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A method for damage estimation of a bridge structure is presented using ambient
vibration data caused by the tra$c loadings. The procedure consists of identi"cation of the
operational modal properties and the assessment of damage locations and severities. An
experimental study is carried out on a bridge model with a composite cross-section subjected
to vehicle loadings. Vertical accelerations of the bridge deck are measured while vehicles are
running. The modal parameters are identi"ed from the free-decay signals extracted using the
random decrement method. The damage assessment is carried out based on the estimated
modal parameters using the neural networks technique. As input to the neural networks, the
ratios of the resonant frequencies between before and after damages and the mode shapes
after the damages are used to take into account the mass e!ect of the tra$c on the bridge.
The identi"ed damage locations and severities agree reasonably well with the in#icted
damages on the structure.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Bridges constitute an important part of the national infrastructures. Preventive
maintenance and structural safety of bridges may be guaranteed by the application of
health-monitoring systems, which can provide valuable information for detailed inspection,
repair and rehabilitation of bridges. Structural identi"cation technique from ambient
vibration data is essential particularly for on-line monitoring.
In this study, random decrement (RD) technique [1] is used to estimate free-decay signals

(i.e., randomdec signatures) from the ambient vibration data induced by unmeasured tra$c
loadings. The properties of the operational modes are extracted from the randomdec
signatures. Inverse modal perturbation technique [2] is applied to update the baseline "nite
element (FE) model based on the impact test results. Then, neural networks technique [3] is
used to estimate the damage locations and severities based on the modal properties
obtained from the vehicle tests. The procedure for bridge monitoring presented in this study
is summarized in Figure 1.
A simply supported bridge model with a composite cross-section was built, and tra$c

loadings were simulated using three model vehicles connected to each other. Vertical
accelerations of the bridge were measured at several locations, while the vehicles are
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Updated Baseline FE Model
Using IMP1) Technique

Impact Tests
(Natural Frequencies, Mode Shapes)

Setup of
Neural Network Architecture Training Patterns based on

Baseline FE Model
(Frequency Ratios2), Mode Shapes)

Trained
Neural Networks

Damage Estimation

Estimation of Modal Parameters
from Randomdec Signatures

Test Pattern for a Vehicle Load Condition
(Frequency Ratios2), Mode Shapes)

before damage

Ambient Vibration Tests
for Each Vehicle Load Condition

after damage

Ambient Vibration Test
for a Vehicle Load Condition

Initial Baseline FE Model
Using Design Drawings

Figure 1. Schematic of bridge monitoring procedure: (1) IMP: inverse modal perturbation; (2) frequency ratios:
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running. A series of element-level damages was in#icted on the structure, and travelling tests
were carried out for each damage case with varying the weight of vehicles. Resonant
frequencies for the vehicle tests were estimated di!erently in accordance with the weight of
vehicles. Therefore, the ratios of the resonant frequencies between before and after the
damages under a same vehicle load condition and the mode shapes after the damages were
used as input data to the neural networks. The estimated damage locations and severities
are found to compare well with the in#icted damages.

2. THEORETICAL BACKGROUND

2.1. RANDOM DECREMENT TECHNIQUE

The fundamental concept of the RD technique [1, 4, 5] is based on the fact that the
random response of a structure is composed of two parts: i.e., a deterministic part and
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a random part. Since the introduction of the RD technique, it has been used for
identi"cation of various types of structures such as bridges, o!shore platforms, aeroplanes,
etc. [4, 6}9]. By averaging enough sample responses with a prescribed initial condition, the
random part associated with the random excitation will average out, leaving the
deterministic part. It has been shown that the deterministic part that remains is the
free-decay response associated with the initial condition, from which the modal parameters
and the damping characteristics can be easily extracted. The RD signature vector z (�, x) can
be obtained as

z (�, x)"
1

N

�
�
���

y (�#t
�
,x), (1)

where y (t,x) is the measurement at x, t
�
's are the time instances satisfying a prescribed

triggering condition at a leading station, N is the number of the triggering points, and � is
the time variable.

2.2. NEURAL NETWORKS TECHNIQUE

A popular neural networks model called a multi-layer perception neural networks [3] is
used for identi"cation of the element-level sti!ness parameters. The neural networks
employed in this study consist of an input layer, two hidden layers, and an output layer. The
input layer contains the measured modal properties, and the output layer consists of the
element sti!ness indices to be identi"ed. The input/output relationship of the neural
networks can be non-linear as well as linear, and its characteristics are determined by the
synaptic weights assigned to the connections between the neurons in two adjacent layers.
The systematic way of updating the weights to achieve a desired input/output relationship
based on a set of training patterns is referred to as training or learning algorithm. In this
study, the standard back-propagation algorithm [3, 10, 11] is used, and the noise injection
learning (NIL) [12] is also employed to reduce the e!ects of measurement noise. In NIL
algorithm, the training is carried out using the arti"cially contaminated training patterns
with noise of a prescribed level. The generalization capability of the neural networks can be
remarkably enforced through this algorithm, because this algorithm has similar e!ect to the
regularization technique that is used to mollify the ill-posedness of the inverse problems
[12, 13].

3. DESCRIPTION OF EXPERIMENTS

3.1. BRIDGE MODEL AND EXPERIMENTAL SET-UP

A simply supported single-span bridge was built to verify the present method for structural
identi"cation. A schematic of the experimental set-up is shown in Figure 2. The bridge model
has a composite cross-section with two steel girders and a concrete slab as shown in Figure 3.
The span length is 6 m and the total weight is 1030 kgf. Three test vehicles connected to each
other by wires were used as in Figure 2. The weights of the empty vehicles are 10, 20 and
20 kgf, respectively, and can be made heavier by adding extra weights on the vehicles. Two
bumps were placed at the 1/4 and the 2/3 points of the bridge span from the left support. The
bumps were attached to the slab surface to simulate the impact forces by the vehicles due to
the roadway roughness. The shape of the bump is triangular, of which height and width are
1 and 15 cm, respectively, while the diameter of the wheel is 15 cm.



Figure 2. Schematic of experimental set-up (lengths in mm).

Figure 3. Section view of the bridge model (lengths in mm).

Figure 4. Measurement locations (lengths in mm): (a) left girder; and (b) right girder.
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The vehicles are pulled along the bridge by a wire rope and travel inside of two guide
rails, and the vertical vibration of the bridge is measured along the girders. Seven
accelerometers are attached to the bottom #ange of each girder (H*100�100�6�8) as in
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Figure 4. Two sets of the measured data on two girders are used to acquire more reliable
data by averaging and to discern the bending modes from the torsion modes.

3.2. TEST PROCEDURE AND VEHICLE SPEED

Vehicle tests were performed 20 times for each of eight damage cases shown in Table 1.
The FE model of the bridge and the element numbers are shown in Figure 5. For Intact
Case and Damage Cases 1 and 2, tests were carried out 20 times under each of "ve vehicle
load conditions described in Table 1. The load conditions were varied by changing the
weights of the vehicles in order to investigate the mass e!ect of the vehicles.
Damages were in#icted by cutting out parts of the bottom #anges of the girders

(H*100�100�6�8). The data were sampled at 1 kHz for 30 s during a round-trip of the
vehicles. A round-trip consists of forward and backward trips by the vehicles. At "rst, three
vehicles were pulled forward. Then, after all vehicles passed through the bridge and the
vibration completely subsided, the vehicles were pulled backward. The net duration for the
vehicles on the bridge was about 5 s for each one-way trip (refer to Figure 6). Impact load
tests were also carried out for each damage case and vehicle load condition for the purpose
of comparison.
In this study, the speed of the model vehicles (v

�
) for damage estimation is taken as

2)0 m/s, of which the equivalent vehicle speed for the prototype structure (v
�
) is 18)4 km/h.

The equivalent speed (v
�
) is calculated using the following similarity relationship for the

ratio of the nominal exciting frequency by the vehicles (v/l ) to the "rst resonant frequency of
the bridge ( f ):

(v
�
/l
�
)

f
�

"

(v
�
/l
�
)

f
�

(2)
TABLE 1

Damage scenarios

Loss of bending rigidity (%) Weight of vehicle (kgf )
Total weight of

Element 3 Element 5 Element 7 Vehicle A Vehicle B Vehicle C vehicles (kgf)

Case 1 * !16)6 * * 20 * 20
10 20 20 50
40 20 40 100
80 40 80 200
120 60 120 300

Case 2 * !16)6 !9)5 * 20 * 20
10 20 20 50
40 20 40 100
80 40 80 200
120 60 120 300

Case 3 * !16)6 !16)9 80 40 80 200
Case 4 * !16)6 !25)4 80 40 80 200
Case 5 !15)8 !16)6 !25)4 80 40 80 200
Case 6 !15)8 !31)0 !25)4 80 40 80 200
Case 7 !22)1 !31)0 !25)4 80 40 80 200
Case 8 !32)1 !31)0 !25)4 80 40 80 200
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Figure 5. FE model and element numbers.
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Figure 6. Acceleration time history at Ch.11 and its Fourier amplitude spectrum: (a) time history; and
(b) Fourier amplitude spectrum.
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where v is the vehicle speed, l is the span length, and subscripts p and m indicate the
prototype and model respectively. Assuming that the prototype structure has l

�
and f

�
values 50 m and 3)5 Hz, and considering that the model structure has l

�
and f

�
values 6 m

and 11)4 Hz and v
�
is 2)0 m/s, the corresponding vehicle speed in the prototype case (v

�
) is

18)4 km/h. The above speed is much slower than the ordinary tra$c speed. But higher speed
was not able to be simulated because of the capacity of the pulling motor particularly with
the heavy weight of vehicles and the insu$cient lengths of the acceleration and deceleration
ramps due to the limited space of the laboratory.
To investigate the e!ects of the vehicle speed to the operational modes, preliminary tests

were carried out on the bridge model with smaller girders (H250�50�4)5�4)5) for speeds
of 2)0, 2)5, and 3)0 m/s with one test vehicle (60 kgf). Based on equation (2), the
corresponding vehicle speeds for the prototype structure are 36)1, 45)1, and 54)1 km/h
respectively (note: f

�
"5)82 Hz). The operational modal properties were estimated for each

speed for the four lowest modes using the technique described in the next section. The
discrepancies between the resonant frequencies for di!erent speeds are found to be less than
0)7% and the modal assurance criteria (MAC) between the mode shapes for di!erent speeds
are greater than 0)9911 as shown in Tables A1 and A2 in Appendix A. The results strongly
indicate that the properties of the operational modes are barely in#uenced by the vehicle
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Figure 7. Randomly compounded time history at Ch. 11.
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speed. In reference [14], similar tests were performed on a bridge model with two
continuous span aluminum plate girders and a total length of 4)57 m. The e!ects of vehicle
speed were evaluated for 0)3, 0)6, 1)2, and 2)4 m/s of the model vehicles. It was concluded
that the resonant frequencies and shapes of the operational modes are not in#uenced by
vehicle speed.

4. MODAL PARAMETER ESTIMATION

4.1. DATA ANALYSIS FOR RANDOMDEC SIGNATURES

Vehicle tests were performed for 20 round trips. A typical acceleration time history and its
Fourier amplitude spectrum acquired for a round-trip of the vehicles are shown in Figure 6.
The noise content appears to be very high. Forty sets of the one-way vibration responses
were compounded with random arrival times to generate a compounded time history. Ten
di!erent sets of the compounded time histories were generated in the same manner but with
di!erent arrival times. An example of a randomly compounded acceleration time history in
Ch. 11 is shown in Figure 7. The randomdec signatures were calculated from each set of the
compounded time histories using a triggering condition of zero crossing with a positive
slope at the leading station, which was taken as the center of the span for the "rst and third
modes, the quarter point for the second mode, and the 1/8 point for the fourth mode
respectively. A randomdec signature obtained in Ch. 11 and its Fourier amplitude spectrum
are shown in Figure 8. The resonant frequencies and mode shapes are determined from the
cross-spectral density functions of the randomdec signatures.

4.2. ESTIMATED MODAL PROPERTIES

The identi"ed resonant frequencies for the baseline (i.e., intact) case from the vehicle tests
are compared with those obtained from the impact load tests in Table 2. The estimated
frequencies for the vehicle tests are found to be smaller than the others due to the mass e!ect
of the moving vehicles, which is very di$cult to evaluate analytically. Table 2 also shows the
frequencies estimated from the tail portions of the vibration data which correspond to the
free vibration responses after all the vehicles passed the bridge section. The results are found
to be very close to the impact test results. However, a method using the whole length of the
vibration data as in Figure 6 is more convenient for the purpose of bridge monitoring.
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Figure 8. Randomdec signature at Ch. 11 and its Fourier amplitude spectrum: (a) randomdec signature; and
(b) Fourier amplitude spectrum.

TABLE 2

Resonant frequencies of intact case (Hz)

Tests Analysis

Modes Impact Vehicle Initial model Updated model

1 11)40 10)43 9)23 11)45
(11)29)

2 41)00 40)47 36)87 40)09
(41)36)

3 81)80 81)37 82)69 84)13
(82)20)

4 137)4 137)6 145)9 146)7
(137)5)

Note 1: The values for the vehicle test are obtained when the total weight of vehicles is 200 kgf.
Note 2: The values in parentheses are obtained using the tail portions of the responses.
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Figure 9 compares the mode shapes obtained from the vehicle tests (total weight of
vehicles: 200 kgf ), and the impact load tests. Two sets of the mode shapes are found to be in
good agreement, which indicates that the mode shapes remain almost the same regardless of
the moving vehicle masses on the bridge.
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4.3. UPDATING OF BASELINE FINITE ELEMENT MODEL

A "nite element (FE) model is constructed for the bridge to verify the proposed modal
parameter estimation method and to establish the baseline FE model for the subsequent
damage assessment. The bridge with a composite section is modelled using equivalent beam
elements as in Figure 5. The bending rigidity of the girder section, (EI)�

�
is initially evaluated

from the dimension of the section as 6)34�10�Nm�. In the FE model, the e!ects of the
con"gurations of the supports (Figure 10), such as the o!set between the rigidity center of
the section and the support, are represented by rotational spring elements, k��� and k���. The
bending rigidity of each segment of the girder and the rotational spring constants at the
supports are updated by using the inverse modal perturbation technique [2] based on the
impact test results. For the purpose of model updating, the following sti!ness indices are
employed:

�
�
"

(EI)�
�

(EI)�
�

and ��� �"
k��� �

k����#k��� �
, (3)

where superscripts &&I'' and &&0'' denote the initial and updated intact cases, respectively, and
k��� � is approximately taken as 3(EI)��/¸ ("3)17�10� Nm) with ¸ being the span length of
the bridge.
The updated sti!ness properties are shown in Table 3. The updated sti!ness indices of

elements 1, 2, 5, 6, 9, and 10 are found to be di!erent from those of elements 3, 4, 7, and 8. It
is due to the fact that the bending rigidity of the composite section is not exactly uniform
along the longitudinal direction due to the imperfection during fabrication and the cracks in
the transverse direction in the concrete slab in the middle and near the supports occurred
during series of erections and removals of the bridge model. The modal properties of the
updated model are compared with the measured ones in Table 2 and Figure 9. The errors in
the resonant frequencies of the updated model are found to be very small for the "rst two
modes. However, the errors are 3 and 7% for the third and fourth modes respectively. The
errors for the latter two frequencies are due to the simple equivalent beam model for the
bridge. Furthermore, the updating was carried out by assigning larger weights (10 times) to
the "rst two modes.



Figure 10. Boundary condition at a support.

TABLE 3

;pdated sti+ness indices for intact case (�
�
and ��)

Element numbers 1 2 3 4 5 6 7 8 9 10 ���� ����

Sti!ness indices
(�

�
and �� ) 0)8 0)8 1)1 1)1 0)8 0)8 1)1 1)1 0)8 0)8 0)39 0)39

256 J. W. LEE E¹ A¸.
5. DAMAGE ESTIMATION

5.1. ELEMENT STIFFNESS INDEX AND DAMAGE SEVERITY

For the purpose of damage estimation, the element sti!ness index (�
�
) and the element

damage severity (d
�
) for the jth element are de"ned as

�
�
"

(EI)	
�

(EI)�
�

and d
�
"1!�

�
, (4)

where superscripts &&0'' and &&d'' indicate the intact and damaged states.

5.2. MODAL PROPERTIES AS INPUT TO NEURAL NETWORKS

The sti!ness indices of eight beam elements are estimated for each damage case using
neural networks technique based on the modal properties obtained from the vehicle tests.
The ratios of the resonant frequencies between before and after damages for a same tra$c
load condition and the mode shapes after the damages are used as input data to the neural
networks (Figure 11), since the resonant frequencies vary if the vehicle masses are included
while the mode shapes remain almost the same as in Figure 9. The modal properties for the
"rst four modes are used, which results in 32 nodes in the input layer. Two hidden layers
with 20 and 10 nodes each are introduced. The neural networks are trained using the modal
data simulated from the cases without moving vehicles, since it is very di$cult to
analytically obtain the modal properties of the bridge with moving vehicles. The basis of
using the frequency ratios obtained from the cases without moving vehicles is elaborated
below.
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For the purpose of bridge monitoring, a reasonable criterion for the tra$c load condition
may be established to a reasonable number of cases depending on the types and sizes of the
bridge and tra$c such as very heavy, heavy, medium, light, and very light conditions. The
tra$c condition may be monitored by weight in motion (WIM) system, CCTV, etc. The
resonant frequencies for the intact case can be predetermined for each load condition. Then
for a tra$c load condition <



on the bridge, the ratio of the ith resonant frequencies can be

written as

f 	�S#<


,i

f �S#<
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,i/� 	S#<



,i

��S#<


,i/��S#<



,i

"

� 	S#<


,i/��S#<



,i

� 	S#<


,i/��S#<



,i

+

� 	S#<


,i

��S#<


,i

+
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, (5)

where the subscripts &&S'' and &&<'' denote the structure (bridge) and vehicle respectively. �
�

and �
�
are modal sti!ness and modal mass for the ith mode respectively. The approximation

for the second last term is based on the fact that the change in the modal mass due to
damage is much smaller than the change in the modal sti!ness. On the other hand, the
approximation for the last term is from the fact that the mode shapes remain almost same as
those of the case without the moving vehicles on the bridge as shown in Figure 9.
For a case without vehicle load, the ratio of the resonant frequencies between before and

after damage can be obtained similarly as

f 	�
�� �
f ��

�� �

"
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�� �
/�	

�� �
��

�� �
/��

�� �

"
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/��

�� �
� 	

�� �
/��

�� �

+

� 	
�� �

��
�� �

(6)

Finally, the following relationship can be obtained for each vehicle load condition <


and

the ith mode from equations (5) and (6) as

f 	S#<


,i

f �S#<


,i

+

f 	S, i
f �S, i

(7)

Veri"cation for the approximate relationship in equation (7) has been carried out for
Damage Cases 1 and 2 with various total weight of vehicles, i.e., 20, 50, 100, 200 and 300 kgf
as shown in Table 1. The load conditions may be considered as very light to heavy



TABLE 4

Frequency ratios between before and after damages for various vehicle load conditions

Total vehicle weights (kgf)
Damage No vehicle Average and
Cases Modes (impact test) 20 50 100 200 300 relative error

1 1 0)932 0)935 0)932 0)932 0)945 0)945 0)938 (0)64)
2 0)977 0)992 0)977 0)992 0)995 0)978 0)987 (1)02)
3 0)954 0)953 0)954 0)955 0)954 0)954 0)954 (0)00)
4 0)966 0)966 0)966 0)966 0)966 0)967 0)966 (0)00)

2 1 0)918 0)918 0)917 0)918 0)918 0)920 0)918 (0)00)
2 0)945 0)947 0)945 0)944 0)946 0)944 0)945 (0)00)
3 0)950 0)959 0)949 0)963 0)950 0)951 0)955 (0)53)
4 0)945 0)946 0)949 0)944 0)945 0)945 0)946 (0)11)

Note: The values in parentheses are errors in %.
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conditions, since the live to dead load ratios are in the range 0)02}0)29. Table 4 shows the
frequency ratios between before and after damages for various moving vehicle load
conditions. Frequency ratios of the "rst four modes for "ve di!erent load conditions are
found to be very close to those ratios without moving vehicles. The di!erences between the
frequency ratios with and without the moving vehicles are less than 2%, which indicates the
validity of the approximation in equation (7).
The accuracy of the damage estimation can be deteriorated, if one picks up wrong tra$c

conditions in applying equation (7). For reliable damage estimation, dual
health-monitoring systems may be utilized: one based on the resonant frequencies and the
mode shapes, and the other based on the mode shapes only which remain almost same
regardless of the moving vehicle masses on the bridge. The results in the next section show
that the neural networks based on the mode shape data only also gives reasonable estimates
for damages. If the monitoring system gives an indication of occurrence of damages,
veri"cation analysis can be quickly carried out several times, since the damage estimation
using the neural networks takes very short time. Hence, the error due to the wrong pick-up
of the tra$c condition may not cause serious problem. The present method is developed on
the basis of the averaging e!ects of each vehicle dynamics. Hence, the reliability of the
damage estimation may be better with the moderate size tra$c which may provide enough
vibration amplitudes and enough number of cars for averaging.

5.3. ESTIMATION OF ELEMENT DAMAGE SEVERITIES

The element-level damage locations and severities are estimated using the neural
networks technique for various cases described in Table 1. Ten thousand training patterns
were generated around the updated (intact) FE model, and training was carried out for 300
epochs to obtain a stable estimation error. The element sti!ness indices (refer to equation
(4)) were randomly sampled in the range 0)5}1)5 using the Latin hypercube sampling
technique [15]. It was reported that the multi-layered neural networks can be well trained
for the practical application, if the number of training patterns is over 10 times of the total
number of synapses [16]. The total number of synapses employed in this study is 920.
Hence, 10 000 training patterns are judged to be appropriate.



TABLE 5

Resonant frequencies for various damage cases (Hz)

Modes 1 2 3 4

Intact 10)43 40)47 81)37 137)6
Case 1 10)10 40)20 79)70 136)0
Case 2 9)80 40)10 78)80 136)0
Case 3 9)70 38)67 77)70 135)0
Case 4 9)63 38)50 77)83 134)1
Case 5 9)43 37)20 76)60 132)4
Case 6 8)93 35)63 71)40 130)2
Case 7 8)90 35)37 70)00 130)4
Case 8 8)57 34)90 67)80 130)1

Note: The values are obtained when the total weight of vehicles is 200 kgf.

Figure 12. Mode shapes for damage cases: (a) Damage Case 4; (b) Damage Case 8.*�*, intact case; *�*,
damage case; ( ), large damage; ( ), medium damage; ( ) small damage.
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Table 5 shows the resonant frequencies obtained from the vehicle tests for eight damage
cases. It can be found that the resonant frequencies decrease as damages become severer.
Figure 12 shows the changes of the mode shapes due to various levels of damages for
Damage Cases 4 and 8.
The damage identi"cations were carried out incorporating the noise injection learning

(NIL) algorithm to consider the errors in the input modal data, which may cover the
modelling error and the identi"cation error of the modal properties. The levels of the noises
considered in the NIL are 5% for the "rst and second resonant frequencies, 10% for the
third and fourth resonant frequencies, and 10% for mode shapes. The noise levels were
determined based on the modelling error in the updated model and the measurement noise.
The estimated damage severities for Damage Cases 1 and 2 with various vehicle load

conditions are shown in Figure 13. It can be found that the damage locations and severities
are very well estimated for all vehicle load conditions.
Figure 14 shows the in#icted and estimated damage severities for eight damage cases with

the total vehicle weight of 200 kgf. The results with the NIL algorithm are compared to
those without the NIL algorithm. It can be found that the accuracy of the estimation is
remarkably improved if the NIL has been carried out. In Damage Case 5, an intact element
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Figure 13. Estimated damage severity for various total weights of vehicles (damage cases 1 and 2). (a) 20 kgf;
(b) 50 kgf; (c) 100 kgf; (d) 200 kgf; and (e) 300 kgf. �, in#icted; �, Estimated w/ NIL.
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(No. 8) is estimated as a damaged one, while the damage severity for one of three damaged
elements (No. 5) is very much under-estimated. But, in the other damage cases, all of the
in#icted damages are detected very successfully. However, the degree of damage severity
generally tends to be slightly overestimated.
For the purpose of comparison, damage estimation was also carried out using the neural

networks trained with the mode shape data excluding the information on the resonant
frequencies, since the frequencies vary with the masses of the moving vehicles. In Figure 15,
the results for eight damage cases are shown along with those obtained using the mode
shapes and the frequency ratios before and after the damages occur. The accuracy of the
estimates is found to be still reasonable, but considerably deteriorated compared to those
estimated using both of the mode shapes and the resonant frequency ratios. This result
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Figure 14. Estimated damage severity with and without noise injection learning (total vehicle
weight"200 kgf ). �, in#icted; �, estimated w/NIL; , estimated w/o NIL.
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indicates the usefulness of the frequency ratios between before and after damages instead of
the frequencies themselves, as input components to the neural networks for damage
identi"cation.

6. CONCLUDING REMARKS

Amethod is presented for the element-level damage assessment of bridge using the modal
properties obtained from the vibration data caused by ordinary tra$c loadings, and veri"ed
by a series of vehicle tests on a bridge model. It has been found that the free-decay responses
can be reasonably identi"ed from the ambient vibration data using the random decrement
method, and the modal parameters can be easily estimated thereafter.
Updating of the FE model for the intact structure is carried out to establish the baseline

model using the inverse modal perturbation technique. Then damage estimation is
performed for various cases with in#icted damages using the neural networks technique
incorporating the noise injection learning technique. The frequency ratios between before
and after damages and the mode shapes after the damages are used as inputs to the neural
networks. The frequency ratios have been used instead of the frequencies, since the resonant
frequencies of the bridge extracted from the vibration data vary depending on the mass of
the moving vehicles. It has been found that most of the in#icted damages can be detected
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Figure 15. Estimated damage severity with and without the frequency data (total vehicle weight"200 kgf ). �,
In#icted; �, using frequencies and modes; , using modes only.
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very successfully for various vehicle load conditions; however, the degree of damage severity
generally tends to be slightly overestimated. For practical application, the accuracy of the
estimated damage severities may be less important, as long as the damage locations can be
detected precisely.
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APPENDIX A

To investigate the e!ect of the vehicle speed on the operational modal properties,
preliminary tests were carried out on the bridge model with smaller girders
(H*50�50�4)5�4)5) for speeds of 2)0, 2)5, and 3)0 m/s with one test vehicle (60 kgf ). The
corresponding speeds for the prototype cases are 36)1, 45)1, and 54)1 km/h. The properties
of the operational modes were estimated for each speed for the four lowest modes, and the
results are summarized in Tables A1 and A2.
TABLE A1

Resonant frequencies ( f
�
) for each speed (Hz)

<
�
"2)0 m/s <

�
"2)5 m/s <

�
"3)0 m/s

Modes <
�
"36)1 m/s <

�
"45)1 m/s <

�
"54)1 m/s

1 5)82 5)81 5)85
2 16)43 16)43 16)45
3 35)06 35)03 35)02
4 58)32 58)30 58)28



TABLE A2

Modal assurance criteria for cases with two vehicle speeds

Modes <
�
"2)0 and 2)5 m/s <

�
"2)0 and 3)0 m/s <

�
"2)5 and 3)0 m/s

1 0)9995 0)9996 0)9987
2 0)9996 0)9991 0)9994
3 0)9992 0)9997 0)9994
4 0)9982 0)9911 0)9966
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