− εpF

¤
: αF (T − T0)

−CM (ξ) :
£
E− εpM

¤
: βMξ − CF (ξ) :

£
E− εpF

¤
: βF ξ +

L
T0
ξ (T − T0)

In (4.13), subscript "0" means initial state of each driving force; σM and σF stand for the stress

of the composite matrix and the composite fiber, respectively2; CM (ξ), CF (ξ) and M (ξ) are

the 4th order stiffness tensors of the composite matrix, the composite fiber, and the matrix-fiber

2The sum of the matrix stress and the fiber stress is always equal to the macroscopic stress, which holds as
well for the initial state of stress:

Σ0 = σM,0 + σF,0
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coupling; C is the volume heat capacity; κ is a coefficient relating to the hydration kinetics;

αM and αF are the 2nd order thermal dilatation coefficient tensors of the composite matrix

and the composite fiber; βM and βF are the 2
nd order chemical dilatation coefficient tensors

of the composite matrix and the composite fiber; and L is the latent heat of the hydration

reaction. In a first-order engineering approach, the thermal and chemical dilatation coefficient

tensors (αM , αF , βM and βF ) are considered to be constant, and the volume heat capacity,

the hydration kinetics coefficient and the latent heat (C, κ and L) as well. Use of (4.12) in

(4.11) yields the Clausius-Duhem inequality in the form:

ϕdt = σM : dεpM + σF : dε
p
F +Adξ ≥ 0 (4.14)

together with the state equations:

Σ =
∂Ψ

∂E
(4.15)

= Σ0 +CM (ξ) :
£
E− εpM

¤
+CF :

£
E− εpF

¤
− [CM (ξ) : αM +CF : αF ] (T − T0)

− [CM (ξ) : βM +CF : βF ] ξ

σM = − ∂Ψ

∂εpM
(4.16)

= σM,0 +CM (ξ) :
£
E− εpM

¤
−M (ξ) :

£
εpM − ε

p
F

¤
−CM (ξ) : αM (T − T0)− CM (ξ) : βMξ

σF = − ∂Ψ

∂εpF
(4.17)

= σF,0 +CF :
£
E− εpF

¤
+M (ξ) :

£
εpM − ε

p
F

¤
−CF : αF (T − T0)−CF : βF ξ
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S = −∂Ψ
∂T

(4.18)

= S0 +
C

T0
(T − T0)−

L

T0
ξ

+CM (ξ) :
£
E− εpM

¤
: αM +CF :

£
E− εpF

¤
: αF

A = −∂Ψ
∂ξ

(4.19)

= S0 − κξ − L

T0
(T − T0)

+CM (ξ) :
£
E− εpM

¤
: βM +CF :

£
E− εpF

¤
: βF

From (4.14) to (4.19), we identify σM , σF and A as the thermodynamic driving forces associated

with the dissipation of the energy caused by dεpM , dε
p
F and dξ, respectively.

4.2.2 Maxwell Symmetries and Decoupling Hypothesis

One key feature of the thermodynamic approach is that it allows one to account and work out

the couplings (or thermodynamic cross-effects) between phenomena of different origin through

the Maxwell symmetries that come from the choice of the free energy expression (4.13). These

are:

• The coupling between the different stress quantities (Σ, σM and σF ) which characterize

the UHPC material model (see Section 2.3.1):

CM (ξ) = − ∂Σ
∂εpM

= ∂σM
∂E

CF = − ∂Σ
∂εpF

= ∂σF
∂E

M (ξ) = ∂σM
∂εpF

= ∂σF
∂εpM

(4.20)

• The coupling between the stresses (Σ, σM and σF ) and the entropy (S) which relate to

thermal dilatation and latent deformation heat effects:

αMCM (ξ) +αFCF = −∂Σ
∂T =

∂S
∂E

αMCM (ξ) = −∂σM
∂T = − ∂S

∂εpM

αFCF = −∂σF
∂T = − ∂S

∂εpF

(4.21)
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• The coupling between the stresses (Σ, σM and σF ) and the chemical affinity (A) which

relate to chemical dilatation (or shrinkage) and stress induced phase change phenomena:

βMCM (ξ) + βFCF = −∂Σ
∂ξ =

∂A
∂E

βMCM (ξ) = −∂σM
∂ξ = − ∂A

∂εpM

βFCF = −∂σF
∂ξ = − ∂A

∂εpF

(4.22)

• The coupling between the entropy (S) and the chemical affinity (A) which relate to the

latent heat of hydration and temperature induced phase change phenomena:

L

T0
= −∂A

∂T
= −∂S

∂ξ
(4.23)

Using these notations, we obtain the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΣ

dσM

dσF

dS

dA

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= [K1] :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dE− dεpM

dE− dεpF

dT

dξ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.24)

where:

[K1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CM (ξ) CF

*
−CM (ξ) :αM

−CF :αF

+ *
−CM (ξ) :βM

−CF :βF

+
CM (ξ)+M (ξ) −M (ξ) −CM (ξ) :αM −CM (ξ) :βM

−M (ξ) CF+M (ξ) −CF :αF −CF :βF

CM (ξ) :αM CF :αF C/T 0 −L/T 0
CM (ξ) :βM CF :βF −L/T 0 κ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.25)

We note that these relations are such that at any time,

dΣ = dσM + dσF (4.26)
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Figure 4-3: Thermo-chemo-mechanical coupling in early-age UHPC and introduction of decou-
pling hypothesis.

Like for ordinary concrete, some of these couplings are rather weak, while others are strong.

In a first engineering approach, we consider only the strong coupling terms, which are situated

in the upper off-diagonal region in (4.24). Thermal and chemical changes produce stresses

or strains, and the chemical changes produces heat. On the other hand, the coupling terms

in the lower off-diagonal region in (4.24) are considered to be weak, because, for concrete

materials, the mechanical change has little effect on the thermal and the chemical problem,

and the thermal change has little effect on the chemical problem in precipitation reactions.

Figure 4-3 illustrates how the decoupling hypothesis is applied to the constitutive relations.

Introducing the decoupling hypothesis in (4.24) allows us to obtain the following partially

decoupled constitutive relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dΣ

dσM

dσF

dS

dA

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= [K2] :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dE− dεpM

dE− dεpF

dT

dξ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.27)
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where:

[K2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CM (ξ) CF

*
−CM (ξ) :αM

−CF :αF}

+ *
−CM (ξ) :βM

−CF :βF

+
CM (ξ)+M (ξ) −M (ξ) −CM (ξ) :αM −CM (ξ) :βM

−M (ξ) CF+M (ξ) −CF :αF −CF :βF

0 0 C/T 0 −L/T 0
0 0 0 κ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.28)

Thus, the equation for affinity A, which enters the hydration kinetics law, depends only on

the hydration degree. The equation for entropy S, which enters the heat equation for the

thermal problem, depends only on temperature and hydration degree. Only the equations for

the stresses (Σ, σM and σF ) depend on all state variables. This will turn out to be the key

to the evaluation of the risk of early-age UHPC cracking.

4.2.3 Hydration Kinetics and Heat

Thanks to the decoupling hypothesis, the kinetics of the hydration and the equation of the

entropy for the modeling of UHPC early ages have the same form as the ones for ordinary

concrete, i.e. (3.15) and (3.19) in Section 3.2.2:

dA = −κdξ ⇒ A = A (ξ) (4.29)

dS =
C

T0
dT − L

T0
dξ (4.30)

Thus, all derivations relating to the thermal and chemical problem for ordinary concrete can be

equally applied to the modeling of UHPC at early ages. For instance, the hydration kinetics

law reads:
dξ

dt
=

A (ξ)

τ (T0)
exp

∙
− Ea

RT

¸
(4.31)

and the heat equation reads:

C
dT

dt
= k∇2T + L

dξ

dt
(4.32)

In order to complete the macroscopic modeling for UHPC at early ages, we need to perform
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an experiment through which the hydration kinetics can be accessed as discussed in Section 3.3.

Additionally, for the heat equation, thermal boundary conditions need to be defined during the

curing process. With these input data, solving simultaneously the hydration kinetics law (4.31)

and the heat equation (4.32) yields the time history of temperature and hydration degree in

any material or structural system.

4.2.4 The 3-D Early-Age Constitutive Relations

From the partially decoupled constitutive relations (3.14), the constitutive equations for early-

age UHPC can be written as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dΣ

dσM

dσF

⎫⎪⎪⎪⎬⎪⎪⎪⎭= [K3] :
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dE− dεpM

dE− dεpF

dT

dξ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.33)

where:

[K3] =

⎡⎢⎢⎢⎢⎢⎢⎣
CM (ξ) CF

*
−CM (ξ) :αM

−CF :αF

+ *
−CM (ξ) :βM

−CF :βF

+
CM (ξ)+M (ξ) −M (ξ) −CM (ξ) :αM −CM (ξ) :βM

−M (ξ) CF+M (ξ) −CF :αF −CF :βF

⎤⎥⎥⎥⎥⎥⎥⎦ (4.34)

Compared to the hardened UHPC model (see Section 2.3.1), three effects are introduced in

(4.33):

• The aging elasticity, CM (ξ) and M (ξ), representing the increase of the stiffness as a

function of the hydration degree;

• The thermal stresses, −CM (ξ) : αMdT − CF (ξ) : αFdT , related to restrained thermal

dilatation in both matrix and fiber phase;

• The chemical stresses, −CM (ξ) : βMdξ − CF (ξ) : βFdξ, related to restrained chemical

swelling or shrinkage in the composite phases.
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The general 3-D constitutive model involves 99 (= 3 × 21 + 4 × 9) parameters associated

with the evolving stiffness tensors (CM (ξ), CF and M (ξ)), the thermal dilatation coefficient

tensors (αM and αF ), and the chemical dilatation tensor (βM and βF ). In the isotropic case,

the stiffness tensors can be reduced to:

CM (ξ) = 3KM (ξ)K+2GM (ξ) J

CF = 3KFK+2GFJ

M (ξ) = 3KI (ξ)K+2GI (ξ) J

(4.35)

where KM (ξ), KF and KI (ξ) are the bulk moduli of the composite matrix, the composite

fiber and the matrix-fiber coupling, respectively; GM (ξ), GF and GI (ξ) are the evolving shear

moduli of the composite matrix, the composite fiber and the matrix-fiber coupling, respectively.

The bulk moduli and the shear moduli are related to the elastic moduli of the composite matrix,

CM (ξ), the composite fiber, CF , and matrix-fiber coupling, M (ξ), by:

KM (ξ) =
CM (ξ)

3(1−2νM ) ; GM (ξ) =
CM (ξ)
2(1+νM )

;

KF =
CF

3(1−2νF ) ; GF =
CF

2(1+νF )
;

KI (ξ) =
M3D(ξ)
3(1−2νI) ; GI =

M3D(ξ)
2(1+νI)

(4.36)

where νM , νF and νI are the Poisson’s ratios of the the composite matrix, the composite fiber

and the matrix-fiber coupling, respectively; and M3D (ξ) is the 3-D counterpart3 of M (ξ) in

the 1-D model (see Figure 4-1). The Poisson’s ratios are assumed to be constant in the model.

Moreover, the isotropy of the material implies:

αM=αM1; αF=αF1;

βM = βM1; βF = βF1
(4.37)

where αM and βM are the thermal and the chemical dilatation coefficient of the composite

matrix, respectively; and αF and βF are the thermal and the chemical dilatation coefficient of

the composite fiber, respectively.

3Unlike the composite matrix stiffness and the composite fiber stiffness, the 3-D coupling stiffness tensorM (ξ)
is not directly related to its 1-D counter partM . The 3-D coupling stiffness tensor must be formulated in such a
way that the 3-D model gives the same macroscopic uniaxial response as the 1-D model, as explained in Section
2.3.3.
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Equation (2.8) can be restated in the isotropic form:

dΣ =dΣv1+dΣd

dσM = dσvM1+ dsM

dσF = dσvF1+dsF

(4.38)

where dΣv = 1
3tr (dΣ), dσ

v
M = 1

3 tr (dσM) and dσvF = 1
3tr (dσF ) are the volumetric stress

increments; dΣd, dsM and dsF are the deviatoric stress increments. The volumetric incremental

stress-strain relations are represented by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dΣv

dσvM

dσvF

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 3 [K4]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dEv − d�pM

dEv − d�pF

dT

dξ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.39)

where:

[K4] =

⎡⎢⎢⎢⎢⎢⎢⎣
KM (ξ) KF

*
−KM (ξ)αM

−KFαF

+ *
−KM (ξ)βM

−KFβF

+
KM (ξ) +KI (ξ) −KI (ξ) −KM (ξ)αM −KM (ξ)βM

−KI (ξ) KF +KI (ξ) −KFαF −KFβF

⎤⎥⎥⎥⎥⎥⎥⎦ (4.40)

In (4.40), dEv = 1
3tr (dE), d�

p
M = 1

3 tr
¡
dεpM

¢
and d�pF = 1

3tr
¡
dεpF

¢
are volumetric strain

increments. Similarly, the deviatoric incremental stress-strain relations are given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dΣd

dsM

dsF

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 2

⎡⎢⎢⎢⎣
GM (ξ) GF 0 0

GM (ξ) +GI (ξ) −GI (ξ) 0 0

−GI (ξ) GF +GI (ξ) 0 0

⎤⎥⎥⎥⎦ :
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dEd − depM

dEd − depF

dT

dξ

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.41)

where dEd = dE − dEv1, depM = dεpM − d�pM1 and depF = dεpF − d�pF1 are deviatoric strain

increments.
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The constitutive relations (4.39) and (4.41) require as input the time history of the tem-

perature and the hydration degree in the system. With this constitutive relations, the stress

equilibrium equation is solved in order to find statically admissible stress fields:

divΣ+ ρf = 0 (4.42)

4.2.5 Plasticity of the 3-D Early-Age Model

In order to establish the plastic behavior of the 3-D early-age UHPC model, 3-D loading func-

tions and flow rules need to be constructed.

The 3-D Early-Age Strength Domain

The 3-D strength domain for UHPC at early ages is very similar to that of the hardened UHPC

model. In fact, the only difference is that the strength properties of UHPC are now a function

of the hydration degree: the 3-D strength domain evolves. Like in the hardened UHPC model

(see Section 2.3.2), the early-age UHPC strength domain is also characterized by 6 macroscopic

strength values (Σ−t,1 (ξ), Σ
−
c,1 (ξ), Σ

−
b,1 (ξ), Σt,2 (ξ), Σc,2 (ξ) and Σb,2 (ξ)), which now evolve as the

hydration progresses. The evolution of the strength properties are assumed to follow Laube’s

law explained in Section 4.1.1.

From a modeling point of view, the strength domain DE of UHPC, which is described by

the 3-D loading function F , is governed by the individual behaviors of the composite matrix

and the composite fiber (2.15):

Σ (ξ) ∈ DE ⇔ F = max [FM , FF ] ≤ 0 ⇔
*
σM (ξ) ∈ DM ⇔ FM (σM , ξ) ≤ 0

σF (ξ) ∈ DF ⇔ FF (σF , ξ) ≤ 0

+
(4.43)

where the 3-D loading functions (FM and FF ) are dependent on the hydration degree. More

precisely, the 3-D loading function of the composite matrix, FM , is captured by three higher

initial limits (σMt (ξ), σMc (ξ) and σMb (ξ)) and three lower yield limits (σcrMt (ξ), σ
cr
Mc (ξ) and

σcrMb (ξ)). For early-age UHPC, we can describe the strength domain of the composite matrix
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as follows:

σM (ξ) ∈ DM ⇔

FM (σM , ξ) =

*
F 0M = max

h
fTC,0M , fUN,0

M , fBI,0M

i
before cracking

F cr
M = max

h
fTC,crM , fUN,cr

M , fBI,crM

i
after cracking

+
≤ 0

(4.44)

where
fTC,0M = I1,M (ξ)− σMt (ξ) ≤ 0

fUN,0
M = αUNM (ξ) I1,M (ξ) + |sM (ξ)|− cUN,0

M (ξ) ≤ 0

fBI,0M = αBIM (ξ) I1,M (ξ) + |sM (ξ)|− cBI,0M (ξ) ≤ 0

(4.45)

fTC,crM = I1,M (ξ)− σcrMt (ξ) ≤ 0

fUN,cr
M = αUNM (ξ) I1,M (ξ) + |sM (ξ)|− cUN,cr

M (ξ) ≤ 0

fBI,crM = αBIM (ξ) I1,M (ξ) + |sM (ξ)|− cBI,crM (ξ) ≤ 0

(4.46)

where the friction coefficients (αi) and the cohesion (ci) is still defined by (2.18) and (2.21);

except for their dependence on the hydration degree.

Furthermore, the 3-D loading function of the composite fiber, FF , is captured by three

characteristic values, i.e. σFt (ξ), σFc (ξ) and σFb (ξ). For early-age UHPC, the strength

domain of the composite fiber is described as follows:

σF (ξ) ∈ DF ⇔ FF (σF , ξ) = max
£
fTCF , fDP

F

¤
≤ 0 (4.47)

where
fTCF = I1,F (ξ)− σFt (ξ) ≤ 0

fDP
F = αUNF (ξ) I (ξ)1,F + |sF (ξ)|− cDP

F (ξ) ≤ 0
(4.48)

The 3-D Early-Age Plastic Flow Rule

The composite matrix and composite fiber are both governed by the following Kuhn-Tucker

conditions:

FM (σM , ξ) ≤ 0; dλM ≥ 0; FM (σM , ξ) dλM = 0 (4.49)

FF (σF , ξ) ≤ 0; dλF ≥ 0; FF (σF , ξ) dλF = 0 (4.50)
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where dλM and dλF are the plastic multipliers that represent the intensity of the plastic flow in

the composite matrix and the composite fiber, respectively. Like in the hardened 3-D UHPC

model, an associated plastic flow rule is adopted for the 3-D early-age UHPC model. Hence,

using (2.29), the permanent deformations of the composite matrix and the composite fiber read:

dεpM =
X
i

dλM,i
∂FM,i (σM , ξ)

∂σM
(4.51)

= dλTCM 1+ dλUNM
£
αUNM 1+NsM (ξ)

¤
+ dλBIM

£
αBIM 1+NsM (ξ)

¤

dεpF =
X
i

dλF,i (ξ)
∂FF,i (σF , ξ)

∂σF
(4.52)

= dλTCF 1+ dλDP
F

£
αUNF 1+NsF (ξ)

¤
where the loading functions of the composite matrix are still defined in Table 2.1; NsM = sM

|sM |

and NsF =
sF
|sF | are the normalized deviatoric stress tensor of the composite matrix and the

composite fiber, respectively.

4.2.6 Consistency with the 1-D Model

In a last step of our constitutive developments, we need to ensure the consistency of the 3-D

model with the 1-D model response. By introducing the same Poisson’s ratio for all components

(νM = νF = νI ≡ ν) in the 3-D model and assuming the Poisson’s ratio does not change during

hydration, the consistency with the 1-D model is ensured by the following 3-D coupling modulus:

M3D (ξ) = β (ξ)M (ξ) + [β (ξ)− 1] CM (ξ)CF

CM (ξ) + CF
(4.53)

where

β (ξ) =

h
αUNM (ξ) +

p
2/3
i2
(1− ν) (1 + ν)

3
£
αUNM (ξ)

¤2
(1 + ν) + (1− 2ν)

(4.54)

Like other stiffness values, the evolution of the coupling modulus is assumed to follow Byfors’

Law (see Section 4.1.2).

Based on the reasoning explored in Section 2.3.3, a uniaxial stress-strain output from the
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3-D early-age UHPC model can now be obtained with the hydration degree as parameter. The

noteworthy four stress-strain points in the Exx − Σxx curve are functions of the hydration

degree: ³
Exx,1 (ξ) , Σ

−
xx,1 (ξ)

´
= (Exx, Σxx)|Σxx(ξ)=σMt(ξ), Σyy(ξ)=0

(4.55)³
Exx,1 (ξ) , Σ

+
xx,1 (ξ)

´
=
³
Exx|Σxx(ξ)=σMt(ξ), Σyy(ξ)=0

, Σxx|Σxx=σcrMt(ξ)

´
(4.56)

(Exx,2A (ξ) , Σxx,2A (ξ)) = (Exx, Σxx)|Σyy(ξ)=0, fUN,crM (ξ)=0, fTCF (ξ)=0
(4.57)

(Exx,2B (ξ) , Σxx,2 (ξ)) = (Exx, Σxx)| Σyy=0, f
TC,cr
M (ξ)=0,

fUN,crM (ξ)=0, fTCF (ξ)=0

(4.58)

=

⎛⎝Exx|Σyy(ξ)=0, fTC,crM (ξ)=0,

fUN,crM (ξ)=0, fTCF (ξ)=0

, Σxx|Σxx(ξ)=σcrMt(ξ)+σFt(ξ)

⎞⎠
Following the procedure used to derive (2.38)-(2.49) for hardened UHPC, the above equations

lead to an analytical solution for the four points. Similarly, the evolving stiffness is obtained

analytically:

K0 (ξ) =
∂Σxx
∂Exx

¯̄̄̄
Σyy(ξ)=0

(4.59)

K1 (ξ) =
∂Σxx
∂Exx

¯̄̄̄
Σyy(ξ)=0, fUNM (ξ)=0

(4.60)

K2A (ξ) =
∂Σxx
∂Exx

¯̄̄̄
Σyy(ξ)=0, fUNM (ξ)=0, fTCF (ξ)=0

(4.61)

These three stiffness values for the early-age UHPC model can be computed using a similar

approach as the one employed to derive (2.50)-(2.57) for the hardened UHPC model.

Figure 4-4 displays the analytical solutions for different hydration degrees4. We can clearly

see the evolution of the stiffness and strength as the hydration progresses. These analytical

results will be used later on for verification purposes of the model implementation in a finite

element environment.

4The material properties of DuctalTM -Steel Fiber are used for the model parameters of the hardened UHPC
material, as listed in Table 2.4. In order to see the evolution of the material properties, four cases of hydration
degree are considered, i.e. ξ = 0.25, 0.5, 0.75 and 1.0.
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Analytical Solutions
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Figure 4-4: Uniaxial stress-strain behavior obtained from the analytical solution: (a) Entire
stress-strain curve, (b) Focus on first cracking behavior.
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4.3 Chapter Summary

The thermo-chemo-mechanical coupling model of UHPC is the combination of the two-phase

mechanical model of hardened UHPC and the thermo-chemo-mechanical coupling model for

ordinary early-age concrete. The coupling of these two model is achieved by considering

the evolution of the strength and stiffness properties in the two-phase UHPC material model.

As a first engineering approach, a linear evolution law [Laube’s law] is adopted for strength,

and stiffness is assumed to follow a nonlinear evolution law [Byfors’ law]. The couplings

[thermodynamic cross-effects] between phenomena of different origin are investigated through

the Maxwell symmetries that come from the choice of the free energy expression. Like in

the ordinary concrete constitutive relations, it is assumed that the thermodynamic imbalance

induced by stress, temperature and plastic evolutions are negligible for the hydration reaction.

Finally, The 3-D macroscopic model for UHPC at early ages is constructed in three steps:

• Determination of the 3-D constitutive relations: The 3-D stress-strain relations are ob-

tained using thermodynamic approach.

• Determination of strength domain and plastic deformation of the 3-D model: The 3-

D strength limits evolve as the hydration progresses. Thus, the 3-D loading functions

depend on the hydration degree. Like for the hardened UHPC model, an associated

plastic flow rule is adopted.

• Consistency of the 3-D model with the 1-D model: The 3-D model is designed to give

consistent results with the 1-D model; and this over the entire hydration process.
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Chapter 5

FINITE ELEMENT

IMPLEMENTATION

The finite element implementation of the early-age UHPC model represents the link between

material modeling and structural application. With the finite element implementation of the

early-age UHPC model, one can simulate structural behavior composed of UHPC at early

ages. In this Chapter, the finite element formulation and the realization of the model is

discussed. While the thermo-chemical model does not differ much from the one available for

ordinary concrete, and is implemented in several finite element programs, the contribution of

this research is formulation and implementation of the thermo-chemo-mechanical model. This

chapter presents details on the finite element implementation of the early-age UHPC model in

a commercial finite element program, CESAR-LCPC. Moreover, in order to verify the newly

implemented module, uniaxial responses of an early-age UHPC element are compared with the

analytical solutions developed in Chapter 4.

5.1 Finite Element Formulation

Thanks to the decoupling hypothesis, the simulations can be carried out in a two-step manner.

First, the thermo-chemical problem is solved. The results are used as input in the thermo-

chemo-mechanical problem to determine deflection, stress, etc.
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5.1.1 Principle of Virtual Displacements

The mechanical finite element analysis problem for early-age UHPC can be stated as follows:

Given

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Geometry of Body

Force Boundary Condition: fd and Td

Displacement Boundary Condition: ξd

Material Stress-strain Law

Temperature and Hydration Degree History: T (x, t) and ξ (x, t)

Calculate

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Displacements: ξ

The Corresponding Strains: E, εpM and εpF

The Corresponding Stress: Σ, σM and σF

where f is the volume force density; T is the surface force density; ξ is the displacement; the

superscript "d" indicate the prescribed quantities; and Σ and E are the macroscopic stress and

strain tensor, respectively1. In order to close the above boundary value problem, the following

three conditions must be satisfied:

• Stress Equilibrium:

divΣ+ ρf = 0 (5.1)

where ρ is the mass density. In the case of the UHPC model, it should be noted that

only the macroscopic stress Σ enters the stress equilibrium equation. By contrast, the

values of the stresses in the individual components (σM and σF ) are dictated by their

state equations (4.33).

• Geometrical Compatibility (strain-displacement relation):

E =
1

2

¡
gradξ + gradξT

¢
(5.2)

1Dimensions of the quantities are followings:

[f ] = FM−1 = LT−2; [T] = FL−2 =ML−1T−2
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This equation can be obtained from the infinitesimal deformation assumption.

• Material Law (constitutive relation and plastic evolution law):

Σ = Σ (E, ...) (5.3)

For the early-age UHPC, the constitutive relation is given by (4.33), and the plastic

evolution law by (4.43).

The basis of the displacement-based finite element solution is the principle of virtual dis-

placements. This principle states that the total internal virtual work be equal to the total

external virtual work, for any compatible small virtual displacements imposed on the system.

The principle reads [2]:

W̄int =

Z
Ω
Ē : ΣdΩ (5.4)

=

Z
Ω
ξ̄ · ρfdΩ+

Z
∂Ω
ξ̄ ·Tda = W̄ext

where W̄int and W̄ext are the internal and external virtual work, respectively; ξ̄ is the virtual

displacement; and Ē is the corresponding virtual strain (the over-bar denoting virtual quanti-

ties). The equation in the first row represents the virtual work of the internal stress, and the

equation in the second row expresses the virtual work done by the external forces (volume and

surface forces).

5.1.2 Finite Element Equations

Finite element analysis requires the spacial discretization of the system to be analyzed. The

entire system is approximated as an assemblage of discrete finite elements inter-connected at

nodal points on the element boundaries. For an element k, the displacement field ξk (x) is

assumed to be a function of the unknown global displacements at the nodes {U}:

ξk (x) =
h
Nk
i
{U} (5.5)
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where
£
Nk
¤
is the displacement interpolation matrix for the element k, and the superscript "k"

denotes the element number2. The choice of element and the construction of the corresponding

entries in
£
Nk
¤
constitute the basic steps of a finite element solution. From the assumption

of the displacement field in (5.5), the corresponding macroscopic strain for the element k is

expressed by:

Ek (x) =
h
Bk
i
{U} (5.6)

where
£
Bk (x)

¤
is the strain-displacement matrix3 for the element k.

For the use of the principle of virtual displacements, the same assumptions are applied to

the virtual displacements and the macroscopic strains for element k:

ξ̄
k
=
h
Nk
i ©

Ū
ª

(5.7)

Ēk =
h
Bk
i ©

Ū
ª

(5.8)

2Here, we express symmetric 2nd and 4th order tensors in matrix form. For example, the 2nd order strain
tensor (3× 3) is expressed in a 6× 1 vector form:

E =

⎡⎣ Exx Exy Exz

Exy Eyy Eyz

Exz Eyz Ezz

⎤⎦ → E =
�
Exx Eyy Ezz Exy Exz Eyz

�T
By adopting this notation, we can express the following quantities in matrix form:

ξ⇒ n× 1;
�
Nk
�
⇒ n×m; {U}⇒ m× 1

where n is the dimension of the problem, and m is the total number of degree of freedom of the considered
element.

3The strain-displacement matrix for the element k is given by:k
Bk (x)

l
=

�
Nk (x)

�
dx

By adopting the condensed matrix notation for symmetric tensors, we express the following quantities in
matrix form:

E⇒ 2n× 1;
�
Bk
�
⇒ 2n×m

where n is the dimension of the problem, and m is the total number of degree of freedom of the considered
element.
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Substitution of the previous relations into (5.4) yields:

W̄int =
X
k

Z
Ωk

©
Ū
ªT h

Bk
iT
ΣkdΩk (5.9)

=
X
k

Z
Ωk

©
Ū
ªT h

Nk
iT

ρfkdΩk +
X
k

Z
∂Ωk

©
Ū
ªT h

Nk
iT
Tkd

³
∂Ωk

´
= W̄ext

By introducing new notations for internal and external forces at the nodes ({Fint} and {Fext}),

this equation can be simplified as follows:

W̄int =
©
Ū
ªT {Fint} = ©ŪªT {Fext} = W̄ext (5.10)

where
{Fint} =

X
k

R
Ωk

£
Bk
¤T
ΣkdΩk

{Fext} =
X
k

R
Ωk

£
Nk
¤T

ρfkdΩk +
X
k

R
∂Ωk

£
Nk
¤T
Tkd

¡
∂Ωk

¢ (5.11)

Since (5.10) must hold for any value of the virtual displacement
©
Ū
ªT , we obtain:

{R} = {Fext}− {Fint} = 0 (5.12)

where {R} is the residual force vector for the global force equilibrium.

For a nonlinear material law, an iteration procedure is required to solve the above equation

until the residual force vector is close to zero. In this study, the Newton-Raphson method is

adopted:

n
F
(i)
int

o
=

n
F
(i−1)
int

o
+

∂
n
F
(i−1)
int

o
∂
©
U (i)

ª n
∆U (i)

o
(5.13)

=
n
F
(i−1)
int

o
+

*X
k

Z
Ωk

h
Bk
iT µ∂Σ

∂E

¶k,(i) h
Bk
i
dΩk

+n
∆U (i)

o
=

n
F
(i−1)
int

o
+
h
K(i) (ξ)

in
∆U (i)

o
where (i) is the number of the iteration step in the Newton-Raphson method; ∆U (i) = U (i) −

U (i−1) is the corresponding incremental residual displacement; and
£
K(i) (ξ)

¤
is the correspond-
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ing stiffness matrix of the element assemblage which is now a function of the eventually spatially

varying hydration degree. From (5.12) and (5.13), the unknown incremental residual displace-

ments
©
∆U (i)

ª
are calculated at each iteration using the residual force vector

©
R(i−1)

ª
:

h
K(i) (ξ)

in
∆U (i)

o
= {Fext}−

n
F
(i−1)
int

o
=
n
R(i−1)

o
(5.14)

Based on this iteration scheme, the unknown displacement {U} can be obtained for a nonlinear

material law.

The iteration procedure, however, is not necessary for elastic behavior. From (4.33),¡
∂Σ
∂E

¢k,(i)
is equal to the sum of the 4th order stiffness tensors for the composite matrix and

the composite fiber: µ
∂Σ

∂E

¶k,(i)

= Ck
M

³
ξk
´
+Ck

F (5.15)

Thus,
©
∆U (i)

ª
can be easily obtained for elastic behavior from (5.14), using the following

explicit equation of
£
K(i) (ξ)

¤
:

h
K(i) (ξ)

i
=
X
k

Z
Ωk

h
Bk
iT D

Ck
M

³
ξk
´
+Ck

F

Eh
Bk (x)

i
dΩk (5.16)

Following the previously described iteration scheme, the unknown displacement {U} =
©
∆U (1)

ª
is obtained at the first iteration step for elastic behavior4.

Solving the finite element equation for plastic behavior requires some special care to obtain

the stiffness matrix
£
K(i) (ξ)

¤
and the internal nodal force at nodes

n
F
(i)
int

o
. First, it is not

as straightforward to obtain
£
K(i) (ξ)

¤
for plastic behavior as it is for linear elastic behavior,

because it requires to calculate a tangent operator between two consecutive iterative stress

states. Generally, there are two ways to obtain
¡
∂Σ
∂E

¢k,(i)
: one is to use the initial tangent

operator, i.e. (5.15), and the other is to use consistent tangent operators [22]. In this study the

former method is used for simplicity of the formulation. Furthermore, in order to calculate the

4At the first iteratation step (i = 1), the internal force at the nodes is zero:q
F
(0)
int

r
= 0
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internal force
n
F
(i)
int

o
at nodes according to (5.11), the plastically admissible macroscopic stress

Σk,(i) is required. These stresses are calculated in an iterative fashion from the infinitesimal

state equation (4.33) written in an incremental form:

Σk,(i) = Σk,(i−1) (5.17)

+Ck
M

³
ξk
´
:
h
∆Ek,(i) −∆εp,k,(i)M

i
+Ck

F :
h
∆Ek,(i) −∆εp,k,(i)F

i
−
h
Ck
M

³
ξk
´
: αk

M +Ck
F : α

k
F

i
∆T k −

h
Ck
M

³
ξk
´
: βk

M +Ck
F : β

k
F

i
∆ξk

where ∆Ek,(i) =
£
Bk
¤ ©
∆U (i)

ª
; ∆T k and ∆ξk are obtained at each time step from the thermo-

chemical finite element analysis; and ∆εp,k,(i−1)M and ∆εp,k,(i−1)M can be obtained from a return

mapping algorithm. This return mapping algorithm is discussed in the following section.

5.1.3 Return Mapping Algorithm

An implicit backward Euler difference scheme is adopted as the return mapping algorithm

in order to obtain the plastically admissible macroscopic stress Σ for a given set of material

parameters and strain history. The return mapping algorithm applies the state and evolution

equations of the constitutive model in a spatially discretized form through an iterative procedure

[22]. With this procedure, the two-phase and multi-loading surface problem of early-age UHPC

reduces to the standard problem of finding the closest distance of the trial stress state to the

elastic domain. Within a finite element procedure, this algorithm discretizes the constitutive

models at the level of the integration points.

The implementation of the 3-D early-age UHPC model requires us to consider simulta-

neously the five different loading surfaces5 given by (4.44) and (4.47). The return mapping

algorithm presented in this section applies to the general 3-D case. However, this method is

5Before cracking, the five loading functions are:

fTC,0M , fUN,0M and fBI,0M for the composite matrix
fTCF and fDPF for the composite fiber

After cracking, those are:

fTC,crM , fUN,crM and fBI,crM for the composite matrix
fTCF and fDPF for the composite fiber
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easily adapted for uniaxial, biaxial and plane stress condition; and Reference [7] provides details

of these conditions.

Before entering the details of the return mapping algorithm, we summarize the quantities

that are given as input for the algorithm. These are:

• The thermo-chemical state variables (T k and ξk) and their incremental values (∆T k and

∆ξk) which are obtained from the thermo-chemical finite element analysis at each time

step, and each point in the structure.

• The incremental displacement ∆U (i) which is obtained from the (modified) Newton-

Raphson scheme:

h
K(0) (ξ)

in
∆U (i)

o
= {Fext}−

n
F
(i−1)
int

o
=
n
R(i−1)

o
(5.18)

where
£
K(0) (ξ)

¤
is the elastic stiffness matrix of the element assemblage calculated at

the beginning of each time step (during the time step iterations the hydration does not

evolve).

• The incremental macroscopic strain which is calculated from the given incremental resid-

ual displacement; analogous to (5.6):

∆Ek,(i) =
h
Bk
in
∆U (i)

o
(5.19)

Strictly speaking, all state variables of the system and the cracking variable have to include a

superscript (i) for the iteration number of the Newton-Raphson scheme. Furthermore, another

superscript k for elements has to be included. However, they are omitted for simplicity of the

notation in this section. This is because the whole return mapping algorithm is carried out

at the integration point of each element and for each iteration of the Newton-Raphson scheme,

and notations are repetitive. The following simplified notation will be used:

∆T k ⇒ ∆T ; ∆ξk ⇒ ∆ξ; ∆Ek,(i) ⇒ ∆E; (5.20)
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Σk,(i−1) ⇒ Σin; σ
k,(i−1)
M ⇒ σM,in; σ

k,(i−1)
F ⇒ σM,in;

Ek,(i−1) ⇒ Ein; ε
p,k,(i−1)
M ⇒ εpM,in; ε

p,k,(i−1)
F ⇒ εpF,in; χk,(i−1) ⇒ χin

(5.21)

Σk,(i) ⇒ Σout; σ
k,(i)
M ⇒ σM,out; σ

k,(i)
F ⇒ σM,out;

Ek,(i) ⇒ Eout; ε
p,k,(i)
M ⇒ εpM,out; ε

p,k,(i)
F ⇒ εpF,out; χk,(i) ⇒ χout

(5.22)

where the subscript "in" indicates the input quantities, which correspond to a plastically ad-

missible stress field of the previous Newton-Raphson iteration (i− 1) before considering the

incremental macroscopic strain ∆E; and the the subscript "out" indicates the output quanti-

ties, which correspond to a plastically admissible stress field of the current Newton-Raphson

iteration (i) after considering the incremental macroscopic strain ∆E.

The 3-D return mapping algorithm assumes that the rest of the thermodynamic state vari-

ables of the system (E − εpM and E − εpF ) and a cracking state variable (χ) are also known

inputs of the return mapping algorithm:

¡
E− εpM , E− εpF , χ

¢
|in =

³
Ein − εpM,in, Ein − εpF,in, χin

´
where the cracking state variable indicates the cracking condition in the composite matrix. It

is defined as follows:

χin = Y
¡¯̄
εpM
¯̄¢

(5.23)

where
¯̄
εpM
¯̄
is the magnitude of the plastic strain tensor of the composite matrix; and Y (xh)

is the Heaviside function defined by:

Y (xh) =

⎧⎨⎩ 0 if xh ≤ 0

1 if xh > 0
(5.24)

Here, only two composite matrix cracking states are modeled: χ = 0 if the composite matrix

has not cracked, χ = 1 if the composite matrix has cracked.

Given the incremental values of the thermodynamic state variables (∆T and ∆ξ), the return

mapping algorithm provides the updated state variables and cracking variable:

¡
E− εpM , E− εpF , χ

¢
|out =

³
Eout − εpM,out, Eout − εpF,out, χout

´
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Thus, the 3-D early-age UHPC constitutive equations and plastic evolution equations are dis-

cretized with respect to iteration steps of the Newton-Raphson method. Based on these

discretized constitutive relations, the return mapping algorithm can be broken down in the

following four steps:

1. Compute trial values.

2. Check yield conditions. If F ≤ 0, go to Step 4. Otherwise, proceed to Step 3.

3. Solve for the plastic strains. Then, go to Step 2.

4. Update the stresses.

The 3-D early-age UHPCmodel may require multiple iterations checking the yield conditions

(Step 2) and solving the plastic strains (Step 3).

Step 1: Compute Trial Values.

We first assume that the imposed incremental macroscopic strain ∆E affects the stresses elasti-

cally. Then, the trial stresses in the composite matrix and in the composite fiber are calculated

from (4.38)-(4.41) in an incremental fashion:

σM,tr = σM,in + 3KM [∆E
v − αM∆T − βM∆ξ]1+ 2GM∆E

d

σF,tr = σF,in + 3KF [∆E
v − αF∆T − βF∆ξ]1+ 2GF∆E

d
(5.25)

The trial stresses (σM,tr and σF,tr) are not guaranteed to be plastically admissible. These

trial stresses are calculated from the stresses of the previous step (σM,in and σF,in) for given

incremental values of the thermodynamic state variables (∆T and ∆ξ) and the incremental

macroscopic strain (∆E).

As a first step, these elastically assumed trial stresses are temporarily considered as the

updated solutions:

σM,up = σM,tr; σF,up = σF,tr (5.26)

where the subscript "up" indicates the updated quantities. Based on this elastic assumption,
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the plastic flow is frozen:

∆λi = 0;

∆εpM,up = 0; ∆ε
p
F,up = 0; χup = χin

(5.27)

where ∆λi = ∆λTCM,up, ∆λ
UN
M,up, ∆λ

BI
M,up, ∆λ

TC
F,up and ∆λ

DP
F,up; and 0 is a 3× 3 matrix with only

zero elements.

Step 2. Check Yield Conditions

In order to find plastically admissible stress fields, the five loading functions are considered

according to the cracking condition of the composite matrix. For the 3-D model, a violated

loading surface pointer cv is introduced6:

cv = 2Y
£
fTCM

¡
σM,up, χup

¢¤
+ 3Y

£
fUNM

¡
σM,up, χup

¢¤
(5.28)

+4Y
£
fBIM

¡
σM,up, χup

¢¤
+ 10Y

£
fTCF (σF,up)

¤
+ 20Y

£
fDP
F (σM,up)

¤
where the loading function for the composite matrix is based on the updated cracking state

FM = FM
¡
χup

¢
:

FM
¡
χup = 0

¢
= F 0M

FM
¡
χup = 1

¢
= F cr

M

(5.29)

These loading functions are defined by (4.44).

Since the 3-D early-age UHPC model has five loading functions, there are 24 possible plas-

ticity cases representing different permutations of the loading functions. Table 5.1 summarizes

all the possible cases in the model. Twenty-three of the cases require a plastic projection.

If there are no violated loading functions, i.e. cv = 0, the updated stresses are plastically

admissible. With the corresponding plastic multiplier (∆λi ≥ 0), the final stresses are deter-

6Here, the terminology "violated" is used for the following case:

fi > 0

where fi is a loading function. This is because plastically admissible stresses always satisfy:

fi ≤ 0
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No. of Violated Violated Loading Functions Value of Violated
Loading Functions Matrix Fiber Surface Pointer [cv]

0 - - 0
1 fTCM - 2

fUNM - 3
fBIM - 4
- fTCF 10
- fDP

F 20
2 fTCM , fUNM - 5

fUNM , fBIM - 7
- fTCF , fDP

F 30
fTCM fTCF 12
fTCM fDP

F 22
fUNM fTCF 13
fUNM fDP

F 23
fBIM fTCF 14
fBIM fDP

F 24
3 fTCM fTCF , fDP

F 32
fUNM fTCF , fDP

F 33
fBIM fTCF , fDP

F 34
fTCM , fUNM fTCF 15
fTCM , fUNM fDP

F 25
fUNM , fBIM fTCF 17
fUNM , fBIM fDP

F 27
4 fUNM , fBIM fDP

F , fDP
F 35

fUNM , fBIM fDP
F , fDP

F 37

Table 5.1: Twenty-four possible plasticity cases representing different permutations of the load-
ing functions [7].
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mined in Step 4. Otherwise, a newly corrected incremental plastic strain is introduced in Step

3.

Step 3. Solve for the Plastic Strains

For the 23 possible plastic projection cases, the corresponding incremental plastic multipliers

must be solved. The detailed procedures of the plastic projection scheme are extensively

presented in Reference [7], and this report only summarizes the results of the triaxial loading

case in Appendix A. With the solved set of the incremental plastic multipliers (∆λTCM , ∆λUNM ,

∆λBIM , ∆λTCF and ∆λDP
F ), the incremental plastic strains (∆εpM and ∆εpF ) can be calculated

from the discretized forms of (2.30) and (2.31):

∆εpM,up = ∆λ
TC
M,up1+∆λ

UN
M,up

£
αUNM 1+Ns,M

¤
+∆λBIM,up

£
αBIM 1+Ns,M,up

¤
∆εpF,up = ∆λ

TC
F,up1+∆λ

DP
F,up

£
αUNF 1+Ns,F,up

¤ (5.30)

where Ns,M,up =
sM,up

|sM,up| and Ns,F,up =
sF,up

|sF,up| are the normalized deviatoric stress tensor of the

composite matrix and the composite fiber, respectively.

As summarized in Table 5.1, the violated loading surface pointer cv plays an important role

in determining the plastic multipliers, ∆λi. However, it should be noted that cv denotes the

yield surfaces that might be active. In other words, cv does not dictate, only suggests, the

projection scheme. Given any value of cv, the correct plastic multiplier is the smallest among

all possible plastic multipliers. In the finite element program, this concept is developed by

first checking, given any value of cv, the simplest cases which suggest multiple violated yield

surfaces. It means that the correct plastic intensity must be found by searching first the cases

of one violated loading function, then the cases of two violated loading functions, then the cases

of three violated loading functions, and finally the cases of four violated loading functions.

After obtaining the incremental plastic strains from (5.30), the cracking state in the com-

posite matrix is suggested by the plastic projection:

χout = 1 if
¯̄̄
∆εpM,up

¯̄̄
6= 0 (5.31)
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and the composite stresses are updated from:

σM,up = σM,tr +
h
−3 (KM +KI)∆�

p
M,up + 3KI∆�

p
F,up

i
1 (5.32)

−2 (GM +GI)∆e
p
M,up + 2GI∆e

p
M,up

σF,up = σF,tr +
h
3KI∆�

p
M,up − 3 (KF+KI)∆�

p
F,up

i
1 (5.33)

+2GI∆e
p
M,up − 2 (GF +GI)∆e

p
M,up

Now, Step 2 must be repeated in order to check that the newly updated stress state does not

violate the loading functions. If this is not the case, we proceed to Step 4.

Step 4. Update the Stresses

If there are no violated loading functions (cv = 0) and the incremental plastic multipliers are

correct (∆λi ≥ 0), then the Kuhn-Tucker conditions (4.49) and (4.50) are satisfied. Then, the

plastically admissible stresses and the corresponding strains are updated as follows:

σM,out = σM,up; σF,out = σF,up;

εpM,out = εpM,in +∆ε
p
M,up; εpM,out = εpM,in +∆ε

p
M,up

(5.34)

where ∆εpM,up and ∆ε
p
F,up are zero if there are no plastic projections in Step 3. Furthermore,

the macroscopic stress and strain are updated as well:

Σout = σM,out + σF,out

Eout = Ein +∆E
(5.35)

and the cracking parameter is determined:

χout = χup (5.36)
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Program
CESAR
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Figure 5-1: Overview of the CESAR-LCPC program structure.

5.2 The EAHC Finite Element Module

For the analysis of early-age UHPC structure, we implemented our model and algorithms in

a finite element module, EAHC, embedded in a commercial finite element program, CESAR-

LCPC. This section briefly presents the way by which our developments are implemented in

CESAR-LCPC, in form of a simplified flow chart of an executable subroutine.

5.2.1 Overview of CESAR-LCPC

CESAR-LCPC is a FORTRAN based finite element program developed by the Laboratoire

Central des Ponts et Chaussées [LCPC], Paris, France. CESAR-LCPC consists of three main

programs: MAX which is the finite element pre-processor; CESAR which executes the finite

element calculation as a main solver; and PEGGY which is the finite element post-processor.

These three programs share a common date base which includes the geometry, material values,

boundary conditions, load history, etc. Figure 5-1 shows an overview of the CESAR-LCPC

program structure.

The main solver, CESAR, is composed of numerous calculation modules to solve various

problems with different material behaviors such as linear elastic problem, diffusion problem,

thermo-chemo-mechanical problem, etc. A simple flow chart for CESAR is illustrated in

Figure 5-2.
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Figure 5-2: Overview of the subroutine structure of the main solver, program CESAR.

5.2.2 The EAHC Module

The finite element module, EAHC, is coded for the CESAR program in order to deal with the

two-phase thermo-chemo-mechanical coupling behavior of UHPC at early ages. As discussed

in Chapter 4, the implemented material model captures elastic, brittle and plastic behavior

of early-age UHPC, with evolving stiffness and strength properties. In the CESAR program,

there already exist a module MEXO, by which chemo-plastic problems can be solved in order

to analyze the behavior of ordinary concrete at early ages. Moreover, a module HP2C, which

can solve two-phase mechanical behavior of the hardened UHPC problem, has been embedded

in the MEXO module by Chuang [7]. The coupling of these two pre-existing modules is

carried out using the basic structure of the MEXO module. For each time step, the HP2C

module is executed with evolving stiffness and strength properties. While coupling the two

modules, minor modifications in MEXO and HP2C were introduced and several subroutines

were developed. This newly modified module, EAHC, is named after Early-Age ultra-H igh

performance Concrete.

Since the basic structure of MEXO is used for the new module, we need to explain briefly

the subroutine BLMEXO, a calculation module shown in Figure 5-2. The most important

subroutine in BLMEXO is EXMEXO, which is an executable subroutine whose structure is

briefly reviewed with corresponding variables in Figure 5-3. The notations used in the figure
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are consistent with the explanation in Section 5.1. In order to indicate the iteration number

in the variables, a superscript (IPAS) is used for time steps where external loadings change,

and a subscript (ITER) is used for the iterations of the global Newton-Raphson method.

Furthermore, corresponding subroutines to the executions are presented in Figure 5-4. It is

worthwhile to note that the return mapping algorithm is included in a subroutine "CPEAHC"

where plastically admissible [correct] stress fields are obtained. The input data format for the

EAHC module is presented in Appendix B.

5.2.3 Verification of the EAHC Module

The implementation of the early-age UHPC module is verified with respect to stability and

consistency at the material level. As an example, this section shows the uniaxial response of

an early-age UHPC element produced by the finite element module. The material properties

of DuctalTM -Steel Fiber are used for the model parameters of the hardened UHPC material,

as listed in Table 2.4. In order to see the evolution of the material properties, four cases of

hydration degree are considered, i.e. ξ = 0.25, 0.5, 0.75 and 1.0. As presented in Section 4.1,

Byfors’ evolution law is adopted for the stiffness properties and Laube’s evolution law is used

for strength properties.

The analytical solution for the uniaxial stress-strain behavior was presented in Section 4.2.6.

It is used here for verificational purposes. Axi-symmetric 8-node quadrilateral elements are used

for the simulations, and two types of meshes are employed for checking the consistency of the

solution algorithm. Figure 5-5 shows the two types of mesh designs (a single element and fifty

elements), their dimensions (0.1 m× 0.05 m) and the employed boundary conditions. In order

to obtain a stress-strain curve from the simulation, displacement driven test simulations were

carried out. The simulation results in Figures (5-6)-(5-9) are compared with the analytical

results from Figure 4-4 for the different hydration degrees. Both finite element simulation

results show an excellent agreement with the analytical solutions, and they show very good

convergence between different mesh densities.
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Figure 5-3: Flow chart of the subroutine EXMEXO and corresponding variables to be dealt
with.

98



EXMEXO Read initial conditions
relating to mechanics

Cycle over time steps
IPAS=0,NPAS

Calculate the interpolation functions

LEMEXO

INTEGR

RDTEXORead initial conditions relating to 
chemical reaction at nodes

Calculate external nodal forces

Convert stresses and strains at 
integration points into values at nodes

Save results into a file

DCANEL

SOMEXO

RDTEXORead IPASth conditions relating to 
chemical reaction at nodes

Convert temperatures and hydration 
degrees at nodes into values at 

integration points CVEAHC

Calculate the external nodal forces

Calculate the 0th-trial macroscopic 
stresses at integration points

Calculate the 0th-trial internal nodal 
forces w/o loading functions RESIDU

Calculate a tangent stiffness matrix 
considering hydration degrees ASSEM SOL0

Calculate the 0th-trial residual nodal 
forces

Calculate incremental residual 
displacements at nodes RESOL0

Calculate incremental mechanical 
macroscopic stresses at intergration 

points by assuming linear elastic 
behavior

CALDP1 MATDCEAHC

CONTR CALDP1 MATDCEAHC

Calculate displacements at nodes

Calculate stresses corrected by loading 
functions

RESIDU CTEAHC CPEAHC GETNEWVPM

Calculate INTERth-trial residual forces

Check convergence

Save results into a file

Calculate stresses relating to chemical 
reactions at integration points

Cycle over iterations
ITER=1,NITER

Calculate INTERth-trial internal nodal 
forces w/ loading functions

Return

PREL0 LEC119 IMP119

Calculate ITERth-trial macroscopic 
stresses at integration points

NO

YES

Figure 5-4: Flow chart of the subroutine EXMEXO and corresponding subroutines, where italic
letters indicate newly developed subroutines for the EAHC module.
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(a)

(b)

Figure 5-5: Mesh design and boundary conditions of the uniaxial tension test simulation using
axisymmetric elements: (a) Single element, (b) Fifty elements.
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Figure 5-6: ξ = 0.25: uniaxial response of finite element simulations compared with the ana-
lytical simulations: (a) Entire stress-strain curve, (b) Focus on first cracking behavior.
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Figure 5-7: ξ = 0.5: uniaxial response of finite element simulations compared with the analytical
simulations: (a) Entire stress-strain curve, (b) Focus on first cracking behavior.
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Figure 5-8: ξ = 0.5: uniaxial response of finite element simulations compared with the analytical
simulations: (a) Entire stress-strain curve, (b) Focus on first cracking behavior.
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Figure 5-9: ξ = 1.0: uniaxial response of finite element simulations compared with the analytical
simulations: (a) Entire stress-strain curve, (b) Focus on first cracking behavior.
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5.3 Chapter Summary

This chapter describes the computational development of the early-age UHPC constitutive

model into the EAHC finite element module. The module is embedded into a commercial

finite element program, CESAR-LCPC. The EAHC module allows users to model early-age

UHPC structures. Finite element formulation including finite element equations and the re-

turn mapping algorithm is presented in detail with flowcharts of executable subroutines and

corresponding variables. Lastly, the proposed model is verified through simulations of uniax-

ial tension tests, showing an excellent agreement with the analytical solutions and very good

convergence between different mesh densities.
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Part III

ENGINEERING APPLICATION
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Chapter 6

EARLY-AGE 3-D UHPC MODEL

VALIDATION

During the recent manufacturing of a UHPC-girder, several cracks were observed in the deck

and web of the girder. Several hypothesis for the origin of this cracking were discussed, raising

questions whether the observed cracking was a consequence of the casting method, the prestress

application or formwork removal procedure. In this Chapter, we try to address these questions

by using the novel thermo-chemo-mechanical UHPC model. At the same time, the case study of

the UHPC bridge girder will serve for validation of our model to ultimately answer the question,

it is possible to predict and mitigate - by means of our advanced simulation tools - the risk

of early-age UHPC cracking. What we present here as well, is the whole procedure of using

our model, which includes the determination of the input parameters for both thermo-chemical

and thermo-chemo-mechanical problem, boundary conditions, application of prestressing, and

interpretation of simulation results.

6.1 Overview of Application

The bridge we study here is the prototype UHPC bridge which was developed at MIT for

the Federal High-Way Administration [18]. The bridge was optimized by means of model-

based simulation for relevant traffic loads and dead weight. This type of UHPC bridge has

the potential to be used throughout the U.S. for the next generation of US-Highway Bridge
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Figure 6-1: MIT optimized DuctalTM bridge girder section (unit: inch) [20].

Girders. The section dimensions of the prestressed bridge girder are shown in Figure 6-1.

The bridge is 21 m (70 ft) long, and 22 strands are employed for prestress through its bottom

flange producing 2.4 MN (537 kips) of effective prestress. Figure 6-2 shows the configuration

of the formwork, which is composed of three parts: an inner formwork, an outer formwork, and

the bottom. This complex type of formwork was introduced in order to reduce autogenous

shrinkage during the casting procedure, because the considered UHPC material is known to

show considerable autogenous shrinkage. The bridge was cast by Prestress Service Inc. [PSi]

with the collaboration of Federal Highway Administration [FHWA] and Lafarge North America.

The construction was carried out over the period of October 11, 2003 to January 31, 2004.

When the bridge was moved out of its formwork, several cracks were observed in the deck

and web of the girder. Especially, relatively large cracks normal to the longitudinal direction

were observed (see Figure 6-3). The purpose of this engineering application is to validate the
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Figure 6-2: The configuration of formwork [9].

proposed early-age UHPC material model and to answer the following questions:

• Is it possible to predict the cracking with our new two-phase thermo-chemo-mechanical

model?

• Is it possible to reduce the risk of early-age cracking?

Thanks to the decoupling hypothesis (see Section 4.2.2), the application of the early-age

UHPC model can be carried out in a two-step manner. First, the thermo-chemical problem

is solved, and the time histories of the temperature field and the hydration fields are obtained.

These are input for the mechanical problem, for which we use the newly developed early-age

UHPC model. Each of the two subproblem requires the determination of the input parameters,

which includes material properties and boundary conditions. This case study also aims at

illustrating how an engineer can use efficiently our new developments.

6.2 Thermo-Chemical Analysis

The thermo-chemical problem consists in solving simultaneously the hydration kinetic law (4.31)

and the heat equation (4.32) for specific boundary condition; hence the following boundary value

problem:
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Figure 6-3: Cracking observed during casting, which runs from the deck to the neutral axis [9].

dξ

dt
= Ã (ξ) exp

∙
− Ea

RT

¸
in Ω (6.1)

C
∂T

∂t
= K∇2T + L

dξ

dt
in Ω (6.2)

q · n = λ (T − Text) on ∂Ω

where q · n is the heat out-flux through the surfaces of the structure. These equations are

implemented in CESAR-LCPC as module TEXO. Equations (6.1) and (6.2) require the de-

termination of the following input parameters: volume heat capacity C, heat conductivity K,

latent heat of hydration L = C
¡
T ad
∞ − T ad

0

¢
(where T ad

∞ −T ad
0 is the adiabatic temperature rise;

see Section 3.3.1), the hydration activation constant Ea/R; the normalized affinity function

Ã (ξ) (see Section 3.3); and finally the heat exchange coefficient λ of the formwork employed.

These model input parameters are obtained first, before discussing the simulation results:

the time history of the temperature field T (x, t), and the hydration degree field ξ (x, t) in the
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Figure 6-4: Mesh composed of 894 2-D plain strain elements and 300 exchange elements denoted
as black straight lines.

structure. The simulation results are then compared with temperature measurements carried

out during casting on-site, providing a means to validate our input parameters.

6.2.1 Thermal Boundary Conditions

Figure 6-4 shows the mesh employed in the 2-D simulation of the bridge girder section. For

symmetry reason, only half of the section is modeled, prescribing a zero heat-flux along the

symmetry axis. The other surfaces are modeled by linear exchange elements defined by (6.2)

(displayed in Figure 6-4 as black straight lines) which we use to simulate the loss of heat through

the formworks. These exchange conditions allow us to simulate in detail the casting procedure.

At the site, the formworks were successively removed, and each formwork removal corre-

sponds to a change of the thermal boundary conditions. At the beginning, both the inner

formwork and the outer formwork were attached to the structure. The inner formwork was

first removed 40 hours after casting, and the outer formwork was removed 50 hours after cast-

ing. This process is illustrated in Figure 6-5, displaying four phases which are considered in

our simulations. Even though there is no difference in thermal boundary conditions before and
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Figure 6-5: Progressive formwork removal inducing change in thermal boundary conditions.

after the application of the prestressing force, we separately considered these two phase because

the prestressing corresponds to a change in mechanical boundary conditions. For each phase,

different exchange coefficients were used for each part of the formwork, and they are summarized

in Table 6.1. Using standard values of the literature [16], the exchange coefficient1 was set to

λ = 14 kJ/
¡
hr ×m2 ×K

¢
for the surface exposed to the air, and λ = 10 kJ/

¡
hr ×m2 ×K

¢
for surfaces with steel formwork. These exchange coefficient define the heat out-flux over the

surface according to (6.2). The second input parameter required is the external temperature.

This external temperature was measured during the casting process, and Figure 6-6 shows the

simplified external temperature history we employed in simulations. Finally, after applying the

prestressing force, the bridge girder was transported to an open field, and the formwork were

removed for another bridge girder casting.

1 It was reported that the bridge girder was placed in a tent during the casting process in order to prevent
harsh external weather conditions [9]. Thus, this situation was considered as a non-ventillated condition for the
exchange coefficient.
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Exchange Coefficient
λ [KJ/

¡
hr ×m2 ×K

¢
]

Cover Inner-form Outer-form Bottom
Phase 1 14 10 10 10
Phase 2 14 14 10 10
Phase 3 14 14 14 14
Phase 4 14 14 14 14

Table 6.1: Values of exchange coefficients for each phase.
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Figure 6-6: History of external temperature [9].

113



6.2.2 Thermal Properties and Adiabatic Temperature Curve

The second set of input parameters for the thermo-chemical problem includes the thermal

properties and the normalized affinity of the UHPC material, here DuctalTM .

Volume Heat Capacity

Since the volume heat capacity of steel (C = 3, 500 kJ/
¡
m3 ×K

¢
) is somewhat greater than

the volume heat capacity of normal concrete (C = 2, 400 kJ/
¡
m3 ×K

¢
), it is reasonable to set

the volume heat capacity of a steel fiber reinforced UHPC to a slightly greater value than that

of ordinary concrete:

C = 2, 700 kJ/
¡
m3 ×K

¢
(6.3)

Heat Conductivity

The heat conductivity of UHPC is estimated to be on the same order of that of ordinary concrete

[16]:

Kunre
UHPC = 5 kJ/ (hr ×m×K) (6.4)

This values is employed for the unreinforced deck and web of the girder. In return, the bottom

flange is highly filled with prestressing cables that increase the heat conductivity, which is set

to:

Krein
UHPC = 8 kJ/ (hr ×m×K) (6.5)

Adiabatic Temperature Curve

We have seen in Section 3.3 that the normalized affinity Ã (ξ) can be equally accessed by either

an adiabatic temperature curve or an isothermal strength evolution law. In the simulations,

the adiabatic temperature curve T ad (t) is used as input to determine Ã (ξ). However, the

adiabatic temperature for DuctalTM was not available, but fortunately the quasi-isothermal

strength evolution was measured on-site, which we used to determine the normalized affinity

from (see Section 3.3.2):

Ã (ξ) = exp

∙
Ea

RT iso

¸
1

f iso∞ − f0

df iso

dt
(6.6)
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Here, f iso (t) is the compressive strength growth curve, which we determine by interpolating

the compressive strength values measured on-site2. This fitting is displayed in Figure 6-7 (a),

since the hydration degree can be determined from (see Section 3.3.2):

ξ (t) =
f iso (t)− f0
f iso∞ − f0

(6.7)

We can determine the normalized affinity curve, as displayed in Figure 6-7 (b). Finally, using

the determined affinity curve in the heat equation (6.2) for adiabatic conditions, we obtain after

integration the adiabatic temperature curve T ad (t)− T ad
0 :

T ad (t)− T ad
0 =

³
T ad
∞ − T ad

0

´Z t

0
Ã (ξ) exp

∙
− Ea

RT ad (s)

¸
ds (6.8)

where:

ξ (t) =
T ad (t)− T0
T ad
∞ − T0

(6.9)

The procedure requires some iteration, and the result is displayed in Figure 6-7 (c).

This iterative procedure requires as input the activation energy or more precisely a reference

value for the dimensionless number Ea/
¡
RT iso

¢
in the strength rate - normalized affinity rela-

tion (6.6). Inspired from typical values for the activation energy for ordinary concrete Ea/R

= 4, 000− 4, 150 K, we choose:

Ea

RT iso
=
4000

273
=
4150

283
= 14.7 (6.10)

It should be noted that fixing the values of Ea/
¡
RT iso

¢
ensures that the normalized affinity

curve obtained from the isothermal strength growth is the same irrespective of the temperature

T iso. This is constant with the fact that the normalized affinity curve is an intrinsic material

property which is independent of thermal boundary conditions. On the other hand, the choice

of the activation energy (Ea/R = 4, 000K or Ea/R = 4, 150K) has some effects on the rate of

the adiabatic temperature rise. This is illustrated in Figure 6-8. While the normalized affinity

curve Ã (ξ) in the same (by construction, see Figure 6-8 (a)), a higher activation energy leads to

2 It was reported that the compressive strength specimen were placed in the tent where the bridge girder was
cast [9].
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slower evolution of the adiabatic temperature rise (Figure 6-8 (b)), because a higher activation

energy decreases the reaction rate (6.1). While the difference in between the two temperature

curve is not enormous, it is not insignificant, thus high-lighting the necessity of an adiabatic

temperature test for the UHPC material. Such an adiabatic temperature curve in combination

with the isothermal strength growth determined on-site would provide more accurate values of

the activation energy.

In the absence of this adiabatic temperature curve for DuctalTM , we will consider both

adiabatic temperature curves in the simulation. A first-order engineering validation of the

here determined normalized affinity curve is obtained by comparing the simulated temperature

history with temperature values measure on-site.

6.2.3 Simulation Results and Validation

Temperatures were measured at three points in the structure: the deck, the web and the bottom

flange, as shown in Figure 6-9. Figure 6-10 shows the temperature history measured on site.

The bottom flange showed a higher temperature than other measurement points because it has

the characteristics of a massive concrete structure. The maximum temperature in the bottom

flange is 52 ◦C. The maximum temperature for each location occurred in the time interval

between 58 and 63 hours after casting. The temperature was measured on site until the

prestressing force was applied.

The simulated temperature histories are displayed in Figure 6-11, obtained with an acti-

vation energy of Ea/R = 4, 000K. As expected, the highest temperature rise occurs in the

bottom flange with a maximum temperature of 51 ◦C, which compares very well with the mea-

sured value of 52 ◦C. This maximum temperature occurs in the time interval between 53 and

58 hours, which is close to the measured time of 58 − 63 hours after casting. The slightly

premature occurrence of the maximum temperature can be attributed to the choice of the ac-

tivation energy of Ea/R = 4, 000K. In fact, Figure 6-12 display a comparison of the measured

temperatures and simulated results obtained respectively with Ea/R = 4, 000 K (Figure 6-12

(a)) and Ea/R = 4, 150 K (Figure 6-12 (b)). The simulations carried out with a higher acti-

vation energy predict more accurately the time occurrence of the maximum temperature. On

the other hand, the maximum temperature in the bottom flange is slightly underestimated in
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Figure 6-10: Temperature history measured on site [9].

119



0

10

20

30

40

50

60

0 20 40 60 80 100

Time [hours]

T
e

m
p
e
ra

tu
re

[°
 C

]

BOTTOM
WEB
DECK
External Temperature

inner-form
removed

outer-form
removed

prestress
applied

Figure 6-11: Temperature history from the simulation with Ea/R = 4, 000 K.

the simulation result obtained with Ea/R = 4, 150 K (max [T − T0] = 49
◦C vs. the measured

52 ◦C). Note that the temperature histories for both web and deck are little affected by the

value of the activation energy, and are very similar, because their dimensions are similar.

For the mechanical simulations of stresses and deformations, we choose the Ea/R = 4, 000K

simulation results. This choice is based on an overall comparison of the simulated temperature

values vs. measured values, displayed in Figures 6-12 and 6-13. While Figure 6-13 shows that

both simulation results give comparable correct predictions regarding temperature distribution,

the Ea/R = 4, 000 K simulation results (Figure 6-12) give a closer agreement with the max-

imum temperature measured on-site. On the other hand, the Ea/R = 4, 000 K simulations

overestimate the temperature in the web.

Finally, Figure 6-14 shows a typical example of a simulated temperature distribution for

Ea/R = 4, 000K at the time of prestress application. This instant will turn out to be important.

The maximum temperature difference between the bottom flange and web is around 10 K. As

expected, the bottom flange has a higher temperature, compared to the deck and the web.

Moreover, a local temperature gradient effect can be seen: the temperature at the surface is
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Figure 6-12: Comparison of on-site measured and simulated temperature histories: (a) Ea/R =
4, 000 K, (b) Ea/R = 4, 150 K.
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Figure 6-14: Temperature distribution at the moment of prestress application.

lower than the inside temperature.

6.3 Two-Phase Thermo-Chemo-Mechanical Analysis

The time history of temperature distribution T (x, t) and hydration degree distribution ξ (x, t),

determined from the thermo-chemical analysis (see Section 6.2) serves as input for the me-

chanical analysis of stresses, deformation and permanent strains associated with cracking, that

develop during casting and hardening of the UHPC girder. This mechanical analysis is achieved

with the newly developed early-age UHPC module, detailed in Chapter 5 and implemented in

CESAR-LCPC.

6.3.1 Plane-Section Simulation

The mechanical simulations of the girder sections are carried out in 2-D, using the plane-section

assumption. It is assumed that the section remains plane during deformation, which is highly

relevant for beam-type structures. This assumption allows one to reduce the complete 3-D

simulation of the beam structure to 2-D simulations of the section, while considering the normal

123



forces and bending moments induced by the dead weight and the application of prestressing in

the statically determined structure.

The plane-section assumption ensures that the total strain in the z-direction (out-of-plane

direction) complies with the Bernoulli condition:

Ezz (x, y) = �0z + yθx − xθy (6.11)

where �0z, θx and θy are the average strain in the z-direction and the curvatures around the

x- and y-axes, respectively. These three section unknowns need to be determined. To this

end, the global equilibrium in the section "A" is calculated, using the common definition of the

normal force and the bending moment:

N =

Z
A
Σ · ezdA (6.12)

M =

Z
A
(xex + yey)× (Σ · ez) dA (6.13)

where "×" denotes the cross product. The stress tensor in any part of the section can be

written as:

Σ = ΣPS + κ diag
h
1 1 1−ν

ν

i
Ezz (6.14)

where ΣPS is the total stress tensor corresponding to plane strain conditions (Ezz ≡ 0), and

κ (ξ) = ν
K0 (ξ)

(1− 2ν) (1 + ν)
(6.15)

with K0 (ξ) = CM (ξ) + CF is the composite Young’s modulus. Use of (6.14) in (6.12) and

(6.13) leads to expressing the section equilibrium in the following form:

0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
NPS −Nd

MPS
x −Md

x

MPS
y −Md

y

⎫⎪⎪⎪⎬⎪⎪⎪⎭+
1− ν

ν

⎡⎢⎢⎢⎣
R
A κ (ξ) dA

R
A κ (ξ) ydA −

R
A κ (ξ)xdAR

A κ (ξ) ydA
R
A κ (ξ) y

2dA −
R
A κ (ξ)xydA

−
R
A κ (ξ)xdA −

R
A κ (ξ)xydA

R
A κ (ξ)x

2dA

⎤⎥⎥⎥⎦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

�0z

θx

θy

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(6.16)

where (Nd, Md
x and Md

y ) are prescribed normal force and moments on the beam (dead weigth

and prestressing), while (NPS ,MPS
x andMPS

y ) are obtained by application of (6.12) and (6.13)
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to the plane-strain stress Σ→ ΣPS . In the mechanical calculation, relation (6.16) is solved

at every iteration, and the total stress in the section is corrected according to relation (6.14).

Finally, relation (6.12) is used to evaluate the longitudinal strain Ezz (t) at different points in

the section, for which measurements from the site are available.

6.3.2 Mechanical Boundary Conditions

Like every mechanical problem, the stress and deformation analysis of the UHPC girder at early

ages requires force and displacement boundary conditions as input.

Displacement Boundary Conditions

In the particular case of the early-age behavior of UHPC structures, the displacement boundary

conditions are defined by the formwork. More precisely, each formwork removal on-site corre-

sponds to a change in the displacement boundary conditions. For the four phases considered in

the thermo-chemical analysis (see Section 6.2.1, Figure 6-5), the displacements are set to zero

at those boundaries where a formwork is placed. The progressive formwork removal and the

corresponding change in displacement boundary conditions we consider in the simulations are

displayed in Figure 6-15. In this figure, straight lines represent a zero-displacement bound-

ary3 and the removal of the formwork from one phase to the other represents a release of this

zero-displacement boundary, so that the surface becomes stress-free (Σ · n = 0). The finite

element simulations are performed on the same mesh as the thermo-chemical analysis. The

zero-displacement in the symmetry axis of the section is due to symmetry considerations.

Force Boundary Condition

Beside the stress-free boundary condition at the free surfaces that relate to the formwork removal

procedure (see Figure 6-5), there are two further prescribed forces to be considered: the dead

weight and the prestress application. Since the girder remains on the formwork until it is lifted

out, the dead weight is of minor importance. In return, application of the prestressing (in Phase

4) leads to introduce both a normal force and bending moments. These effects are considered

3The zero-displacement means that displacements normal to the boundary are zero.
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Figure 6-15: Progressive formwork removal inducing a change in displacement boundary con-
ditions.
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in the simulations through relation (6.16), by letting:

Nd = −P

Md
x = Pey

Md
y = Pex

(6.17)

where P = 1.2 MN is the effective prestressing force for a half girder and (ex, ey) = (0.46 m,

0.13 m) is the distance between the center of gravity of the half section and the center of the

prestressing force. Conditions (6.17) are prescribed in the simulations in Phase 4.

6.3.3 Mechanical Material Properties

The second set of input parameters for the mechanical analysis is the set of properties required

by the two-phase early-age UHPC model. By construction, these are (see Section 4.2.4):

• The hardened UHPC properties: Elastic properties (CM , CF , M and ν) and strength

properties (σMt, σcrMt, σMc, σMb, σFt and σFc). These can be obtained from the test

data provided by the manufacturer.

• The thermo-chemical properties of UHPC: Thermal dilatation coefficients (αM and αF ),

chemical dilatation coefficient (βM and βF ) and the percolation threshold (ξ0) (see Section

4.1.1).

For the hardened UHPC properties, the model parameters of DuctalTM -Steel Fiber are

employed (see Table 2.4). In addition, Table 6.2 lists the thermo-chemical deformation prop-

erties we consider in the simulations. The thermal dilatation coefficient for both composite

phases are assumed to be the same. In return, only the composite matrix phase is assumed

to undergo chemical shrinkage. The value of βM = −8 × 10−4 is estimated from autogenous

shrinkage values for low water/cement ratio concrete in the open literature4 [3]. Finally, re-

4The value of βM = −8 × 10−4 yields maximum autogenous shrinkage of the composite matrix of � =
−800 µm/m. This value includes hydration shrinkage related to the Le Chatelier contraction and the shrinkage
induced by the hydric pressure that develop in the material at early-ages. Since we do not distinguish these
two phenomena, the maximum shrinkage induced is an upper bound to the actual autogenous shrinkage. This
is appropriate with respect to the focus of our simulation: to evaluate the risk of early-age UHPC cracking.
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Matrix Steel Fiber
Thermal dilatation
coefficient [1/K]

αM = 1× 10−5 αF = 1× 10−5

Chemical shrinkage
coefficient [1]

βM = −8× 10−4 βF = 0

Percolation
threshold [1]

ξ0 = 0.1 -

Table 6.2: Thermo-chemical deformation properties of UHPC considered in the simulations.

garding the percolation threshold, we employ ξ = 0.1, as generally admitted in the early-age

concrete literature [25][26].

6.3.4 Validation

On-site, longitudinal strains (in the z-direction) were measured by strain gauges at the deck

and the bottom flange until the application of the prestressing. We use these measured values

for validation of the model and its implementation in the finite element program. Figure 6-

16 compares the recorded strain measurements with the longitudinal macroscopic strains Ezz

determined from the application of the plane-section model (6.11) in our simulations. The

simulated strain history at different points in the section shows a very good agreement with

the measured strains, except for the web. This is not surprising, given the discrepancy of

temperature we found in the thermo-chemical simulation. Figure 6-17 displays the simulated

results vs. the measured results of the deck and the bottom flange. The good agreement

here provides strong evidence that our new model gives a relatively accurate prediction of the

deformation behavior of the UHPC girder at early ages. Based on this validation, we can now

turn to the question, what caused the early-age cracking observed in the girder.

6.4 What Caused the Early-Age UHPC Cracking?

The crack were observed normal to the longitudinal direction (beam axis). Such cracks result

from a longitudinal stress excess. Thus, to answer the raised question, our main focus will be

on stresses and plastic strains in the longitudinal axis.
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Figure 6-16: Simulated longitudinal strain histories compared with the strain measurements on
site.
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Figure 6-17: Measured strains compared with simulated strains.
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6.4.1 Stress and Plastic Strain Distributions

The longitudinal macroscopic stress (Σzz) from the simulation is first investigated. In Phase 1

and 2, the mechanical properties are not developed enough to show considerable stress values, as

captured in Figure 6-18. However, the stress starts to show considerable magnitudes beginning

in Phase 3. Figure 6-19 (a) shows a contour map of the stress at the end of phase 3, right

before the application of prestressing. Due to local temperature gradient effects, some parts

are in compression, particularly the bottom flange where the temperature is the highest (see

Figure 6-14). Since there is no external loading during the casting process5, the structure is

in a self-equilibrium state. As a consequence, the compression in the deck and bottom flange

is balanced by tension in the web. Moreover, tension also exists near the surfaces due to

temperature effects. Figure 6-19 (b) corresponds to the stress state right after the prestressing

force application (Phase 4). Now, the bottom flange and the web are in compression, but the

deck is mostly in tension. Due to some eccentricity of the prestressing force, the inner part of

the deck shows larger tensile stress values than the outer part.

Since the plastic strain in the composite matrix corresponds to the cracking in the UHPC

structure, the investigation of the matrix plastic strain provides a means to evaluate the risk of

cracking during the casting process. There is no plastic strain in Phase 1 and Phase 2 (Figure

6-20), because the mechanical properties are not developed enough to show considerable stress

values. Hence, there is no cracking in the structure. However, after removing the inner and

outer formwork, some plastic strains occur as illustrated in Figure 6-21. Before application

of the prestressing force, there exist some plastic strains localized on the deck surface and on

the web surface. These localized plastic strains can be attributed to the local temperature

gradients close to the surface, which may induce some small surface cracks. After prestress

application, the plastic strains in the deck increase as a consequence of the tension (Figure 6-19

(b)) in the deck induced by prestressing. On the other hand, the plastic strains in the web do

not change, since the web is in compression after prestress application as illustrated in Figure

6-19 (b).

5Dead weight is neglected.
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at 35 h

Phase 1
at 35 h

Phase 1
at 35 h

Phase 1

at 45 h

Phase 2
at 45 h

Phase 2
at 45 h

Phase 2

(a)

(b)

Figure 6-18: Distribution of the longitudinal macroscopic stress (Σzz): (a) At 35 hours after
casting in Phase 1, (b) At 45 hours after casting in Phase 2.
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at 65 h
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Figure 6-19: Distribution of the longitudinal macroscopic stress (Σzz): (a) Before prestress
application (Phase 3), (b) After prestress application (Phase 4).
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at 35 h & 45 h

Phase 1 & 2
at 35 h & 45 h

Phase 1 & 2

Figure 6-20: Distribution of the longitudinal plastic strain in the composite matrix (εpM,zz) at
both 35 and 45 hours after casting in Phase 1 and 2, respectively.

6.4.2 Stress and Plastic Strain Before and After Applying Prestress

In order to fully understand what happened, we take a closer look on the stress and plastic

strain profiles along the cross section of the web and the deck. Figure 6-22 (a) displays the

longitudinal macroscopic stress Σzz profile along the web. Before prestress application, most

of the web is in tension while the center of both deck and bottom flange are in compression.

As stated before, this phenomenon is a typical example of a self-balanced stress state. The

higher temperatures in the bottom flange and in the deck lead to compression that is balanced

by tension in the web. After the application of the compressive prestressing force introduced

through the bottom flange, the deck is now in tension while the web and the bottom flange are

in compression.

Figure 6-22 (b) shows the cracking strains that are produced by these stresses. The shown

plastic strains (εpM,zz) imply cracks that open in the z-direction. Before applying the pre-

stressing force, small plastic strains already exist in the web and the bottom flange. After the

prestressing force application, there is no additional plastic strain created because the web and

the bottom flange are in compression. This confirms that the plastic strains along the web are
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Figure 6-21: Distribution of the longitudinal plastic strain in the composite matrix (εpM,zz) in
the web (left) and the deck (right) before and after presstress application.
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the consequence of the stresses generated due to differential thermal deformation and chemical

shrinkage, but the magnitude of the strains is very small, i.e. max
h
εpM,zz

i
∼ 10−5.

Figure 6-23 displays longitudinal stresses and plastic strains along the deck surface. As

expected from Figure 6-19 (a), most of the deck surface, prior to prestress application, is in

tension due to local temperature gradients over the deck thickness (Figure 6-23 (a)). There is a

small stress drop in the middle of the deck, which can be attributed to some plastic deformation

as a result of these surface temperature gradients. After prestress application, the deck is

mostly in tension. An important stress drop is now detected in the center of the deck. The

source of this stress drop becomes clear, if we compare this result with that of chemo-elastic

simulations which are also displayed in Figure 6-23 (a). The comparison shows a considerable

stress drop (max [∆Σzz] ∼ 2 MPa) in the center of the deck. Hence, this stress drop can

be identified as a clear consequence of cracking, and we can expect some plastic strains in the

deck.

Figure 6-23 (b) shows the longitudinal plastic strain (εpM,zz) profile in the deck. Small

plastic strains already exist in the center of the deck before applying the prestressing force.

However, the magnitude of these strains is roughly on the same order as the plastic strains

observed along the web, i.e. max
h
εpM,zz

i
∼ 10−5. These strains are, again, due to local

thermal gradient effects. In return, the application of the prestressing force increases the

plastic strains by a factor of five! This increase allows us to conclude that the risk of cracking

was increased considerably by prestress application, which appears to us as the main source of

cracking.

6.4.3 Time History of Simulation Results

To make the picture complete, Figure 6-24 displays the time history of the stress and the

plastic strains for the three locations shown in Figure 6-9 (deck, web and bottom flange). As

we expected, the Σzz-time history displayed in Figure 6-24 (a) shows a big jump in stresses due

to the prestressing force application, which leads to compression in the web and the bottom

flange, and to tension in the deck. However, as time goes on, a stress re-distribution occurs

due to the stiffness change of the UHPC, which release some compression in the bottom flange

that is added to the web.
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Figure 6-22: (a) Longitudinal macroscopic stress profile along the web, (b) Longitudinal plastic
strain in the composite matrix along the web.
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Figure 6-23: (a) Longitudinal macroscopic stress profile in the deck, (b) Longitudinal plastic
strain in the composite matrix in the deck.
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Figure 6-24 (b) displays the time history of the longitudinal plastic strain of the composite

matrix, which captures the cracking. At the moment of removal of the outer-form, some small

plastic strains occur in both the deck and the web of roughly the same order of magnitude.

While the plastic strains do not change due to prestress application, the plastic strains in the

deck increase substantially, inducing a high risk of early-age UHPC cracking of the web.

6.5 Discussion of Simulation Results

What we find from the simulation is that there are some small plastic strains in the web and

deck even before applying the prestressing force. These plastic strains which may eventually

translate in small surface cracks are very small. However, what is most important is that the

plastic strains we find in the deck after applying the prestressing force are non-negligible. This

important increase of plastic strains translates into an important risk of cracking of the deck.

The simulation results help to understand what was observed on site during the manufacturing

process. A longitudinal crack (see Figure 6-3) was found in the web and the deck at mid-span

when a full scale girder was transported from the form. In order to take the 21 m long girder

out from the formwork, a crane was used with two support points as shown in Figure 6-25.

At this time, the deck was already pre-damaged through early application of the prestressing.

Once taken out of the formwork, the girder freely bends and is subject to some vibrations.

Thus, there was a high risk that the cracks propagate from the already damaged deck into the

web down to the neutral axis. Therefore, the observed cracking seems to us a clear consequence

of the damage induced by early application of the prestressing, which became apparent once

the girder was taken out of the formwork.

To enhance our argument, we performed another simulation, in which the prestress appli-

cation was delayed, and applied at 120 hours after casting (compared to 65 hours). Figure

6-26 shows the profile of the longitudinal plastic strain in the composite matrix (εpM,zz) along

the deck surface. The figure shows that the plastic strains could be strongly reduced (roughly

half), if the prestress application were delayed to a more advanced hydration state. Hence, it

can be concluded that the risk of cracking in the girder could have been reduced by delaying

the moment of prestress application.
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Figure 6-24: (a) Time history of the longitudinal macroscopic stresses, (b) Time history of the
longitudinal plastic strains in the composite matrix [The marked triangular points indicate the
following: A= inner-form removal, B=outer-form removal and C=prestress application].
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(a)

(b)

Figure 6-25: (a) A lateral shot of the girder 21 m long, (b) A full scale girder is removed from
the formwork [9].
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Beside the moment of prestress application, there are two more main factors which influence

the risk of early-age cracking in the considered UHPC bridge girder: autogenous shrinkage and

thermal deformation. While the autogenous shrinkage is a material property which cannot be

controlled once the material for the structure has been chosen, the thermal deformation can

be reduced by maintaining the structure in an isothermal temperature condition. During the

casting of the bridge girder, the external temperature varied between 0 ◦C and 30 ◦C so that

this temperature variation may affect the early-age cracking. Thus, it is also important to take

care of the external thermal condition in order to reduce early-age UHPC cracking.

6.6 Chapter Summary

We have raised the question whether it was possible to predict the risk of cracking in early-age

UHPC structures, and eventually reduce it - by means of the first-order engineering model

developed in this research. The application of the model to evaluate stresses and deformation

in the FHWA-UHPC bridge girders provides evidence that it is possible:

• To predict the temperature history and the strain history occurring in the UHPC bridge

girders.

• To evaluate the risk of cracking which is quantified in terms of plastic strains of the

composite matrix.

This was achieved by means of a first-order engineering model for early-age UHPC materials,

which is characterized by a relative small number of input parameters which can be accessed in

a rational manner. No doubt, the chosen modeling approach is strongly reductionist, reducing

the complex chemical reactions and phenomena that occur in UHPC materials to some very

few governing phenomena that are captured by the two-phase thermo-chemo-mechanical UHPC

material model, namely:

• The effect of hydration through a single hydration degree, whose evolution is monitored

through a macroscopic kinetics law.
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• The effect of cracking through a permanent strain associated with the cementitious com-

posite matrix, whose evolution is monitored through strength criteria that depend on the

hydration degree.

• The coupling between hydration reaction, temperature and deformation, which are moni-

tored through a highly reduced number of input parameters, that are easily accessible for

the engineering practice.

The implementation of the model in a finite element program turns out to be a versatile

engineering tool to model the casting of UHPC structures, that allows engineers to predict and

reduce the risk of cracking.
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Part IV

CONCLUSIONS
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Chapter 7

CONCLUSIONS

7.1 Summary of Report

UHPC has remarkable performance in mechanical properties, ductility, economical benefit, etc.

However, early-age cracking of UHPC can become an issue during the manufacturing process

due to its intrinsic characteristics: the high cement content and the highly exothermic hydration

reaction. For this reason, there is a necessity to develop a material model which captures the

behavior of UHPC at early ages.

The objective of this research is to develop a new material model for early-age UHPC

through a thermodynamics approach. The new model is a two-phase thermo-chemo-mechanical

model, which is based on two pillars. The first is a hardened two-phase UHPC material model,

and the second is a hydration kinetics model for ordinary concrete.

Before developing the new model, these two theories are reviewed in detail. In the hardened

UHPC material model, the matrix and the fiber phases are modeled as two separate macroscopic

phases having the same macroscopic strain but different stress states for each phase. The

macroscopic model is composed of three parts: a brittle-plastic matrix phase, an elasto-plastic

fiber phase and an elastic coupling spring. An abrupt stress drop after the matrix cracking is

captured by this macroscopic model, and the plastic strain in the composite matrix represents

the cracking of UHPC. This hardened UHPC model is combined with a hydration kinetics

model which is based on the application of a decoupling hypothesis which neglects the effect of

mechanical change on the thermal and the chemical processes.
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It is on the basis of these two models that we propose a new constitutive model for early-age

UHPC which combines the two-phase hardened UHPCmodel with the hydration kinetics model.

The coupling of these two model is achieved by considering the evolution of the strength and

stiffness properties in the two-phase UHPC material model. As a first engineering approach,

a linear evolution law is adopted for strength, and stiffness is assumed to follow a nonlinear

evolution law. This new two-phase thermo-chemo-mechanical coupling model is implemented

in a commercial finite element program, CESAR-LCPC. Finite element formulation including

finite element equations and the return mapping algorithm are presented in detail, and the

proposed model is verified through simulations of uniaxial tension tests.

The efficiency of the model and finite element program is validated with experimental data

obtained during the casting of a DuctalTM optimized bridge girder. Thanks to the decoupling

hypothesis, the application of the early-age UHPC model can be carried out in a two-step

manner: first the thermo-chemical problem is solved, followed by solving the two-phase thermo-

chemo-mechanical problem. The main findings from this application can be summarized as

follows:

1. A simulated adiabatic temperature curve which plays a major role in the thermo-chemical

problem is obtained from the quasi-isothermal strength values measured on site. From

the simulated adiabatic temperature curve and the thermal boundary conditions, the

temperature distribution was successfully obtained using the thermo-chemical simulation

tool.

2. The distribution of cracks on the deck and the web was predicted with the new two-phase

thermo-chemo-mechanical coupling approach. This simulated deformation behavior of

the girder compares well with on-site strain measurements. Thanks to the model, the

observed crack pattern were explained.

3. The developed engineering tool was also employed to study means to reduce the risk of

UHPC cracking. It is recommended that the external thermal condition should be well

taken care of, and the moment of applying prestressing force should be delayed.

The most important contribution is the novel macroscopic model for early-age UHPC. By

using the two-phase early-age UHPC model, one can evaluate the risk of cracking during the
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casting of UHPC structures, and eventually reduce the risk of early-age cracking. The imple-

mentation of this model in a finite element program provides a versatile engineering tool for

improving the manufacturing of UHPC structures.

7.2 Future Research

The suggested material model for early-age UHPC is limited in several aspects by simplifying

assumptions, which should be addressed in future research. This material model adopts simple

evolution laws (Laube’s law and Byfors’ law) for the evolving strength and stiffness with respect

to the macroscopic hydration degree. The macroscopic hydration degree concept is only a first

step towards a comprehensive materials-to-structural engineering design approach. Recent

progress in experimental micro-mechanics makes it possible to assess the elastic properties at

very fine scales and to upscale this elastic behavior to large scales by means of homogenization

methods [4]. Thus, the simple evolution law for strength and stiffness of the UHPC material

can be replaced by the micro-mechanical approach with the homogenization methods.

By using chemo-mechanics and micro-mechanics, a multi-scale hydration kinetics model

could be developed to describe the hydration degrees of four clinker phases, i.e. C3S, C2S, C3A

and C4AF . Such a multi-hydration degree approach would involve the activation energy of the

four main hydration reactions, which could largely improve the predictive capabilities of our

single hydration degree approach, in which we use one single activation energy. This multi-scale

hydration kinetic model can then be applied to the two-phase UHPC model proposed in this

research. The tasks can be summarized at the different length scales of cementitious materials

as follows:

• At a micro-mechanical level, a link needs to be established between the four fundamental

chemical hydration reactions and UHPC strength and stiffness properties.

• At the material level, the micro-thermo-chemo-mechanical behavior could be upscaled

into a suitable macroscopic UHPC material model.

• At the structural level, such an improved model could examine how UHPC structures

must be optimized to minimize the risk of early-age UHPC cracking.
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Ultimately, it would then be possible to make the link between mix proportion and structural

performance, and optimize the mix design for specific structural performances. The work

presented here is a first step towards this goal.
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Appendix A

Plastic Projection Schemes For

Triaxial Loading

• Projection Scheme for the Tension Cut-Off Condition:

∆λTCM =
Itr1,M − σcrMt

9 (KM +KI)
(A.1)

∆λTCF =
Itr1,F − σFt

9 (KF +KI)
(A.2)

• Projection Scheme for the Drucker-Prager Condition:

∆λUNM =
αUNM Itr1,M +

¯̄
strM
¯̄
− cUNM

2 (GM +GI) + 9
¡
αUNM

¢2
(KM +KI)

(A.3)

∆λBIM =
αBIM Itr1,M +

¯̄
strM
¯̄
− cBIM

2 (GM +GI) + 9
¡
αBIM

¢2
(KM +KI)

(A.4)

∆λDP
F =

αDP
F Itr1,F +

¯̄
strF
¯̄
− cDP

F

2 (GF +GI) + 9
¡
αDP
F

¢2
(KF +KI)

(A.5)
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• Projection Scheme for the Multiple Plastic Surface Condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆λTCM

∆λTCF

∆λUNM

∆λBIM

∆λDP
F

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
= [A]−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Itr1,M − σcrMt

Itr1,F − σFt

αUNM Itr1,M +
¯̄̄
strM + 2GI∆λDP,q

F Nup,q
sF

¯̄̄
− cUNM

αBIM Itr1,M +
¯̄̄
strM + 2GI∆λDP,q

F Nup,q
sF

¯̄̄
− cBIM

αDP
F Itr1,F +

¯̄̄
strF + 2GI

³
∆λUN,q

M +∆λBI,qM

´
Nup,q
sM

¯̄̄
− cDP

F

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(A.6)

where [A] is the following 5× 5 symmetric matrix:

[A] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15

A22 A23 A24 A25

A33 A34 A35

A44 A45

sym. A55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.7)

where:
A11 = 9 (KM +KI) ; A12 = −9KI ;

A13 = 9α
UN
M (KM +KI) ; A14 = 9α

BI
M (KM +KI) ;

A15 = −9αDP
F KI ;

A22 = 9 (KF +KI) ; A23 = −9αUNM KI ;

A24 = −9αBIM KI ; A25 = 9α
DP
F (KF +KI)

A33 = 2 (GM +GI) + 9
¡
αUNM

¢2
(KM +KI) ;

A34 = 2 (GM +GI) + 9α
UN
M αBIM (KM +KI) ;

A35 = −9αUNM αDP
F KI

A44 = 2 (GM +GI) + 9
¡
αBIM

¢2
(KM +KI) ;

A45 = −9αBIM αDP
F KI

A55 = 2 (GF +GI) + 9
¡
αDP
F

¢2
(KF +KI)

(A.8)
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Appendix B

Input Format for EAHC Module

In CESAR-LCPC, running the EAHC module for the analysis of early-age UHPC reduces

to using a new material model. The EAHC module follows the regular input format of

CESAR-LCPC, except for the material input parameter. The new material model is assigned

IMOD = 119, which indicates early-age UHPC for the analysis of the two-phase thermo-

chemo-mechanical problem. Several examples which use the proposed material are presented

in Reference [15], and Table B.1 provide details for each model parameter of the early-age

UHPC model. Furthermore, input parameters and comments for MEXO simulation with

plane-section option are presented Table B.2. This is followed by the input files used in the

four-phase simulations with TEXO and MEXO. The description of the files is as follows:

TEXO

Simulation

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Phase 1: grd_txp1.data

Phase 2: grd_txp2.data

Phase 3: grd_txp3.data

Phase 4: grd_txp4.data

MEXO

Simulation

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Phase 1: grd_ehp1.data

Phase 2: grd_ehp2.data

Phase 3: grd_ehp3.data

Phase 4: grd_ehp4.data
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Input Data Comments

Title
T itle = name of element group

IMOD (INAT )
IMOD = control variable for the calculation;

IMOD=119 for early-age UHPC
(INAT ) = only for 2-D problem

ρg ν CM CF M
ρg = volumetric weight
ν = Poisson’s ratio
CM = stiffness contribution of composite matrix in [MPa]
CF = stiffness contribution of composite fiber in [MPa]
M = stiffness of matrix-fiber coupling in[MPa]

σMt σcrMt σMc σMb

σMt = initial tensile strength of composite matrix in [MPa]
σcrMt = post-cracking tensile yield strength of composite

matrix [MPa]
σMc = initial compressive strength of composite matrix

in [MPa]
σMb = initial biaxial compressive strength of composite

matrix in [MPa]

σFt σFc
σFt = tensile strength of composite fiber in [MPa]
σFc = compressive strength of composite fiber in [MPa]

αM −βM ξ0 ξinitial

αM = thermal dilatation coefficient of composite matrix
βM = autogenous shrinkage for composite matrix
ξ0 = threshold of the hardened composite matrix
ξinitial = initial hydration degree indicating whether the

group is chemically active or not; ξinitial=1 for
hardened UHPC and ξinitial=0 for early-age
UHPC

αF −βF
αF = thermal dilatation coefficient of composite fiber
βF = autogenous shrinkage for composite fiber; for

steel fiber βF=0

Table B.1: Input parameters and comments for the early-age UHPC model, IMOD = 119.
These input parameters are introduced under ELEM in the MEXO input files.
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Input Data Comments

MEXO
M
NPAS1

MEXO = computation module for thermo-chemo-mechanical calculation
M = print index;
M=0 for printout of the number of time steps
M=1 for printout of M=0 plus functions influencing the parameter

and loading functions
M=2 for printout of the solution at each time step
M=4 for printout of the the stresses at each time step

NPAS1=number of time steps of the TEXO computation used for the
MEXO computation

TXO
M0
NOMF

TXO = input of the temperature fields and degree of hydration from
the TEXO computation results files; if TXO is not specified
then calculation become hardened UHPC simulation.

M0 = selection indicator of the time steps stored by TEXO;
M0=0 if all of the time steps from the TEXO computation are used.
M0=1 otherwise

NOMF = name of the results file created by the TEXO module

INI
NOMF

INI = initialization of a computation by input from a restart file
NOMF = name of the restart file

STK
NOMF

STK = storage of results at the last time step for a subsequent
computation restart

NOMF = name of the file on which the results of the last time
step are stored

EFN
IEPT
XC, Y C
V NM0[3]
V NM1[3]
...
V NMNPAS1[3]

EFN = plane-section computation
IEPT = print index;
IEPT=1 for an unspecified section
IEPT=2 for a section having y-axis as a symmetric axis
IEPT=3 for a section having x -axis as a symmetric axis
IEPT=4 for a section having x - and y-axis as symmetric axes

XC, Y C = symmetric axis coordinate if IEPT having 2, 3 or 4

V NM IPAS [3] = Nd, Md
x, M

d
y = prescribed force and moments,

which follow the sign conventions in Section 6.3

NIT
IMET
NITER
TOL

NIT = convergence criteria for nonlinear calculation
IMET =1 for default convergence checking algorithm in CESAR
NITER = maximum number of iteration
TOL = tolerance for convergence

Table B.2: Input parameters and comments for MEXO simulation with plane-section option,
EFN .
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