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This document provides corrections for the book: Crassidis, J.L.,
and Junkins, J.L., Optimal Estimation of Dynamics Systems, 2nd Edi-

tion, CRC Press, Boca Raton, FL, 2012. Any other corrections are
welcome via email to the authors.

Chapter 1

� The upper limit for the index i in Equations (1.105) and (1.122) should be 2n + 1
instead of n, so they should read, respectively, as

x̂i =

 m∑
j=1

h2i (tj)

−1
m∑
j=1

hi(tj)ỹj , i = 1, 2, . . . , 2n+ 1

and

x̂i =

∫ T
0 y(t)hi(t) dt∫ T
0 [hi(t)]2 dt

, i = 1, 2, . . . , 2n+ 1

Also, the paragraph under Equation (1.106) should read “Orthogonality of the basis
functions of Equation (1.106) means that the coefficients x̂i are computed indepen-
dently as ratios of inner products in Equation (1.105), so adding additional terms
to the series in Equation (1.102) does not require re-computation of the previously
computed terms. This allows adaptation wherein additional terms can be added, so
long as n ≤ (m− 1)/2, until some convergence criterion is met.”

� The gradient of Equation (1.152) is actually evaluated at the current estimate. So,
Equation (1.153) is given by

∇x̂J |xc
= −HTW [ỹ − f(xc)] ≡ −HTW∆yc

and Equation (1.154) is given by

H ≡ ∂f

∂x

∣∣∣∣
xc
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Chapter 2

� On page 70 just before Eq. (2.62), we are making use of Eq. (2.58b) instead of
Eq. (2.58a).

� On page 95, Eq. (2.175) should read

∂JMR(x
∗)

∂x∗

∣∣∣∣
x̂

= 0 = S

∫ ∞

−∞
(x̂− x)p(x|ỹ) dx

� After Eq. (2.283) it states that the assumption s̄n > sn+1 must be valid. This condition
is in fact required for the validity of the TLS solution itself in Eq. (2.280). This is
shown as Theorem 4.1 in the paper Golub, G.H. and Van Loan, C.F., “An Analysis
of the Total Least Squares Problem,” SIAM Journal on Numerical Analysis, Vol. 17,
No. 6, Dec. 1980, pp. 883-893.

� Exercise 2.11 should read:

Prove that the Cramér-Rao inequality given by Equation (2.100) achieves the equality
if and only if

∂

∂x
ln[p(ỹ|x)] = F (x)(x− x̂)

where F (x) is the Fisher information matrix explicitly shown as a function of x.

� Although exercise 2.12 is correct, another way to state the problem is as follows:

Suppose that an estimator of a non-random scalar x is biased, with bias denoted by
b(x), so that E{x̂} = x + b(x). Show that a lower bound on the variance of the
estimate x̂ is given by

var(x̂) ≥
(
1 +

∂b(x)

∂x

)2

J−1

where

J = E

{[
∂

∂x
ln[p(ỹ|x)]

]2}

Chapter 3

� On page 173, Eq. (3.188) should read

E
{
(x− x̂)2

}
=


∞ d < −1
0 d > −1
R

∆t
d = −1

� On page 148, the innovations covariance in Eqs. (3.55b) and (3.56) should beHkP
−
k H

T
k +

Rk.
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Chapter 4

� Equation (4.44) should read

ρ̄j =
1√
m

N∑
k=1

eTk ek+j

[
N∑
k=1

eTk ek

N∑
k=1

eTk+jek+j

]−1/2

� The term P+
xx is Eq. (4.54) should P+

xxk
.

� Equation (4.110) on page 254 is incorrect. It should read:

w
(j)
k = c̄

(j)
k−1p (ỹk|x̂

−(j)
k )

w
(j)
k ←

w
(j)
k

M∑
j=1

w
(j)
k

� The code has been updated for Example 4.6 to correct the above error as well as the
following:

p_prop_imm2=phi*p_imm2*phi; --> p_prop_imm2=phi*p_imm2*phi’;

Figure 4.9 is now replaced with the following:
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� In Example 4.9 the transpose on w(τ) is not required in E{w(t)wT (τ)} = q(t)δ(t−τ).

� In the second sentence after Eq. (4.153) it should read “then Equation (4.151) re-
duces...”
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� On pages 283 and 284 Step 2 for Systematic Resampling and Stratified Resampling
are incorrect. The corrected versions are:

2. Set i = 1. Perform the next steps for j = 1, 2, . . . , N . Execute a while loop:
while z(i) < u(j)

i← i+ 1
end while

where ← denotes replacement; choose the resulting i after the while loop as the
new index and replace x(j) with x(i).

� The MATLAB codes for Examples 4.11 and 4.12 are incorrect, so the Figures 4.14 and
4. 15 are no correct. Originally the posterior densities were plotted using “surf(xii,t,f)”
but this is only correct for the last set of points, given by xii. This has been corrected
by using “waterfall(xi,repmat(t,1,100),f)” for both examples. Note that the authors
do not know how to plot the results correctly using the “surf” command. Please let
the authors know if the reader knows how to plot the posterior densities using the
“surf” command.

Chapter 5

� Table 5.5 on page 350 should be given by Table 1 shown below.

Chapter 6

� The MATLAB code for Example 6.1 is incorrect. The boresight of the star camera
sensor is along the body z-axis. Thus an identity quaternion would align the body
z-axis with the inertial z-axis, which causes an incorrect motion compared to what is
described in the example. It is assumed that the Earth-pointing spacecraft is in an
equatorial 350 km circular orbit, which is equivalent to a 91.5 minute orbital period.
The spacecraft’s z-axis is pointed in the nadir direction, the y-axis is pointed in the
negative orbit momentum’s vector, and the x-axis is pointed in the orbit velocity
direction. The true angular velocity is given by ω(t) = [0 − 1.11445 × 10−3 0]T

rad/sec. First rotate +90 degrees about x-body axis. Then rotate 180 degrees about
the new x-body axis, which correctly places the boresight in the anti-nadir direction

(i.e. the radial direction). The initial quaternion is then given by q0 =
√
2
2 [0 1 1 0]T .

Also, a magnitude of 6 is chosen for the stars. There are times when the number of
available stars is less than 2. At these times a solution is not possible.

� The equation for h2 in Eq. (6.72c) should be given by h2 = h1 − h3.

� The attitude matrix in Exercise 6.17 should be[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
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Table 1 Continuous-Discrete Nonlinear RTS Smoother

d
dτ x(t) = f(x(t), u(t), t) +G(t)w(t), w(t) ∼ N(0, Q(t))

Model
ỹk = h(xk) + vk, vk ∼ N(0, Rk)

Forward x̂f (t0) = x̂f0

Initialize Pf0 = E
{
x̃f (t0) x̃

T
f (t0)

}
Forward

Kfk = P−
fkH

T
k (x̂

−
fk)[Hk(x̂

−
fk)P

−
fkH

T
k (x̂

−
fk) +Rk]

−1

Gain Hk(x̂
−
fk) ≡

∂h

∂x

∣∣∣∣
x̂−
fk

Forward x̂+
fk = x̂−

fk +Kfk[ỹk − h(x̂−
fk)]

Update P+
fk = [I −KfkHk(x̂

−
fk)]P

−
fk

d
dt x̂f (t) = f(x̂f (t), u(t), t)

Forward d
dtPf (t) = F (x̂f (t), t)Pf (t) + Pf (t)F

T (x̂f (t), t)

Propagation +G(t)Q(t)GT (t)

F (x̂f (t), t) ≡
∂f

∂x

∣∣∣∣
x̂f (t)

Gain K(t) ≡ G(t)Q(t)GT (t)P−1
f (t)

Smoother

d
dτ P (t) = −[F (x̂f (t), t) +K(t)]P (t)

Covariance
−P (t)[F (x̂f (t), t) +K(t)]T

+G(t)Q(t)GT (t), P (T ) = Pf (T )

Smoother
d
dτ x̂(t) = − [F (x̂f (t), t) +K(t)] [x̂(t)− x̂f (t)]

Estimate −f(x̂f (t), u(t), t), x̂(T ) = x̂f (T )

Chapter 7

� The MATLAB code for Example 7.1 is incorrect. The boresight of the star camera
sensor is along the body z-axis. Thus an identity quaternion would align the body
z-axis with the inertial z-axis, which causes an incorrect motion compared to what is
described in the example. It is assumed that the Earth-pointing spacecraft is in an
equatorial 350 km circular orbit, which is equivalent to a 91.5 minute orbital period.
The spacecraft’s z-axis is pointed in the nadir direction, the y-axis is pointed in the
negative orbit momentum’s vector, and the x-axis is pointed in the orbit velocity
direction. The true angular velocity is given by ω(t) = [0 − 1.11445 × 10−3 0]T

rad/sec. First rotate +90 degrees about x-body axis. Then rotate 180 degrees about
the new x-body axis, which correctly places the boresight in the anti-nadir direction
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(i.e. the radial direction). The initial quaternion is then given by q0 =
√
2
2 [0 1 1 0]T .

Also, a magnitude of 6 is chosen for the stars. There are times when the number of
available stars is less than 2. The extended Kalman filter still provides an update
even when only 1 star is available.

� Equation (7.60) should read√
p−θθ =

√
p+θθ ≡ σc = ∆t1/4σ1/2n

(
σ2v + 2σuσn∆t

1/2
)1/4

(1)

The σv term in the original 2σuσv∆t
1/2 should be σn.

� Equation (7.83a) should read

Z11 =
vD

Rϕ + h
, Z12 = −

2vE tanϕ

Rλ + h
− 2ωe sinϕ, Z13 =

vN
Rϕ + h

The 2ωe sinϕ term in Z12 should be subtracted not added, and Z13 was originally
labeled as Z12. The MATLAB code for Example 7.2 has been corrected.

Appendix A

� The derivation of Equation (A.111) is not correct. The goal is to determine the initial
condition x(t0), so replace t0 with t, and replace t with tf in Equation (A.109)

Wo(t, tf ) ≡
∫ tf

t
ΦT (τ, t)HT (τ)H(τ) Φ(τ, t) dτ

Note that the notation for Wo(t) has changed here, and that the integrations in
Equations (A.107) to (A.109) should be done from t0 and tf . The time derivative of
Φ(τ, t) = Φ−1(t, τ) will be needed. Take the time derivative of V V −1 = I for some
matrix V :

V V̇ −1 + V̇ V −1 = 0 → V̇ −1 = −V −1V̇ V −1

Letting V ≡ Φ(t, τ) and noting V −1 = Φ(τ, t) leads to

Φ̇(τ, t) = −Φ(τ, t)Φ̇(t, τ) Φ(τ, t)
= −Φ(τ, t)F (t) Φ(t, τ) Φ(τ, t)
= −Φ(τ, t)F (t)

where the following identities were used

Φ̇(t, τ) = F (t) Φ(t, τ)

Φ(t, τ) Φ(τ, t) = Φ(t, t) = I
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Then the derivative of the observability Gramian is given by

Ẇo(t, tf ) = −ΦT (t, t)HT (t)H(t) Φ(t, t)

− F T (t)

∫ tf

t
ΦT (τ, t)HT (τ)H(τ) Φ(τ, t) dτ︸ ︷︷ ︸

Wo(t, tf )

−
∫ tf

t
ΦT (τ, t)HT (τ)H(τ) Φ(τ, t) dτ︸ ︷︷ ︸

Wo(t, tf )

F (t)

Thus,

Ẇo(t, tf ) = −F T (t)Wo(t, tf )−Wo(t, tf )F (t)−HT (t)H(t)

which is integrated backwards with Wo(tf , tf ) = 0.

The controllability Gramian can be derived in a similar fashion but is integrated
forward in time.

Appendix B

� On the top of page 662 the sentence “Matrix addition and subtraction are both com-
mutative, A ± B = B ± A, and associative, (A ± B) ± C = A ± (B ± C)” should
be replaced with “Matrix addition is commutative, A+B = B + A, and associative,
(A+B)+C = A+(B+C). Matrix subtraction is not communicative or associative.”

Appendix C

� Above Eq. (C.32) it should read “Two processes, {x(tk)} and {y(tk)}, are uncorrelated
if E

{
x(ti)y

T (tj)
}
= E {x(ti)}E

{
yT (tj)

}
for all ti and tj .”

� In the second sentence after Eq. (C.83b) “as t→ 0” should read “as ∆t→ 0.”

Appendix D

� Below Eq. (D.16) it should read “Equations (D.16) provide three equations...”

� The necessary conditions in Example D.2 are given by

∂ϕ

∂y
= −1

2
− 18λ(y − 4) = 0

∂ϕ

∂z
= −1

3
− 8λ(z − 5) = 0

ψ(x) = 9(y − 4)2 + 4(z − 5)2 − 36 = 0

The equation for ∂ϕ/∂z is incorrect in the book.
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� On page 715, it should read:

Therefore, the stationary points are given by

y∗ = 4− 1

36λ
= 4±

√
2

z∗ = 5− 1

24λ
= 5± 3

2

√
2

λ∗ = ± 1

36
√
2

The sufficient condition of Equation (D.19) for this problem is given by

∇2
xϕ = −

[
18λ∗ 0
0 8λ∗

]
Also, Equation (D.21) gives

Q ≡ q = −8λ∗
[
8

18

(z∗ − 5)2

(y∗ − 4)2
+ 1

]
Clearly, if λ∗ = −1/(36

√
2), then the stationary point given by y∗ = 4+

√
2 and z∗ =

5 + (3/2)
√
2 is a local minimum with ϕ = (7/3)−

√
2. Likewise, if λ∗ = +1/(36

√
2),

then the stationary point given by y∗ = 4 −
√
2 and z∗ = 5 − (3/2)

√
2 is a local

maximum with ϕ = (7/3) +
√
2.
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