Invariance and Vowels

- Vowels are "cued" by the frequencies of the first three formants.
- Duration, fundamental frequency and the shape of the short-term spectrum are acoustic correlates of vowel identity.
- Vowels in fluent speech are rarely steady-state.

F1, F2, and F3

Using synthetic speech, we can generate 2-formant (F1 and F2) or 3-formant (F1, F2, \& F3) vowels. Except for / e/ (as in heard), all of the vowels in American English can be identified based on 2-formant, synthetic tokens.
Steady-state (formants do not change over time) vowels are not as intelligible as natural vowels.

For example, in a corpus of 1520 vowel tokens, overall intelligibility was 94.4 percent correct (Peterson \& Barney). Steady-state versions of these tokens were identified correctly less than 75 percent of the time (Hillenbrand \& Gayvert).

Vowels of American English

Formant measurements were made for vowels in hVd context by Peterson and Barney in the 1950's/.
A more recent set of measurements can be found in:

Hillenbrand, J., Getty, L. A., Clark, M. J., \& Wheeler, K. (1995). Acoustic characteristics of American English vowels. Journal of the Acoustical Society of America, 97, 3099-3111.

The following figures and tables come from Hillenbrand et al.

Vowels of American English

TARIE V. Averige durations, fundamental trequeacies, and formand frequencies of vowels probluced by an men, 48 women, and 46 childecn. Averages are based on a subset of the tokens that were well idenlidied by listeners (ese text for detaiss). The duration measurements are in nss; all otbers are in $\mathbf{H z}$.

		ii	4	ici	'E/	/ay	/a'	勺'	/0\%	'u'	juf	N	131
Dut	M	243	192	267	189	278	267	283	265	192	237	188	263
	W	3 Nm	237	320	254	332	323	353	326	249	303	226	321
	C	297	248	314	235	322	311	319	310	247	278	234	37
P0	M	137	135	129	127	123	123	121	129	133	143	133	130
	w	227	224	219	214	215	215	210	217	231	235	218	217
	c	246	241	237	230	228	229	225	236	243	249	2.96	237
$F 1$	M	342	427	476	580	588	768	652	497	469	378	623	474
	w	437	483	536	731	669	936	781	555	519	459	753	523
	C	452	511	564	749	717	1002	8403	597	568	494	749	586
$F 2$	M	2322	2034	2089	1799	1952	1333	997	910	1122	497	1200	1379
	w	2761	2365	2530	2058	2349	1551	1136	1035	1225	1105	1424	1588
	c	3081	2552	2656	2267	2501	16883	1214	1137	1490	1345	1546	1719
13	M	3000	2684	2691	2605	2601	2522	2538	2459	2434	2743	25sm	1714
	w	3372	3053	3047	2979	2972	2815	2824	2828	2827	2735	2933	1929
	c	3762	3411.3	3323	3310	3289	2950	2982	2987	3072	2988	3145	2143
14	M	3657	3618	3649	3677	3624	3687	3486	3384	3400	3357	3557	3334
	w	4352	4334	4319	4294	4290	4299	3923	3927	4052	4115	4092	3914
	c.	4.572	4.575	4422	46731	4409	4307	3919	4167	4328	4276	4320	3788

Men and Women Averages

Filf, 5. Acouxic: vineel diagrems xhowink iverape furemand Itequencies for arm from tue present sludy and from Peterson and Bamey ("as"=icj,

3104 J. Acoust. Soc. Am., Vol. 97. No. 5, Pt. 1, May 1995

F[G. 6 Acoustic vowed diagrans showing awerage lex.mint frequencies for

Hillenbrand et al.: Acoustic characteristics of vowels

Duration

Ainsworth synthesized a steady-state vowel intermediate between /i/ and /I/. When duration was varied, long tokens were classified as /i/ and short tokens were classified as /I/.

Duration can be used by listeners.

Why are F1, F2 and F3 not "invariant"?

1) Coarticulation - Vowels formants do not hit their idealized values because of coarticulation with adjacent phonemes. /i/ in /bib/ and /did/ are different.
2) Formant frequencies vary from talker to talker and additional information is needed to "normalize".
3) There are other acoustic correlates besides F1, F2, and F3.
4) Vowels are not processed with respect to steady-state values. Like stop-consonant place of articulation, vowels are inherently dynamic.

Vowel Space for JRS

Vowel Space for CTM

Vowel Space for KMM

Vowel Space for LKZ

Acoustic Correlates to Vowel Identity

1) Static formant frequencies (F1, F2, F3 at vowel center)
2) Dynamic formant frequencies (direction and extent)
3) Duration
4) F0 (harmonic of F0 which aligns with F1)
5) Spectral Shape
6) Change in spectral shape

Nearey \& Assman Results

Recorded isolated vowels. Edited short segments of beginning and end and played to listeners in different temporal arrangements.
-Beginning followed by end best identified.

- Just beginning or end intermediate.
-End followed by beginning miss-identified most.

Results show that listeners exploit dynamic information such as the extent and direction of formant movement.

Strange et al. Results

Recorded CVC syllables. Edited to produce vowel centers (removed initial and final transition portions) and
"centerless" syllables (removed center, keeping transitions in their original temporal relationship).

Results show that listeners identified the vowel in the "centerless" syllables as well or better than the vowel centers.

Dynamic information appears critical to vowel identification.

Duration Revisited

Some speakers of Midwestern American English produce the vowels $/ \varepsilon /$ and $/ æ /$ such that the formant frequencies at the center of the vowel are nearly identical.

These same talkers produce the vowels so that there is a reliable difference in duration with the /æ/ longer and the $/ \varepsilon /$ shorter.

F1, F2 and F3 for Talker M20

Token	Formant	Onset	Middle	End
/hæd/	F1	594	608	645
/hed/		601	607	565
/hæd/	F2	1850	1745	1618
/hed/		1860	1740	1690
/hæd/	F3	2360	2271	2360
/hed/		2400	2340	2440

Data Summary

If the syllable /hæd/ is shortened, listeners continue to label it as /hæd/. If the syllable $/ \mathrm{h} \varepsilon \mathrm{d} /$ is lengthened, listeners continue to label it /hed/. Even though the duration is distinctive in the talker's articulation, listeners do not use it.

If high quality synthetic versions of /hed/ and /hæd/ are created (with formant movements that mimic the originals and an F0 that is the average of the two), listeners use duration. Long syllables are labeled /hæd/ and short are labeled /hed/.

Talker 20 Tokens
Effect of vowel duration

Synthetic Tokens

Effect of Formant Frequencies

Data Summary - 2

Finally, if different F0s, mimicking the original syllables, are used, then listeners' labels follow the F0 and formants. With a low F0 $(130 \mathrm{~Hz})$, the stimuli are labeled /hæd/ and a higher F0 (152 Hz), they are labeled $/ \mathrm{h} \varepsilon \mathrm{d} /$, regardless of duration.

Listeners appear to be using the amplitude of the harmonics of the fundamental. When the most intense harmonic is lower (3 times the fundamental), they identify the syllable as $/ \mathrm{h} \varepsilon \mathrm{d} /$. When the most intense harmonic is higher (4 times the fundamental), the syllable is identified as /hæd/.

Synthetic Tokens
 Effect of F0 \& Formant Frequencies

Long Series
Short Series

Stimulus

Vowel Summary

Listeners use the peaks in the spectrum (the information in the signal related to the formants). Duration is a secondary cue.

The extraction of the "first formant" is probably done by resolving the most intense, low frequency harmonic of the fundamental. The other formants are probably simply peaks in the auditory spectrum.

Listeners use dynamic information and are more accurate in identifying dynamic vowels than steady-state vowels.

Vowel Summary - 2

If perception involves a speaker independent representation, then differences across talkers must be normalized using information such as F0, F4, the prior F1, F2, and F3 from the talker, and context to map the talker's vowel space.

Alternatively, listeners may map both the vowel and the talker simultaneously to a set of stored representations.

Models of Vowel Recognition

We will look at two different approaches:
Syrdal \& Gopal - Uses F1, F2, F3, F4, and F0 at vowel midpoint.

Hillenbrand \& Houde - Uses a normalized crosssection of the spectrum at multiple points (beginning, middle and end of vowel).

Syrdal \& Gopal

This is a "classic" model. The acoustic cues to vowel recognition are F0, F1, F2, F3, and F4. The vowels are normalized to a fully abstract, talker independent representation.

Within each vowel, F0 and F4 represent "talker" qualities while F1, F2, and F3 are related to vowel identity. By using the distance between formants as the primary cue, talker differences are eliminated from the signal. Since this "normalizing" information is contained in each vowel, this is a form of intrinsic normalization.

Syrdal \& Gopal - Processing Steps

1. Extract F0, F1, F2, F3 and F4 using a frequency scale that mimics human hearing (a bark scale is used).
2. Compute "peak differences" as F1-F0, F2-F1, F3F2, F4-F2.
3. Map the peak differences onto stored representations of these values for each vowel (prototypes).
4. The prototype that fits best (least distance) is the vowel.

Hillenbrand

This model does not use formants and avoids problems associated with extracting formants from a speech signal.

Each vowel is represented in memory as a sequence of spectral slices (3 to 5) or sections. The auditory system computes this for an incoming signal and the sections are compared to stored representations (prototypes) for men, women and children for each vowel. That is, this model "normalizes" by using separate memory representations.

Hillenbrand - Processing Steps

1. Compute spectral cross-sections at 5 points in vowel.
2. Compute similarity (distance) to prototypes. Note that there are 3 prototypes for each vowel (men, women, children).
3. Prototype that fits best (least distance) is vowel.

Performance

Syrdal \& Gopal, using only a single, static representation, is 80-85\% correct for hVt syllables. Confusions are generally neighboring vowels that often differ in duration.

Hillenbrand \& Houde, using only a single spectral section at the center of the vowel, is 80% correct for hVt syllables. Using 3 slices (beginning, middle, end) it is 92% correct. Confusions are generally neighboring vowels that often differ in duration plus some "odd" errors (e.g. /i/ and /u/).

