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We investigate the effects of geometric and material non-linearities introduced by deformation
on the dynamic response of two dimensional phononic crystals. Our analysis not only shows that
deformation can be effectively used to tune the bandgaps and the directionality of the propagating
waves, but also reveals how geometric and material non-linearities contribute to the tunable response
of phononic crystals. Our numerical study provides a better understanding of the tunable response
of phononic crystals and opens avenues for the design of systems with optimized properties and
enhanced tunability.

PACS numbers: Valid PACS appear here

Phononic crystals (i.e. periodic structures com-
posed of multiple materials with contrast in mechanical
properties) have attracted considerable interest due to
their ability to tailor the propagation of waves through
bandgaps, frequency ranges in which the propagation
of sound and elastic waves is forbidden [1–5]. This
fundamental property has been recently exploited to
design waveguides [6], frequency modulators [7], noise-
reduction devices [8] and vibration isolators [9]. It
has also been recognized that phononic crystals are
characterized by directional behavior that can be ex-
ploited to steer or redirect waves in specific directions
[3, 10, 11]. The directionality is determined by the
level of anisotropy of the structure and can be fully
controlled through proper arrangement of the material
distribution at the unit cell level [12]. Furthermore,
many previous studies have focused on the high fre-
quency propagation directionality of phononic crystals
[13–15], while the strongly directional behavior in the
low frequency regime is not fully explored despite im-
portant potential applications in broadband situations
[12].

Motivated by technological applications, a number of
studies investigated the effects of both material prop-
erties (i.e. contrast in density, Young’s modulus and
Poisson’s ratio) [16, 17] and geometry (i.e. volume
fraction and topology) [18, 19] on the characteristics of
phononic crystals. However, in all these investigations
the bandgaps and the directionality of the propagat-
ing waves are limited to specific values that cannot be
tuned after the manufacturing process. New strategies
are required to design phononic crystals with adaptive
properties that can be reversibly tuned.

It has been recently demonstrated that mechanical
loading can be used as a robust mechanism for in-situ
tunability of soft and highly deformable 2D phononic
crystals [5]. It was shown that both the position and
width of the bandgap are strongly affected by the
applied deformation [5, 20, 21]. However, the effect of
deformation on the directionality of the propagating

waves in the low frequency regime has never been
explored. Finally, although it is evident that the
applied deformation induces both strong geometric
and material non-linearities [5], it is not clear how
these two factors contribute to the tunability of the
response. To shed light on these important points,
here we investigate not only the effect of the applied
deformation on the low frequency directionality of
the propagating waves, but also the contributions of
geometric and material non-linearities to the tunable
response of soft phononic crystals. The numerical
analyses performed in this study offer a better under-
standing of the tunable response of phononic crystals
and provide guidelines for the design of structures
with optimized properties and enhanced tunability.

Here, we focus on two dimensional (2D) soft
phononic crystals. Although our analysis is general
and can be applied to any architecture, in this study
we present numerical results for a square array of
circular holes characterized by an initial void volume
fraction V0 = 60% (Fig. 1A). Here, V0 is defined
as the volume of the voids divided by the total

Figure 1: Geometry reorganization induced by instability in
a soft phononic crystal comprising a square array of circular
holes subjected to equibiaxial compression. The dashed
square of size a× a in (A) indicates the primitive unit cell
in the undeformed configuration. The solid square in (B)
represents the enlarged representative volume element in
the deformed configuration.
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volume of the phononic crystal. The non-linear
finite-element code ABAQUS/STANDARD is used
to deform the structures as well as to investigate the
propagation of small-amplitude elastic waves in the
pre-deformed phononic crystal. Detailed description
of the general formulation and the numerical simula-
tions are provided in the Supplementary Materials [22].

For all the analyses, 2D finite element models are
constructed and the accuracy of the mesh is ascer-
tained through a mesh refinement study. We focus on
a phononic crystal made of an almost-incompressible
elastomeric material whose response is captured by a
Gent model [23] characterized by the following strain
energy density function:
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where I1 = trace
(
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)
, J = det(F) , F denotes the

deformation gradient, G and K are the initial shear
and bulk moduli and Jm denotes a material constant
related to the strain at saturation. We note that the
strain energy tends to infinity as I1 − 3 approaches
Jm.

Figure 2: Uniaxial stress-stretch response of a nearly in-
compressible Gent material with Jm = 0.5, 2.0 and ∞ (the
last corresponding to a Neo-Hookean material).

Here, we consider an elastomeric material with
G = 1.08× 106 N/m2, K = 2.0× 109 N/m2(Poissson’s
ratio ν = 0.4997) and ρ0 = 1050 kg/m3, so that in
the undeformed configuration the elastic wave speeds
for shear and pressure waves in the material are
cT = 32.07 m/s and cL = 1381 m/s, respectively.
The effects of material non-linearities are invest-
igated by considering three different values of Jm,
Jm = 0.5, 2.0, ∞. Note that, at the limit of Jm →∞,
the strain energy density function (1) reduces to that
of a Neo-Hookean material [22, 24]. In Fig. 2 the

material response under uni-axial loading is reported
in terms of the nominal stress S, normalized by G,
versus the uni-axial deformation stretch. The results
clearly indicate that smaller values of Jm introduce
stronger non-linearities in the material behavior.

It is well known that, under compression, the geo-
metric pattern of soft phononic crystals can suddenly
change due to either: (a) microscopic instabilities with
a spatial periodicity comparable to the size of the unit
cell; or (b) macroscopic instabilities with a spatial
periodicity much larger than the size of the unit cell
[22, 25–28]. In this study, we investigate both instabil-
ities of the phononic crystal under equi-biaxial com-
pression, so that the macroscopic deformation gradient
F̄ is given by

F̄ = λ (e1 ⊗ e1 + e2 ⊗ e2) , (2)

where λ denotes the macroscopically applied stretch.
We note that the undeformed configuration is charac-
terized by λ = 1. Moreover, λ > 1 and λ < 1 represent
the tension and compression load, respectively.

For the considered periodic structure, the onsets
of both microscopic and macroscopic instabilities are
detected by studying the response of a single unit
cell (indicated by the dashed red square in Fig. 1A)
along the loading path (2) for λ < 1 [22]. For all
the cases considered here (i.e. Jm = 0.5, 2.0, ∞) a
microscopic instability is detected at λMicro

cr = 0.984,
while the onset of macroscopic instability occurs at
λMacro
cr = 0.961. Therefore, microscopic instabilities

are always critical in compression, leading to an
enlarged representative volume element of 2 × 2
primitive unit cells and to the formation of a pattern
of alternating, mutually orthogonal and elongated

Figure 3: Macroscopic nominal stress vs stretch curves for
the square array of circular holes in a Gent matrix. The
departure from linearity is the result of an elastic instability
that triggers the pattern transformation. The Von Mises
stress distributions in the phononic crystals at λ = 0.8 are
shown on the right for Jm = 0.5, 2.0 and ∞.
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holes (Fig. 1B).

The post-buckling response of the phononic crys-
tal is then simulated by introducing small random
imperfections in the initial geometry [22]. In Fig. 3
we present the static response of the phononic crystal
for the three considered values of Jm in terms of the
macroscopically effective nominal stress S̄ versus the
applied stretch λ. Although the onset of instability
is found not to be affected by Jm, we can clearly see
that Jm has a strong influence on the postbuckling
response of the structure.

To highlight the effect of the applied deformation
on the propagation of elastic waves, we present in Fig.
4 the band structure and directionality diagrams of a
phononic crystal made of a Gent material with Jm =
0.5 in both the undeformed (λ = 1.0, Fig. 4A) and
deformed (λ = 0.8, Fig. 4B) configurations.

Figs. 4C and 4D show the band diagrams of the
undeformed and deformed configurations, respectively.
The dimensionless frequency f̃ = ωa/(2πcT ), with a
denoting the characteristic size of the unit cell in the
undeformed configuration (Fig. 1A), is plotted as a
function of the wave vector in the reciprocal space
[22]. In the undeformed configuration, the periodic
structure features a bandgap at f̃ = 0.61 ∼ 0.82. It is
clear from Fig. 4D that the compression significantly
alters the band structure. The pre-existing bandgap is
shifted and widened to f̃ = 0.84 ∼ 1.29. In addition, a
new bandgap that does not exist in the reference state
is opened at f̃ = 0.50 ∼ 0.64.

To investigate the effect of deformation on the
preferential directions of wave propagation, we fo-
cus on the low frequency range and calculate both
phase velocity and group velocity for all directions
of propagation at f̃ = 0.05 (horizontal red line in
Figs. 4C and 4D) [22]. In Figs. 4E and 4F we report
the phase velocity profiles and in Figs. 4G and 4H
the group velocity profiles for the undeformed and
deformed configurations, respectively. In these plots
all the wave velocities are normalized, so that the
magnitude of maximum velocity, vmax, of any mode
in any configuration is unity. It is important to note
that the wave directionality in the low frequency range
cannot be fully captured just by inspecting the band
diagrams [12]. In fact, although the dispersion curves
at low frequency resemble straight lines, which seem
to imply linear dispersion relations, the approximation
of an effective non-dispersive media is not applicable
here, as phase and group velocities may exhibit very
different directional behaviors [12].

We start by noting that, in the undeformed config-
uration, the phase velocity shows a preferred direction

Figure 4: Dynamic response of the phononic crystal in the
undeformed (left column, λ = 1.0) and deformed (right
column, λ = 0.8) configuration. The effects of deformation
on the bandgaps (B and C) and directionality of phase (D
and E) and group (F and G) velocities are investigated.

of propagation at θ = 45o for mode 1 (shear-dominated
mode) and at θ = 0o for mode 2 (pressure-dominated
mode) (Fig. 4E). Moreover, the group velocity in
the undeformed configuration exhibits two preferred
directions at θ = 10o and 80o for mode 1 (Fig. 4G),
whereas it does not show a significant preferential
direction of propagation for mode 2. Interestingly,
the deformed configuration does not exhibit any
strong preference in directions for both phase and
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Figure 5: Effects of geometric non-linearities on (A) bandgaps and directionality of (B) mode 1 and (C) mode 2.

group velocities in both modes (Figs. 4F and 4H), so
that it behaves as a nearly-isotropic medium. These
results clearly indicate that the deformation have a
significant effect on the wave directionality. Finally,
we observe that the applied deformation has a more
pronounced effect on the phase and group velocity
profiles of mode 1 (shear-dominated mode), whereas
the directionality of mode 2 (pressure-dominated
mode) is only marginally affected.

The results presented above clearly show that the
applied deformation strongly affects not only the
static, but also the dynamic response of phononic
crystals. However, to design the next generation of
tunable phononic crystals that take full advantage
of the changes on the dynamic response induced by
the applied deformation, this mechanism needs to be
thoroughly understood. While it is well known that
the applied deformation introduces both geometric
and material non-linearities, it is not clear how these
two effects control the tunable dynamic response of
the phononic crystal. To gain knowledge on this front,
we numerically investigate the separate effects of (I)
geometric and (II) material non-linearities on both
the bangaps and wave directionality.

Geometric non-linearities. To evaluate the effect of
geometric non-linearities on the dynamic response of
the phononic crystal, we investigate the propagation
of elastic waves in a stress-free structure with the de-
formed geometry (i.e. the shape of the structure is de-
termined by the post-buckling analysis). More specific-
ally, we compress the structure up to a certain value
of λ and then set the all the components of the stress
to zero before performing the wave propagation ana-
lysis. Thus, the inhomogeneous stress distribution is
not taken into the consideration when computing the
dynamic response.

The evolution of the bandgaps as a function of λ is
shown in Fig. 5A. The change in geometry induced by
the applied deformation is found to shift and widen
the main bandgap and to generate two additional
band gaps, one higher and the other lower than the

main gap, which open at λ = 0.92 and λ = 0.88, re-
spectively. These deformation-induced bandgaps also
shift and widen for decreasing values of λ. Finally, we
note that these results are independent of Jm, since,
in order to investigate the geometric effects alone, we
have neglected the stress distribution in the deformed
configuration (note that the incremental response for
an unstressed Gent material is independent of Jm).

To describe the evolution of the directionality of
propagating waves, we define the anisotropy ratio:

η =
vmax

vmin
, (3)

where vmax and vmin are the maximum and minimum
wave velocities, respectively (see Fig. 4E). The trends
of η for both phase velocity and group velocity of
mode 1 (shear-dominated mode) and mode 2 (pressure-
dominated mode) as a function of λ are reported in
Figs. 5B and 5C, respectively.

For mode 1, the anisotropy ratios of both the group
and phase velocity profiles (ηgroup and ηphase) rise
from the initial values up to a turning point, then to
rapidly decrease as function of λ and approach unity
(Fig. 5B). Note that the turning point at λ = 0.984
corresponds to the onset of structural instability.
Similar trends are observed for mode 2 (Fig. 5C),
but the changes induced by deformation are less
dramatic in this case. In summary, the results from
both modes show that the geometric non-linearities
induced by instability have a significant effect on
the wave directionality; They remove the directional
characteristics of both modes and make the wave
propagation more isotropic.

Material non-linearities It is apparent from Fig.
4B that deformation not only affects the geometry, but
also induces an inhomogeneous strain/stress distribu-
tion within the phononic crystal. Substantial stress
concentrations are developed during compression
and they strongly depend on the non-linear material
response, which is characterized by Jm (Fig. 3).
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Figure 6: Effects of material non-linearities on the bandgaps. Soft phononic crystals made of Gent materials with (A)
Jm =∞, (B) Jm = 2.0 and (C) Jm = 0.5 are investigated.

To investigate the effect of material non-linearities
on the propagation of elastic waves, we start by
studying the response of a phononic crystal made
of a Neo-Hookean material (i.e. Gent material with
Jm = ∞). The response of such material is weakly
non-linear and the stiffening effect induced by the
applied deformation is negligible in this case. In Fig.
6A, we report the evolution of the bandgaps as a
function of the applied deformation λ. Comparison
between Figs. 5A and 6A reveals that the dynamic
response of the phononic crystal is not affected by the
inhomogeneous stress state. Therefore, for a phononic
crystal made of an Neo-Hookean elastomeric material,
the geometric non-linearities induced by the applied
deformation fully control the position and width of
the bandgaps.

Next, we investigate the evolution of the bandgaps
for phononic crystals made of elastomers with stronger
material non-linearity. As shown in Fig. 2, smaller val-
ues of Jm introduce stronger material non-linearities
under the applied deformation. Here, we comparat-
ively study the cases of phononic crystals made of
Gent materials with Jm = 2.0 and 0.5 (Figs. 6B and
6C). We notice that in both cases the bandgaps are
significantly affected by material non-linearities when
λ < 0.9. We find that smaller values of Jm provide a
larger range of tunability for the bandgaps. To better
quantify the effect of material non-linearity on the
bandgap tunability, we divide the wave frequencies
into three categories: (i) frequencies that are always
in the propagating band (e.g. f̃ = 0.55, continuous
horizontal line in Fig. 6A); (ii) frequencies that
are always in the bandgap (e.g. f̃ = 0.75, dashed
horizontal line in Fig. 6A); and (iii) frequencies that
can be switched on / off by the applied deformation
(e.g. f̃ = 1.05, dotted horizontal line in Fig. 6A).
We start by noting that all the three frequencies
highlighted in Fig. 6A turn into category (iii) when
Jm = 0.5 (see dotted horizontal lines in Fig. 6C).
In fact, for Jm = 0.5, the frequencies in the entire
region f̃ = 0.49 ∼ 1.28 can be switched on / off by the
applied deformation. Therefore, since large regions

of type (iii) frequencies are desirable for the design
of a highly tunable system, our results indicate that
phononic crystals made of materials with stronger
non-linearities can offer enhanced bandgap tunability.

To further study the effect of the material parameter
Jm on the bandgaps, we calculate the relative size of
the band-gaps as the ratio between gap width and the
mid-gap position,

∆ωrelative =
ωupper − ωlower

(ωupper + ωlower)/2
, (4)

where ωupper and ωlower are the frequencies of upper
and lower edge limits of a bandgap, respectively. It has
been previously shown that the relative size defined
above is a important design parameter, and that a
large relative size of the bandgap is preferable for
many applications [4]. The evolution of ∆ωrelative as a
function of the applied deformation is reported in Figs.
7A, B and C for the first, second and third bandgap,
respectively. The responses of phononic crystals made
of Gent material with Jm = 0.5, 1.0, 2.0, 5.0, 10.0
and ∞ are considered. For all different materials
considered here and for all three bandgaps ∆ωrelative

is found first to increase as a function of the applied
deformation, then to reach a maximum and finally
either to plateau or slightly decrease. For instance, in
the case of Jm = 0.5, ∆ωrelative reaches the maximum
value at λ = 0.83, 0.94 and 0.91 for the first, second
and third bandgaps, respectively. We note that the
decrease of ∆ωrelative after its maximum is due to the
fact that the position shifting effect is stronger than
the widening effect. That is, in Eqn. (4), the increase
in the denominator becomes faster than the increase
in the numerator. As a result, although the bandgap
keeps widening upon further deformation, ∆ωrelative

diminishes. This feature described above becomes
more pronounced when the applied deformation is
large and the constituting material is highly non-linear.

Finally, our analysis also reveals that material
non-linearities do not affect the directionality of the
propagating waves at low frequency. The velocity
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Figure 7: Comparison of the change of relative bandgaps during deformation

profiles obtained for a phononic crystal made of Gent
material with Jm =∞, 2.0 and 0.5 are found to be the
same as those shown in Figs. 5B and 5C. Therefore,
these results suggest that only changes in geometry
can be effectively used to tune the directional charac-
teristics of the lower bands.

To summarize, we use numerical simulations to
study the propagation of small-amplitude elastic
waves in highly deformed phononic crystals and
investigate the effect of deformation on bandgaps and
directionality of propagating waves. The contributions
of geometric and material non-linearities to the tun-
able response of phononic crystals are revealed. The
bandgaps are found to be affected both by geometric
and material non-linearities, while the directional
preferences of the wave modes in low passing bands
are shown to be sensitive only to changes in geometry.
Enhanced tunability of the bandgaps is found for
phononic crystals made of materials with stronger
non-linear behavior. Finally, the changes in geometry
introduced by the applied deformation gradually
remove the directional characteristics of the lower
propagation modes, making the wave propagation
more isotropic. The results presented in this paper
provide useful guidelines for the design of tunable
phononic devices.
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