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Abstract

A new spacecraft attitude estimation approach based on the Unscented Filter is derived.

For nonlinear systems the Unscented Filter uses a carefully selected set of sample points

to more accurately map the probability distribution than the linearization of the standard

Extended Kalman Filter, leading to faster convergence from inaccurate initial conditions in

attitude estimation problems. The filter formulation is based on standard attitude-vector

measurements using a gyro-based model for attitude propagation. The global attitude

parameterization is given by a quaternion, while a generalized three-dimensional attitude

representation is used to define the local attitude error. A multiplicative quaternion-error

approach is derived from the local attitude error, which guarantees that quaternion normal-

ization is maintained in the filter. Simulation results indicate that the Unscented Filter is

more robust than the Extended Kalman Filter under realistic initial attitude-error condi-

tions.

Introduction

The Extended Kalman Filter (EKF) is widely used in attitude estimation. Several pa-

rameterizations can be used to represent the attitude, such as Euler angles,1 quaternions,2

modified Rodrigues parameters,3 and even the rotation vector.4 Quaternions are especially

appealing since no singularities are present and the kinematics equation is bilinear. However,
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the quaternion must obey a normalization constraint, which can be violated by the linear

measurement-updates associated with the standard EKF approach. The most common ap-

proach to overcome this shortfall involves using a multiplicative error quaternion, where after

neglecting higher-order terms the four-component quaternion can effectively be replaced by

a three-component error vector.2 Under ideal circumstances, such as small attitude errors,

this approach works extremely well.

One interesting fact of the formulation presented in Ref. [2] is that the 4× 4 quaternion

covariance is assumed to have rank three, i.e., the 4×4 matrix can be projected onto a 3×3

matrix without any loss in information. But, this is only strictly valid when the constraint is

linear, which is not the case for the quaternion.5 However, the covariance is nearly singular,

and a linear computation such as the EKF can make it exactly singular. This approach

is justifiable for small estimation errors, but may cause difficulties outside the valid linear

region, e.g., during the initialization stage of the EKF.

Several approaches have addressed the issue of initialization for attitude estimation. Ref-

erence [6] explicitly includes the quaternion constraint in the measurement update. This

works well for large initial condition errors; however, linearizations about the previous error

estimate are required for the covariance propagation and for the measurement updates, which

may produce biased estimates. Reference [7] breaks the measurement update into two steps.

The linear first step uses a transformation of the desired states, while the second step uses

a non-recursive minimization to recover the desired states. This also works well; however,

local iterations at each time-step on a constrained minimization problem are required in the

second step.

In this paper a new attitude estimation approach, based on a filter developed by Julier,

Uhlmann and Durrant-Whyte,8 is shown as an alternative to the EKF. This filter approach,

which they call the Unscented Filter 9 (UF), has several advantages over the EKF, including:

1) the expected error is lower than the EKF, 2) the new filter can be applied to non-

differentiable functions, 3) the new filter avoids the derivation of Jacobian matrices, and 4)
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the new filter is valid to higher-order expansions than the standard EKF. The UF works on

the premise that with a fixed number of parameters it should be easier to approximate a

Gaussian distribution than to approximate an arbitrary nonlinear function. Also, the UF

uses the standard Kalman form in the post-update, but uses a different propagation of the

covariance and pre-measurement update with no local iterations.

As with the standard EKF, using the UF directly with a quaternion parameterization

of the attitude yields a nonunit quaternion estimate. A linearized model, such as the one

used in Ref. [2], does not take full advantage of the UF capabilities. An alternative ap-

proach presented in this paper uses a three-component attitude-error vector to represent the

quaternion error vector. Several three-component representations are possible, including the

Gibbs vector (also known as the vector of Rodrigues parameters), which has a singularity

at 180◦ rotations, and the vector of modified Rodrigues parameters (MRPs), which has a

singularity at 360◦.10 Reference [11] proves that four times the vector of MRPs and twice

the Gibbs vector leads to the same second-order approximation. We choose a generalized

representation where the singularity can be placed anywhere from 180◦ to 360◦.12 Since we

only use a three-component representation for the attitude errors, the singularity is never

encountered in practice. The updates are performed using quaternion multiplication, leading

to a natural way of maintaining the normalization constraint.

The organization of this paper proceeds as follows. First, the UF is reviewed. Then,

a brief review of the quaternion attitude kinematics and gyro-model is provided, followed

by a review of the generalized three-component error-vector representation. Then, an UF

is derived for attitude estimation using a multiplicative quaternion update with the three-

component error-vector representation. Finally, the new filter is compared with the EKF

using simulated three-axis magnetometer and gyro measurements of the Tropical Rainfall

Measurement Mission (TRMM).
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Unscented Filtering

In this section the UF is reviewed. The filter presented in Ref. [13] is derived for discrete-

time nonlinear equations, where the system model is given by

xk+1 = f(xk, k) + Gkwk (1a)

ỹk = h(xk, k) + vk (1b)

where xk is the n × 1 state vector and ỹk is the m × 1 measurement vector. Note that a

continuous-time model can always be expressed in the form of Eq. (1a) through an appropri-

ate numerical integration scheme. We assume that the process noise wk and measurement-

error noise vk are zero-mean Gaussian noise processes with covariances given by Qk and Rk,

respectively. The standard Kalman Filter update equations are first rewritten as14

x̂+
k = x̂−k + Kkυk (2a)

P+
k = P−

k −KkP
υυ
k KT

k (2b)

where x̂−k and P−
k are the pre-update state estimate and covariance, respectively, and x̂+

k

and P+
k are the post-update state estimate and covariance, respectively. The innovation υk

is given by

υk ≡ ỹk − ŷ−k = ỹk − h(x̂−k , k) (3)

The covariance of υk is denoted by P υυ
k . The gain Kk is computed by

Kk = P xy
k (P υυ

k )−1 (4)

where P xy
k is the cross-correlation matrix between x̂−k and ŷ−k .

The UF uses a different propagation than the standard EKF. Given an n× n covariance

matrix P , a set of 2n sigma points can be generated from the columns of the matrices
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±
√

(n + λ)P , where
√

M is shorthand notation for a matrix Z such that Z ZT = M . The

set of points is zero-mean, but if the distribution has mean µ, then simply adding µ to each

of the points yields a symmetric set of 2n points having the desired mean and covariance.13

Due to the symmetric nature of this set, its odd central moments are zero, so its first three

moments are the same as the original Gaussian distribution. The scalar λ is a convenient

parameter for exploiting knowledge (if available) about the higher moments of the given

distribution.14 In scalar systems (i.e., for n = 1), a value of λ = 2 leads to errors in the

mean and variance that are sixth order. For higher-dimensional systems choosing λ = 3− n

minimizes the mean-squared-error up to the fourth order.13 However, caution should be

exercised when λ is negative since a possibility exists that the predicted covariance can

become non-positive semi-definite. If this is a major concern, then another approach can be

used that allows for scaling of the sigma points, which guarantees a positive semi-definite

covariance matrix.15 Also, it can be shown that when n + λ tends to zero the mean tends to

that calculated by the truncated second-order filter.16 This is the foundation for the UF.

A method for incorporating process noise in the UF is shown in Ref. [17]. This approach

generates a set of points in [xk, wk] space that has the correct mean and covariance, and

propagates these points through the model in Eq. (1a). The predicted mean and covariance

are also augmented to included the process noise, but the basic structure of the their calcu-

lations remain unchanged (see Ref. [17] for more details). Although this approach may more

fully utilize the capability of the unscented transformation, it will be more computationally

costly due to the extra required calculations arising from the augmented system. For the

attitude estimation problem, a set of six more sigma points is required to implement this ap-

proach. This significantly increases the computational burden, which may prohibit its use for

actual onboard implementations. Another approach based on a trapezoidal approximation

will be shown in this paper.

The general formulation for the propagation equations is given as follows. First, compute
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the following set of sigma points:

σk ← 2n columns from ±
√

(n + λ)[P+
k + Q̄k] (5a)

χk(0) = x̂+
k (5b)

χk(i) = σk(i) + x̂+
k (5c)

where the matrix Q̄k is related to the process noise covariance, which will be discussed shortly.

One efficient method to compute the matrix square root is the Cholesky decomposition.18

Alternatively, the sigma points can be chosen to lie along the eigenvectors of the covariance

matrix. Note that there are a total of 2n values for σk (the positive and negative square

roots). The transformed set of sigma points are evaluated for each of the points by

χk+1(i) = f [χk(i), k] (6)

The predicted mean is given by

x̂−k+1 =
1

n + λ

{
λ χk+1(0) +

1

2

2n∑
i=1

χk+1(i)

}
(7)

The predicted covariance is given by

P−
k+1 =

1

n + λ

{
λ [χk+1(0)− x̂−k+1] [χk+1(0)− x̂−k+1]

T

+
1

2

2n∑
i=1

[χk+1(i)− x̂−k+1] [χk+1(i)− x̂−k+1]
T

}
+ Q̄k

(8)

The mean observation is given by

ŷ−k+1 =
1

n + λ

{
λ γk+1(0) +

1

2

2n∑
i=1

γk+1(i)

}
(9)
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where

γk+1(i) = h[χk+1(i), k] (10)

The output covariance is given by

P yy
k+1 =

1

n + λ

{
λ [γk+1(0)− ŷ−k+1] [γk+1(0)− ŷ−k+1]

T

+
1

2

2n∑
i=1

[γk+1(i)− ŷ−k+1] [γk+1(i)− ŷ−k+1]
T

} (11)

Then, the innovation covariance is simply given by

P υυ
k+1 = P yy

k+1 + Rk+1 (12)

Finally, the cross-correlation matrix is determined using

P xy
k+1 =

1

n + λ

{
λ [χk+1(0)− x̂−k+1] [γk+1(0)− ŷ−k+1]

T

+
1

2

2n∑
i=1

[χk+1(i)− x̂−k+1] [γk+1(i)− ŷ−k+1]
T

} (13)

The filter gain is then computed using Eq. (4), and the state vector can now be updated

using Eq. (2). Even though 2n + 1 propagations are required for the UF, the computations

may be comparable to the EKF, especially if the continuous-time covariance equations need

to be integrated and a numerical Jacobian matrix is evaluated. Since the propagations can

be performed in parallel, the UF is ideally suited for parallel computation architectures. A

square root implementation of the UF has been developed.19 Although this promises to have

improved numerical properties, it will not be considered in this paper.

Reference [17] states that if the process noise is purely additive in the model, then its

covariance can simply be added using a simple additive procedure. In this paper we expand

upon this concept by incorporating an approximation for the integration over the sampling
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interval, which more closely follows the actual process. Any process noise that is added to the

state vector in the UF is effectively multiplied by the state transition matrix, Φ(∆t), which

gives Φ(∆t) QkΦ
T (∆t) at the end of the interval. This mapping is done automatically by

the state propagation, and does not need to be explicitly accounted for in the propagation.

However, adding equal process noise at the beginning and end of the propagation might yield

better results. The total desired process noise follows

Φ(∆t) Q̄kΦ
T (∆t) + Q̄k = GkQkG

T
k (14)

where Q̄k is used in Eq. (5a) and in the calculation of the predicted covariance in Eq. (8).

This approach is similar to a trapezoid rule for integration. An explicit solution for Q̄k in

the attitude estimation problem depends on the attitude kinematics, which we next show.

Attitude Kinematics and Sensor Models

In this section a brief review of the attitude kinematics equation of motion using quater-

nions is shown. Also, a generalization of the Rodrigues parameters is briefly discussed.

Finally, gyro and attitude-vector sensor models are shown. The quaternion is defined by

q ≡ [
%T q4

]T
, with % ≡ [q1 q2 q3]

T = ê sin(ϑ/2) and q4 = cos(ϑ/2), where ê is the axis of

rotation and ϑ is the angle of rotation.10 Since a four-dimensional vector is used to describe

three dimensions, the quaternion components cannot be independent of each other. The

quaternion satisfies a single constraint given by qTq = 1. The attitude matrix is related to

the quaternion by

A(q) = ΞT (q)Ψ(q) (15)
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with

Ξ(q) ≡




q4I3×3 + [%×]

−%T


 (16a)

Ψ(q) ≡




q4I3×3 − [%×]

−%T


 (16b)

where I3×3 is a 3×3 identity matrix and [%×] is a cross product matrix since a×b = [a×]b,

with

[a×] ≡




0 −a3 a2

a3 0 −a1

−a2 a1 0




(17)

Successive rotations can be accomplished using quaternion multiplication. Here we adopt

the convention of Refs. [2] and [10] who multiply the quaternions in the same order as the

attitude matrix multiplication: A(q′)A(q) = A(q′⊗q). The composition of the quaternions

is bilinear, with

q′ ⊗ q =

[
Ψ(q′)

... q′
]
q =

[
Ξ(q)

... q

]
q′ (18)

Also, the inverse quaternion is given by q−1 =
[−%T q4

]T
. The quaternion kinematics

equation is given by

q̇(t) =
1

2
Ξ[q(t)]ω(t) (19)

where ω is the 3× 1 angular velocity vector.

The local error-quaternion, denoted by δq ≡ [
δ%T δq4

]T
, which will be defined in the

UF formulation, is represented using a vector of generalized Rodrigues parameters:12

δp ≡ f
δ%

a + δq4

(20)

where a is a parameter from 0 to 1, and f is a scale factor. Note when a = 0 and f = 1
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then Eq. (20) gives the Gibbs vector, and when a = f = 1 then Eq. (20) gives the standard

vector of MRPs. For small errors the attitude part of the covariance is closely related to the

attitude estimation errors for any rotation sequence, given by a simple factor.2 For example,

the Gibbs vector linearize to half angles, and the vector of MRPs linearize to quarter angles.

We will choose f = 2(a + 1) so that ||δp|| is equal to ϑ for small errors. The inverse

transformation from δp to δq is given by

δq4 =
−a ||δp||2 + f

√
f 2 + (1− a2)||δp||2

f 2 + ||δp||2 (21a)

δ% = f−1(a + δq4) δp (21b)

Discrete-time attitude observations for a single sensor are given by

b̃i = A(q)ri + νi (22)

where b̃i denotes the ith 3×1 measurement vector, ri is the ith known 3×1 reference vector,

and the sensor error-vector νi is Gaussian which satisfies

E {νi} = 0 (23a)

E
{
νiν

T
i

}
= σ2

i I (23b)

where E { } denotes expectation. Note that if unit measurement vectors are used then

Eq. (23b) should be appropriately modified.20 Multiple (N) vector measurements can be
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concatenated to form

ỹk =




A(q)r1

A(q)r2

...

A(q)rN




k

+




ν1

ν2

...

νN




k

(24a)

Rk = diag

[
σ2

1 σ2
2 . . . σ2

N

]
(24b)

where diag denotes a diagonal matrix of appropriate dimension. We should note that any

attitude sensor, such as a three-axis magnetometer, star tracker, sun sensor, etc., can be put

into the form given by Eq. (22). However, most sensors only observe two quantities, such as

two angles in star trackers. The resulting form in Eq. (22) for these type of sensors has a

unity norm constraint in the observation.20 However, the mean observation given by Eq. (9)

may not produce an estimate with unit norm. Therefore, we recommend that the original

two quantity observation model be used for these types of sensors in the UF.

A common sensor that measures the angular rate is a rate-integrating gyro. For this

sensor, a widely used model is given by21

ω̃(t) = ω(t) + β(t) + ηv(t) (25a)

β̇(t) = ηu(t) (25b)

where ω̃(t) is the continuous-time measured angular rate, and ηv(t) and ηu(t) are indepen-

dent zero-mean Gaussian white-noise processes with

E
{
ηv(t)η

T
v (τ)

}
= I3×3σ

2
vδ(t− τ) (26a)

E
{
ηu(t)η

T
u (τ)

}
= I3×3σ

2
uδ(t− τ) (26b)
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where δ(t− τ) is the Dirac delta function.

In the standard EKF formulation, given a post-update estimate β̂
+

k , the post-update

angular velocity and propagated gyro bias follow

ω̂+
k = ω̃k − β̂

+

k (27a)

β̂
−
k+1 = β̂

+

k (27b)

Given post-update estimates ω̂+
k and q̂+

k , the propagated quaternion is found from the

discrete-time equivalent of Eq. (19):

q̂−k+1 = Ω(ω̂+
k )q̂+

k (28)

with

Ω(ω̂+
k ) ≡




cos
(
0.5||ω̂+

k ||∆t
)
I3×3 −

[
ψ̂

+

k×
]

ψ̂
+

k

−ψ̂
+T

k cos
(
0.5||ω̂+

k ||∆t
)




(29)

where ψ̂
+

k ≡ sin
(
0.5||ω̂+

k ||∆t
)
ω̂+

k /||ω̂+
k ||, and ∆t is the sampling interval in the gyro.

Unscented Attitude Filter

In this section an UF is derived for attitude estimation. We call the new filter the Un-

Scented QUaternion Estimator, or USQUE, which is Latin for “all the way.” One approach

for the design of this filter involves using the quaternion kinematics in Eq. (28) directly.

However, this approach has a clear deficiency. Mainly, referring to Eq. (7), since the pre-

dicted quaternion mean is derived using an averaged sum of quaternions, no guarantees can

be made that the resulting quaternion will have unit norm. This makes the straightforward

implementation of the UF with quaternions undesirable. Still, a filter can be designed using

this approach where the quaternion is normalized by brute force. An eigenvalue/eigenvector

decomposition is recommended to decompose the 7× 7 covariance matrix, since this decom-
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position produces orthogonal sigma points. Our experience has shown that this approach

can be successfully accomplished using the aforementioned procedure. It works well for small

bias errors since the eigenvectors of the covariance matrix are nearly parallel with the atti-

tude update; however, we have found that this approach does not work well when large bias

updates occur.

A better way involves using an unconstrained three-component vector to represent an

attitude error quaternion. We begin by defining the following state vector:

χk(0) = x̂+
k ≡




δp̂+
k

β̂
+

k


 (30)

We will use δp̂k from Eq. (20) to propagate and update a nominal quaternion. Since this

three-dimensional representation is unconstrained, the resulting overall covariance matrix is

a 6× 6 matrix. Therefore, using Eq. (7) poses no difficulties, which makes this an attractive

approach. First, the vector χk(i) in Eq. (5) is partitioned into

χk(i) ≡




χδp
k (i)

χβ
k(i)


 , i = 0, 1, . . . , 12 (31)

where χδp
k is from the attitude-error part and χβ

k is from the gyro bias part. To describe

χδp
k we first define a new quaternion generated by multiplying an error quaternion by the

current estimate. Using the notation in Eq. (5) we assume

q̂+
k (0) = q̂+

k (32a)

q̂+
k (i) = δq+

k (i)⊗ q̂+
k , i = 1, 2, . . . , 12 (32b)
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where δq+
k (i) ≡ [

δ%+T
k (i) δq+

4k
(i)

]T
is represented by Eq. (21):

δq+
4k

(i) =
−a ||χδp

k (i)||2 + f
√

f 2 + (1− a2)||χδp
k (i)||2

f 2 + ||χδp
k (i)||2 , i = 1, 2 . . . , 12 (33a)

δ%+
k (i) = f−1

[
a + δq+

4k
(i)

]
χδp

k (i), i = 1, 2, . . . , 12 (33b)

Equation (32a) clearly requires that χδp
k (0) be zero. This is due to the reset of the attitude

error to zero after the previous update, which is used to move information from one part

of the estimate to another part.11 This reset rotates the reference frame for the covariance,

so we might expect the covariance to be rotated, even though no new information is added.

But the covariance depends on the assumed statistics of the measurements, not on the actual

measurements. Therefore, since the update is zero-mean, the mean rotation caused by the

reset is actually zero, so the covariance is in fact not affected by the reset. Next, the updated

quaternions are propagated forward using Eq. (28), with

q̂−k+1(i) = Ω
[
ω̂+

k (i)
]
q̂+

k (i), i = 0, 1, . . . , 12 (34)

where the estimated angular velocities are given by

ω̂+
k (i) = ω̃k − χβ

k(i), i = 0, 1, . . . , 12 (35)

Note that ω̂+
k (0) = ω̃k − χβ

k(0), where χβ
k(0) is the zeroth-bias sigma point given by the

current estimate, i.e., χβ
k(0) = β̂

+

k from Eq. (5b). The propagated error quaternions are

computed using

δq−k+1(i) = q̂−k+1(i)⊗
[
q̂−k+1(0)

]−1
, i = 0, 1, . . . , 12 (36)

Note that δq−k+1(0) is the identity quaternion. Finally, the propagated sigma points can be
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computed using the representation in Eq. (20):

χδp
k+1(0) = 0 (37a)

χδp
k+1(i) = f

δ%−k+1(i)

a + δq−4k+1
(i)

, i = 1, 2, . . . , 12 (37b)

with
[
δ%−T

k+1(i) δq−4k+1
(i)

]T

= δq−k+1(i). Furthermore, from Eq. (27b) we have

χβ
k+1(i) = χβ

k(i), i = 0, 1, . . . , 12 (38)

The predicted mean and covariance can now be computed using Eqs. (7) and (8).

We now derive expressions for the matrices Gk and Q̄k, which are used in Eq. (14). Our

choice of f = 2(a + 1) leads to the following approximation of the kinematics of the true

attitude error:11

δṗ(t) = −ω̂(t)× δp(t) + δω(t)− 1

2
δω(t)× δp(t) (39)

where δω(t) ≡ ω(t)− ω̂(t). Equation (39) is valid to second-order terms; higher-order terms

have not been shown since they all have terms that are functions of δp(t). Since χδp
k (0) = 0

for all k, then from Eq. (39) the matrix Gk is simply given by the identity matrix. We

should note that the full version of the approximation in Eq. (39) can be used to directly

propagate the sigma points; however, we choose to propagate the error quaternions since

closed-form solutions exist, given by Eq. (34). The conversion back to the sigma points using

Eq. (37) requires fewer computations than using a numerical integration routine to directly

propagate the sigma points. Still, in some cases the first-order approximation, which has a

closed-form solution, can yield accurate results in the propagation. However, this may not

take full advantage of the true benefits of the UF formulation, and suboptimal results may

be obtained by this approach.

The derivation of the matrix Q̄k assumes that the approximation ||∆t ω̂+
k || << 1 is valid,

which is generally adequate for computing process noise. With this assumption the state
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transition matrix can be approximated by

Φ(∆t) =




I3×3 −∆tI3×3

03×3 I3×3


 (40)

The discrete process noise covariance is given by21

Qk =




(
σ2

v∆t + 1
3
σ2

u∆t3
)
I3×3 − (

1
2
σ2

u∆t2
)
I3×3

− (
1
2
σ2

u∆t2
)
I3×3 (σ2

u∆t) I3×3




(41)

Solving Eq. (14) for Q̄k gives

Q̄k =
∆t

2




(
σ2

v − 1
6
σ2

u∆t2
)
I3×3 03×3

03×3 σ2
uI3×3


 (42)

The correction term (1/6)σ2
u∆t2 is needed because the trapezoid rule is exact for linear

functions, but overestimates the integral of a quadratic, namely ∆t2σ2
u. The new process noise

in Eq. (42) is diagonal, which seems to represent the physics more accurately. Simpson’s rule,

which is exact for quadratics, would eliminate the need for the correction term. However,

the new process noise would have to be added at the midpoint of the propagation, i.e., at

∆t/2, as well as at the beginning and end. This requires us to recompute the sigma points

at time ∆t/2, which is less convenient to implement than the trapezoid rule.

An exact closed-form solution of the state transition matrix Φ(∆t) can be found using

the discrete-time methods shown in Ref. [22]. This should be used if the sampling interval

is above Nyquist’s limit.23 In this case Q̄k can be determined by solving the general form of

the Lyapunov equation (also known as the Sylvester equation24) in Eq. (14) using numerical

methods. From our experiences with the UF developed in this paper, adding the matrix Q̄k

at the beginning and end of the propagation does not seem to produce better results than
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using Qk at the beginning or end of the propagation alone. Still, we favor the aesthetically

pleasing nature of the trapezoidal approximation.

The USQUE algorithm for attitude estimation comes with a computational cost. An

increased amount of computation is required for the covariance decomposition and sigma

point propagations. Our experience has shown that the USQUE algorithm is about 2.5

times slower than the EKF in Ref. [2]. One approach to help reduce the computational

load in USQUE takes advantage of using a lower-triangular Cholesky decomposition for the

square root in Eq. (5a). With a lower-triangular form, only the first three columns have

nonzero entries in the attitude parts. Thus we can bypass the computation of q̂+
k (i) in

Eq. (32b) at the beginning of the propagation for half of the sigma points. This results

in a savings of about 15% in the computational load. More dramatic reductions would be

seen for larger state vectors, e.g., for gyroless attitude filtering with estimation of system

momentum, environmental torques, inertia components, etc.

The procedure in USQUE is as follows. We are given initial attitude quaternion (q̂+
0 )

and gyro-bias (β+
0 ) estimates, as well as an initial 6 × 6 covariance (P+

0 ), where the upper

3× 3 partition of P+
0 corresponds to attitude error angles, and gyro parameters σu and σv.

The initial state vector in USQUE is set to x̂+
0 =

[
0T β+T

0

]T
. We choose the parameter a

and set f = 2(a + 1). Then, Q̄k is calculated using Eq. (42), which will be used in Eqs. (5a)

and (8). The sigma points are then calculated using Eq. (5). Next, the corresponding error

quaternions are calculated using Eq. (33), where Eq. (32) is used to compute the sigma-

point quaternions from the error quaternions. The quaternions are subsequently propagated

forward in time using Eq. (34). Then, the propagated error quaternions are determined

using Eq. (36), and the propagated sigma points are calculated using Eqs. (37) and (38).

The predicted mean and covariance can now be computed using Eqs. (7) and (8). Storing

the propagated quaternions from Eq. (34) we then calculate the mean observations using
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Eqs. (9) and (10), with

γk+1(i) =




A[q̂−(i)]r1

A[q̂−(i)]r2

...

A[q̂−(i)]rN




k+1

, i = 0, 1, . . . , 12 (43)

The output covariance, innovation covariance and cross-correlation matrix are computed

using Eqs. (11), (12) and (13). Next, the state vector and covariance are updated using

Eq. (2), with x̂+
k+1 ≡

[
δp̂+T

k+1 β̂
+T

k+1

]T

. Then, the quaternion is updated using

q̂+
k+1 = δq+

k+1 ⊗ q̂−k+1(0) (44)

where δq+
k+1 ≡

[
δ%+T

k+1 δq+
4k+1

]T

is represented by Eq. (21):

δq+
4k+1

=
−a ||δp̂+

k+1||2 + f
√

f 2 + (1− a2)||δp̂+
k+1||2

f 2 + ||δp̂+
k+1||2

(45a)

δ%+
k+1 = f−1

[
a + δq+

4k+1

]
δp̂+

k+1 (45b)

Finally, δp̂+
k+1 is reset to zero for the next propagation.

Simulation Examples

In this section several performance comparisons between USQUE and the EKF are made

through simulated examples using a realistic spacecraft model. The TRMM spacecraft is

a representative Earth-pointing spacecraft in a near-circular 90 min (350 km) orbit with

an inclination of 35◦. The nominal Earth-pointing mission mode requires a rotation once

per orbit about the spacecraft’s y-axis. The attitude determination hardware consists of an

Earth sensor assembly, digital sun sensors, coarse sun sensors, a three-axis magnetometer

(TAM), and gyroscopic rate sensors. All simulations shown here assume only TAM and
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gyro measurements. The magnetic field reference is modeled using a 10th-order International

Geomagnetic Reference Field model.25 TAM sensor noise is modeled by a zero-mean Gaussian

white-noise process with a standard deviation of 50 nT. We note that the actual magnetic

field errors have systematic components,26 but these are not relevant to the present filter

comparisons. The gyro measurements are simulated using Eq. (25) with σu = 3.1623× 10−4

µrad/sec3/2 and σv = 0.31623 µrad/sec1/2, and an initial bias of 0.1 deg/hr on each axis.

For the first simulation both USQUE and the EKF are executed with no initial attitude

errors, but with initial bias estimates set to zero. The initial covariance P+
0 is diagonal

with attitude error elements set to Patt = (0.5 deg)2 and bias error elements set to Pbias =

(0.2 deg/hr)2. The gyro and TAM measurements are both sampled at 10 sec intervals. Also,

in USQUE a = 1 with f = 4, which gives four times the vector of MRPs for the error

representation, and λ = 1 (the optimality of this value will be discussed shortly). For this

simulated run both USQUE and the EKF attitude errors agree to within 1 µrad. This

indicates that no advantages to using USQUE with small errors can be seen.

In the next simulation, errors of −50◦, 50◦ and 160◦ for each axis, respectively, are added

into the initial-condition attitude estimate, with initial bias estimates set to zero. The

initial attitude covariance is set to (50 deg)2 and the initial bias covariance is unchanged.

The chosen attitude covariance gives a one standard-deviation error of 50◦. Choosing a = 1

with f = 4 gives an MRP error of 4 tan−1[(50× π)/(4× 180)] = 49.23◦. Therefore, the same

value for Patt can be used in USQUE and the EKF without loss in accuracy (note that two

times the Gibbs vector gives 47.15◦). This simulation illustrates a possible realistic scenario

where only a TAM and a gyro exist with an unknown attitude estimate. A plot of the norm

of the attitude errors for this simulation case is shown in Figure 1. The EKF takes almost

8 hours to converge to a value below 0.1◦, while USQUE converges to this value in under

30 min. Also, the EKF attitude errors do not converge to within their respective 3σ error

bounds until well after 8 hours. However, as shown in Figure 2, the USQUE attitude errors

do converge to within their respective 3σ well within 8 hours, which indicates that USQUE
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is performing in a near optimal fashion.

A more dramatic situation is given by using the same attitude errors and Patt, but setting

the initial y-axis bias estimate to 20 deg/hr. For both filters the initial bias covariance is set

to (20 deg/hr)2. A plot of the norm of the attitude errors for this simulation case is shown in

Figure 3. The EKF never converges for this case since the first-order approximation cannot

adequately capture the large initial condition errors. However, USQUE does converge to less

than 0.1◦ in about 3.5 orbits. This clearly shows the importance of the higher-order terms

used in the UF for convergence.

We now investigate the performance of USQUE for various values of a and λ. The first

scenario includes initial attitude errors of −50◦, 50◦ and 160◦ for each axis, respectively, with

initial bias estimates set to zero. The second scenario also includes a large initial bias error,

consistent with the previous simulations. For these simulations a is allowed to be greater

than 1. Any a with absolute value greater than 1 risks the appearance of square roots of

negative numbers, which is analogous to using the vector part of the quaternion error as the

three-dimensional representation, i.e., the limit of infinite a. Still, values of a larger than

1 are worthy of study, due to the nonlinear nature of the estimation problem. In order to

quantify the simulation results, the norm of the attitude errors are numerically integrated

over the 8 hour simulation run, given by

J =

∫ 8

0

||e(t)|| dt (46)

where e(t) denotes the roll, pitch and yaw errors in degrees. Finally, Eq. (46) is averaged

over 20 runs (i.e., a Monte-Carlo type simulation is performed).

Table 1 gives the averaged results of this integration for various values of a and λ using

the first scenario of errors (i.e., large initial attitude errors only). The case with a = 3

and λ = 3 is unstable because the covariance does not remain positive definite. The best

results are obtained with a = 1 and λ = 1. Other good results are obtained with a = 1
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and λ = 0 or λ = −1, and a = 2 and λ = −1. The recommendation of using λ = 3 − n is

based an the approximation of the Gaussian distribution up to fourth-order terms. However,

the Gaussian assumption is only valid through the first pass of the filter, since the nonlinear

transformation causes a non-Gaussian distribution. Therefore, it is not surprising that values

other than λ = 3− n yield better results.

Table 2 gives the averaged results of this integration for various values of a and λ using

the second scenario of errors (i.e., large initial attitude and bias errors). For these initial

errors, the best results are obtained with a = 2 and λ = 3. Even though the performance is

better with a > 1, we do not recommend a value larger than 1, since the error vector has no

physical meaning. A plot of the norm of the attitude errors for a = 0 to a = 2 with λ = −3

is shown in Figure 4. Note that the attitude errors asymptotically approach the same value.

This is a typical result for various values of a with constant values of λ. The performance

then decreases as a becomes larger than 2 (not shown in the plot). The case with a = 3 and

λ = 3 gives unstable filter results for this scenario, also. This can be overcome by using the

scaled unscented transformation.15 But, this is not required since a = 3 should not be used

in practice.

From Tables 1 and 2 there exists a number of combinations for a and λ that yield

approximately the same performance. The conclusion from these combinations is that the

performance of USQUE is independent of the Gibbs vector or vector of MRPs formulations

as long as the parameter λ is well chosen. Figure 5 shows the norm of the attitude errors

with both large initial attitude and bias errors for various values of a and λ. Also, comparing

Table 1 to Table 2 indicates a lack of some consistency for these two simulation scenarios.

For example, from Table 1 when a = 2 the performance is better with λ = −1 than with

λ = −3, while from Table 2 when a = 2 the performance is better with λ = −3 than with

λ = −1. Also, a more dramatic performance increase is given when λ varies from −3 to

−1 for all values of a in Table 1 than in Table 2. These findings are most likely due to the

nonlinear nature of the problem. A further examination of Tables 1 and 2 indicates that
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λ = 1 seems to provide a good overall performance. Moreover, all reasonable values for a

and λ outperform the standard EKF in all test scenarios for large initial condition errors.

Conclusions

In this paper a new approach for attitude estimation using the Unscented Filter formula-

tion was derived. The new filter is based on a quaternion parameterization of the attitude.

However, straightforward implementation of the Unscented Filter using quaternion kinemat-

ics did not produce a unit quaternion estimate. To overcome this difficulty the quaternion was

represented by a three-dimensional vector of generalized Rodrigues parameters, which also

reduced the size the covariance matrix. Simulation results indicated that the performance

of the new filter far exceeds the standard Extended Kalman Filter for large initialization

errors.
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List of Table Captions
Table 1: Averaged J Values: Initial Attitude Errors Only

Table 2: Averaged J Values: Initial Attitude and Bias Errors
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a = 0 a = 1 a = 2 a = 3

λ = −3 18.98 14.98 10.02 10.06

λ = −1 5.97 4.28 4.63 4.70

λ = 0 4.73 4.68 5.22 6.69

λ = 1 5.30 4.08 9.29 6.60

λ = 3 8.00 5.32 4.58 ∞
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a = 0 a = 1 a = 2 a = 3

λ = −3 25.94 21.84 13.95 16.07

λ = −1 21.06 18.75 19.17 18.30

λ = 0 20.71 19.49 20.59 22.97

λ = 1 21.76 16.60 23.09 14.68

λ = 3 25.77 13.87 11.94 ∞
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List of Figure Captions

Figure 1: Norm of Attitude Errors: Initial Attitude Errors Only

Figure 2: Attitude Errors in USQUE with 3σ Error Bounds

Figure 3: Norm of Attitude Errors: Initial Attitude and Bias Errors

Figure 4: Norm of Attitude Errors for λ = −3 and a Varying from 0 to 2

Figure 5: Norm of Attitude Errors for Variations in Both a and λ

J. L. Crassidis and F. L. Markley 29 of 34



0 1 2 3 4 5 6 7 8
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Time (Hr)

A
tti

tu
de

 E
rr

or
s 

(D
eg

)

Unscented Filter 

Kalman Filter 

J. L. Crassidis and F. L. Markley Figure 1: 30 of 34



0 1 2 3 4 5 6 7 8
−0.05

0

0.05

R
ol

l (
D

eg
)

0 1 2 3 4 5 6 7 8
−0.05

0

0.05

P
itc

h 
(D

eg
)

0 1 2 3 4 5 6 7 8
−0.05

0

0.05

Y
aw

 (
D

eg
)

Time (Hr)

J. L. Crassidis and F. L. Markley Figure 2: 31 of 34



0 1 2 3 4 5 6 7 8
10

−2

10
−1

10
0

10
1

10
2

10
3

Time (Hr)

A
tti

tu
de

 E
rr

or
s 

(D
eg

)

Unscented Filter 

Kalman Filter 

J. L. Crassidis and F. L. Markley Figure 3: 32 of 34



0 1 2 3 4 5 6 7 8
10

−2

10
−1

10
0

10
1

10
2

10
3

A
tti

tu
de

 E
rr

or
s 

(D
eg

)

Time (Hr)

Increasing a
 

J. L. Crassidis and F. L. Markley Figure 4: 33 of 34



0 1 2 3 4 5 6 7 8
10

−2

10
−1

10
0

10
1

10
2

10
3

 a=0, λ=−3

Time (Hr)

A
tti

tu
de

 E
rr

or
s 

(D
eg

)

 a=1, λ=−3

 a=1, λ=0

 a=0, λ=0

J. L. Crassidis and F. L. Markley Figure 5: 34 of 34


