
Relative Navigation of Air Vehicles

Adam M. Fosbury∗

Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, NM 87117

John L. Crassidis†

University at Buffalo, State University of New York, Amherst, NY 14260-4400

This paper derives the full equations of motion for relative navigation

of air vehicles. An extended Kalman filter is used for estimating the rela-

tive position and attitude of two air vehicles, designated leader and follower.

All leader states are assumed known, while the relative states are estimated

using line-of-sight measurements between the vehicles along with accelera-

tion and angular rate measurements of the follower. Noise is present on all

measurements, while biases are present only on the latter two. The global

attitude is parameterized using a quaternion, while the local attitude error

is given by a three-dimensional attitude representation. An application of

the new theoretical developments is also given, which involves determining

an optimal trajectory to improve the estimation accuracy of the system. A

cost function is derived based upon the relative position elements of the

estimator covariance. State constraints are appended to the cost function

using an exponential term. Results show that minimization of this cost

function yields a trajectory that improves accuracy of both the position

and attitude state estimates.

I. Introduction

Formation flight of aircraft has been an active and growing area of study in recent years.

With the advent of cheaper sensors, especially micro-mechanical ones,1 several new applica-

tions including uninhabited air vehicles (UAVs) have become mainstream. Most applications
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of UAVs involve military operations, some of which include reconnaissance, electronic war-

fare, and battle damage assessment. It is expected that thirty percent of the Air Force aircraft

will be pilotless by the year 2010.2 This growth is expected to yield a more integrated UAV

arsenal capable of detection and elimination of enemy targets. Numerous civilian applica-

tions have been envisioned for the future including border interdiction, search and rescue,

wild fire suppression, communications relays, law enforcement, and disaster and emergency

management.3 Cooperative UAV formations will play an important role in both military

and civil applications for simultaneous coordination of resources over large areas.

Relative navigation of air vehicles flying in a formation is essential to meet mission

objectives. The most common navigation mechanism for air vehicles involves the integration

of Global Positioning System (GPS) signals with Inertial Measurement Units (IMUs). Both

position and attitude information is possible using this type of inertial navigation system,

however it requires that each vehicle must have the full GPS/IMU sensor complement. This

also provides absolute information, which must be converted to relative coordinates using

appropriate transformations. The relative information is often required for formation control

applications and coordination.4

Recent investigations involve developing navigation systems without the use of GPS

satellites, because the GPS signal is highly susceptible to conventional interference as well

as intentional jamming and spoofing. Vision-based approaches have been developed for this

purpose, which can be used for both relative and absolute navigation. These approaches have

the advantage of not relying on external sensors, however they require considerable onboard

computation.5 Reference 6 demonstrates a vision-based method of formation control and

state estimation. Two approaches are used. The first incorporates an extended Kalman

filter (EKF) developed in Ref. 7 with camera-based images to determine the relative states.

The second approach uses image size and location to directly regulate the control algorithm.

Results indicate that relative navigation is possible with a single camera.

By far the primary mechanism historically used to blend GPS measurements with IMU

data has been the EKF.8 Other implementations include an unscented Kalman filter9 and

particle filters.10 The earliest known discussion on the use of GPS with IMUs for relative

navigation occurs in Ref. 11. Relative position is propagated using a linear discrete equation,

though the exact form of the state transition matrix is not provided. Increased accuracy is

achieved due to the high correlation of GPS measurements between the leader and follower.

These results have also been extended to vehicle platooning.12

In all the aforementioned papers, simplified models are used for the air vehicle dynamics.

These may be adequate for a particular application, but having the full navigation equations

can provide insights to the validity of using the simplified models. Deriving the full navigation

equations, as well as the subsequent Kalman filter expressions, is the main purpose of the
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work presented in this paper. The relative attitude kinematics between two vehicles is well

known.13 Here, the full relative position equations including gravity models are also derived.

An EKF is used for state estimation. Relative measurements involving line-of-sight (LOS)

observations between the air vehicles are used, thus freeing the system from external sensors

such as GPS. A minimum of three LOS observations are required for effective and accurate

state estimation, even in the face of multiple initial condition errors.14 Biased gyro and

accelerometer measurements are also assumed for the follower air vehicle in order to provide

full filtered position and attitude estimation.

One method for measuring LOS observations between multiple vehicles is the vision-based

navigation (VISNAV) system.15 This consists of an optical sensor combined with a specific

light source (beacon) in order to achieve a selective vision. The VISNAV system is applied

to the spacecraft formation flying problem in Ref. 16. State estimation is performed using an

optimal observer design. Simulations show that accurate estimates of relative position and

attitude are possible. An EKF is applied to the VISNAV-based relative spacecraft position

and attitude estimation in Ref. 17. Automatic refueling of UAVs using a VISNAV-based

system is shown in Refs. 18 and 19. Here, we focus on using the fully derived relative

equations for relative air vehicle navigation.

Optimal control techniques are widely used for trajectory optimization of dynamic sys-

tems. These types of problems generally require the solution of two-point boundary value

problems through use of numerical methods. An optimal control law has been designed to

improve range estimation accuracy between two vehicles.20 Motion of the system is confined

to two dimensions. Components of the EKF covariance matrix are used for the cost function.

This paper examines a similar cost function to determine whether the estimation accuracy

of the EKF can be improved by following a specific relative trajectory.

The organization of this paper is as follows. A summary of the various coordinate frames

used in this work is first provided. This is followed by a review of quaternion attitude param-

eters and the associated kinematics. The relative navigation equations are then developed.

Next, an EKF for relative state estimation is reviewed, followed by the derivation of mea-

surement equations. Simulation results are shown using a calibration maneuver to determine

the gyro and accelerometer biases. Then an application of the relative navigation theory is

shown, where a cost function is developed to minimize the position components of the state

error-covariance matrix. Simulation results are also provided showing the effectiveness of

the optimal control law.
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Figure 1. Definitions of Various Reference Frames

II. Reference Frames

This section summarizes the various reference frames used in the remainder of this paper,

as shown in Figure 1:

• Earth-Centered-Inertial (ECI): denoted by {̂i1, î2, î3}. The origin is at the center of

the Earth, with the î1 axis pointing in the direction of the vernal equinox, the î3

axis pointing towards the geographic North pole, while î2 completes the right-handed

coordinate system. Vectors defined in this frame are identified by the letter I.

• Earth-Centered-Earth-Fixed (ECEF): denoted by {ê1, ê2, ê3}. The origin of this frame

is also located at the center of the Earth. The primary difference is that this frame

rotates with the Earth. The ê3 axis points towards the north pole and is equal to î3.

The ê1 axis is directed toward the prime meridian, and the ê2 axis completes the right-

handed system. The letter E signifies a vector defined with respect to this reference

frame.

• North-East-Down (NED): denoted by {n̂, ê, d̂}. This reference frame is commonly

used for inertial navigation and is formed by fitting a tangent plane to the geodetic

reference ellipse at a given point of interest.21 The n̂ axis points North, the ê axis is

directed East, and the d̂ axis completes the right-handed system. This reference frame

is generally used for local navigation purposes. The letter N signifies a vector defined
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with respect to this reference frame. A thorough discussion on the conversion between

the NED and ECEF frames can be found in Ref. 21.

• Body Frames: denoted by {b̂1, b̂2, b̂3}. These are fixed to the vehicle body, rotating

with it. Body frames fixed to the two air vehicles are designated leader (l) and follower

(f). The letter B signifies a vector defined with respect to a generic body frame.

The convention applied in this paper is to use these letters as a superscript following the

vector or matrix that is being described.

III. Attitude Kinematics

A variety of parameterizations can be used to specify attitude, including Euler angles,

quaternions, and Rodrigues parameters.22 This paper uses the quaternion, which is based

on the Euler angle/axis parameterization. The quaternion is defined as q ≡ [ ̺T q4 ]T with

̺ = [ q1 q2 q3 ]T = ê sin(ν/2), and q4 = cos(ν/2), where ê and ν are the Euler axis of

rotation and rotation angle, respectively. This vector must satisfy the constraint qTq = 1.

The attitude matrix can be written as a function of the quaternion:

A = ΞT (q)Ψ(q) (1)

where

Ξ(q) ≡





q4I3×3 + [̺×]

−̺T



 (2a)

Ψ(q) ≡





q4I3×3 − [̺×]

−̺T



 (2b)

with

[̺×] =









0 −q3 q2

q3 0 −q1

−q2 q1 0









(3)

The attitude kinematic equation is given by23

ȦB
I = −[ωB

B|I×]AB
I (4)

where ωB
B|I is the angular velocity of the body frame with respect to the inertial frame, given

in body frame coordinates, and AB
I is the attitude matrix that converts vectors from the
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inertial frame to the body frame.

The relative quaternion qf |l and corresponding attitude matrix are defined by

qf |l ≡ qf ⊗ q−1
l (5a)

Af
l ≡ A(qf |l) = A(qf )A

T (ql) (5b)

which are consistent with Refs. 22 and 24. The symbol ⊗ denotes quaternion multiplication,

given by

qa ⊗ qb ≡
[

Ψ(qa) qa

]

qb =
[

Ξ(qb) qb

]

qa (6)

and q−1 is the quaternion inverse, defined by q−1 ≡ [−̺ q4]
T .

Reference 13 shows the relative quaternion kinematics to be given by

q̇f |l =
1

2
Ξ(qf |l)ω

f

f |l (7)

where ωf

f |l is the relative angular velocity defined as

ω
f

f |l ≡ ω
f

f |E − Af
l ω

l
l|E (8)

To reduce the computational load, a discrete form of the quaternion propagation is used.

This is given by13

qf |lk+1
= Ω̄(ωf

fk
)Γ̄(ωl

lk
)qf |lk (9)

where

Ω̄(ωf
fk

) ≡





cos
(

1
2
‖ωf

fk
‖∆t

)

I3×3 − [ψk×] ψk

−ψT
k cos

(

1
2
‖ωf

fk
‖∆t

)



 (10a)

ψk ≡
sin
(

1
2
‖ωf

fk
‖∆t

)

ω
f
fk

‖ωf
fk
‖

(10b)

Γ̄(ωl
lk
) ≡





cos
(

1
2
‖ωl

lk
‖∆t

)

I3×3 − [ζk×] −ζk

ζT
k cos

(

1
2
‖ωl

lk
‖∆t

)



 (10c)

ζk ≡
sin
(

1
2
‖ωl

lk
‖∆t

)

ωl
lk

‖ωl
lk
‖

(10d)

and ∆t is the sampling interval.
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IV. Relative Position Equations

The relative position equations to be used in the EKF are developed in this section with

the relative position vector defined as

r
f

f |l = r
f

f |I − Af
l r

l
l|I

= Af
I (r

I
f |I − rI

l|I) (11)

Taking two time derivatives yields

r̈
f

f |l =
d2

dt2

(

r
f

f |l

)

=
d2

dt2

(

Af
I

)

(rI
f |I − rI

l|I) + 2
d

dt

(

Af
I

) d

dt
(rI

f |I − rI
l|I) + Af

I

d2

dt2
(

rI
f |I − rI

l|I

)

= −
(

[(ω̇f

f |I)×] + [(ωf

f |I)×][(ωf

f |I)×]
)

Af
I r

I
f |l − 2[(ωf

f |I)×]Af
I ṙ

I
f |l + Af

I

(

r̈I
f |I − r̈I

l|I

)

= −ω̇f

f |I × r
f

f |l − [(ωf

f |I)×][(ωf

f |I)×]rf

f |l − 2ωf

f |I × ṙ
f

f |l + Af
I

(

r̈I
f |I − r̈I

l|I

)

(12)

The inertial accelerations of the leader and follower are given by Newton’s law:

r̈I
l|I = aI

l + gI
l (13a)

r̈I
f |I = aI

f + gI
f (13b)

The gravity model in ECEF coordinates is given by

gE =
−µ

‖rE‖3
rE (14)

where µ = 3.986×1014 m3/(kg−s2). Equation (14) provides the only nonlinear term in the

relative acceleration. Equation (12) is then written as

r̈
f

f |l = −ω̇f

f |I × r
f

f |l − [(ωf

f |I)×][(ωf

f |I)×]rf

f |l − 2ωf

f |I × ṙ
f

f |l + Af
I

(

aI
f − aI

l

)

+ Af
E

(

gE
f − gE

l

)

(15)

The acceleration measurement model is defined as

ã
f
f = a

f
f + bfa + ηfav (16a)

ḃfa = ηfau (16b)

where bfa is the accelerometer bias, and ηfav and ηfau are zero-mean Gaussian white noise

processes. Their respective spectral densities are σ2
avI3×3 and σ2

auI3×3.
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The gyro measurement model has a similar form:

ω̃
f

f |I = ω
f

f |I + bfg + ηfgv (17a)

ḃfg = ηfgu (17b)

where bfg is the gyro bias, and ηfgv and ηfgu are zero-mean Gaussian white noise processes

with spectral densities σ2
gvI3×3 and σ2

guI3×3. See the appendix of Ref. 25 for a more detailed

discussion on the gyro bias model.

V. Extended Kalman Filter Equations

The states of interest in this EKF are relative attitude, relative position, relative velocity,

and biases on the inertial acceleration and angular velocity measurements:

x =
[

qT
f |l (rf

f |l)
T (ṙf

f |l)
T bT

fg bT
fa

]T

(18)

The following estimate equations are based on the truth equations of the prior sections:

˙̂qf |l =
1

2
Ξ(q̂f |l)ω̂

f

f |l (19a)

¨̂rf

f |l = − ˙̂ωf

f |I × r̂
f

f |l − [(ω̂f

f |I)×][(ω̂f

f |I)×]r̂f

f |l − 2ω̂f

f |I ×
˙̂rf

f |l + Âf
I

(

âI
f − aI

l

)

+ Âf
E

(

ĝE
f − gE

l

)

(19b)

â
f
f = ã

f
f − b̂fa (19c)

ĝE
f =

−µ

‖r̂E
f |E‖

3
r̂E

f |E (19d)

ω̂
f

f |I = ω̃
f

f |I − b̂fg (19e)

˙̂
bfa = 0 (19f)

˙̂
bfg = 0 (19g)

The state-error vector is given as

∆x =
[

δαT
f |l (∆r

f

f |l)
T (∆ṙ

f

f |l)
T ∆bT

fg ∆bT
fa

]T

(20)

The first term is defined by

δαf |l = 2δ̺f |l (21a)

δqf |l = qf |l ⊗ q̂−1
f |l (21b)
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where δαf |l corresponds to a vector of half-error angles for any small roll, pitch and yaw

sequence, and δ̺f |l denotes the first three components of the four component vector δqf |l.

The usual EKF assumption that the estimate is close, to within first-order dominate terms,

to the truth is applied. For this case, the fourth error-component is approximately one

and its derivative is near zero.24 The remaining state-error terms are defined generically as

∆y = y − ŷ, while the process noise vector consists of the four Gaussian noise terms from

the measurement equations:

w =
[

ηT
fgv ηT

fgu ηT
fav ηT

fau

]T

(22)

The next step is to determine time derivatives of the error states. The equation for δα̇f |l

is given in Ref. 26 as

δα̇f |l = −[(ω̂f

f |l)×]δαf |l + δωf

f |l (23)

where

δω
f

f |l = ω
f

f |l − ω̂
f

f |l (24)

Based upon the definitions in Eqs. (8) and (17a), along with the approximation

Af
l = (I3×3 − [(δαf |l)×])Âf

l (25)

Eq. (24) becomes

δω
f

f |l = −∆bfg − ηfgv − [(Âf
l ω

l
l|I)×]δαf |l (26)

Equation (23) then simplifies to

δα̇f |l = −[(ω̂f

f |I)×]δαf |l − ∆bfg − ηfgv (27)

The time derivative of the position error-state vector is simply equal to the velocity error

state vector:
d

dt
(∆r

f

f |l) = ∆ṙ
f

f |l (28)

The time derivative of the velocity vector is more complicated. To keep this paper concise,

the algebraic derivation of this equation will be omitted. The final result makes use of several

of the relations already mentioned in this paper, along with Euler’s equation23

ω̇
f

f |I = J−1
f

(

uf − [(ωf

f |I)×]Jfω
f

f |I

)

(29)

where Jf is the inertia matrix of the follower and uf is the applied torque. An expansion of
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the gravity model in Eq. (14) is also required:

gE
f = ĝE

f +
∂gE

f

∂∆r
f

f |l

∆r
f

f |l +
∂gE

f

∂δαf |l

δαf |l (30)

where

∂gE
f

∂∆r
f

f |l

= −µÂE
f ‖r

E
l|I + ÂE

f r̂
f

f |l‖
−3

+3µ
(

rE
l|I + ÂE

f r̂
f

f |l

)(

rE
l|I + ÂE

f r̂
f

f |l

)T

‖rE
l|I + ÂE

f r̂
f

f |l‖
−5 (31)

∂gE
f

∂δαf |l

= −µÂE
f [(r̂f

f |l)×]‖rE
l|I + ÂE

f r̂
f

f |l‖
−3

+3µ
(

rE
l|I + ÂE

f r̂
f

f |l

)(

rE
l|I + ÂE

f r̂
f

f |l

)T

Âf
E[(r̂f

f |l)×]‖rE
l|I + Âf

E r̂
f

f |l‖
−5 (32)

Using the above relations, the velocity error-dynamics equation is written as

d

dt
∆ṙ

f

f |l = F3−1δαf |l + F3−2∆r
f

f |l + F3−3∆ṙ
f

f |l + F3−4∆bfg

+ F3−5∆bfa + G3−1ηfgv + G3−3ηfav

(33)
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where

F3−1 = − [(Âf
l a

l
l)×] + [(Âf

E

(

ĝE
f − gE

l

)

)×] − µÂf
E

{

ÂE
f [(r̂f

f |l)×]‖rE
l|I + ÂE

f r̂
f

f |l‖
−3

−3
(

rE
l|I + ÂE

f r̂
f

f |l

)(

rE
l|I + ÂE

f r̂
f

f |l

)T

ÂE
f [(r̂f

f |l)×]‖rE
l|I + ÂE

f r̂
f

f |l‖
−5

} (34a)

F3−2 = − [(ω̂f

f |I)×][(ω̂f

f |I)×] − [( ˙̂ωf

f |I)×] − µÂf
E

{

ÂE
f ‖r

E
l|I + ÂE

f r̂
f

f |l‖
−3

− 3
(

rE
l|I + ÂE

f r̂
f

f |l

)(

(rE
l|I)

T + (ÂE
f r̂

f

f |l)
T
)

‖rE
l|I + ÂE

f r̂
f

f |l‖
−5
} (34b)

F3−3 = −2[(ω̂f

f |I)×] (34c)

F3−4 = − [(r̂f

f |l)×]J−1
f

{

[(Jf ω̂
f

f |I)×] − [(ω̂f

f |I)×]Jf

}

− 2[( ˙̂rf

f |l)×]

−
(

[(ω̂f

f |I × r̂
f

f |l)×] + [(ω̂f

f |I)×][(r̂f

f |l)×]
) (34d)

F3−5 = −I3 (34e)

G3−1 = − [(r̂f

f |l)×]J−1
f

{

[(Jf ω̂
f

f |I)×] − [(ω̂f

f |I)×]Jf

}

− 2[( ˙̂rf

f |l)×]

−
(

[(ω̂f

f |I × r̂
f

f |l)×] + [(ω̂f

f |I)×][(r̂f

f |l)×]
) (34f)

G3−3 = −I3 (34g)

Lastly, the time derivatives of the bias states are found by using Eqs. (16b) through (17b):

∆ḃfa = ηfau (35a)

∆ḃfg = ηfgu (35b)

The overall error dynamics are governed by the equation

∆ẋ = F∆x + Gw (36)

where the F and G matrices are given by

F =





















−[(ω̂f

f |I)×] 03×3 03×3 −I3×3 03×3

03×3 03×3 I3×3 03×3 03×3

F3−1 F3−2 F3−3 F3−4 F3−5

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3





















(37)
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G =





















−I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

G3−1 03×3 G3−3 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3





















(38)

The process noise covariance matrix used in the EKF is

Q =















σ2
fgvI3×3 03×3 03×3 03×3

03×3 σ2
fguI3×3 03×3 03×3

03×3 03×3 σ2
favI3×3 03×3

03×3 03×3 03×3 σ2
fauI3×3















(39)

A discrete propagation is used for the covariance matrix in order to reduce the compu-

tational load:

P−
k+1 = ΦkP

+
k ΦT

k + Qk (40)

where Φk is the state transition matrix and Qk is the covariance matrix. Reference 27 gives

a numerical solution for these matrices. The first step is to set up the following 2n by 2n

matrix:

A =





−F GQGT

0n×n F T



∆t (41)

The matrix exponential is then calculated:

B = eA =





B11 B12

0n×n B22



 =





B11 Φ−1
k Qk

0n×n ΦT
k



 (42)

The state transition and covariance matrices are then given as

Φk = BT
22 (43a)

Qk = ΦkB12 (43b)

Note that Eq. (41) is only valid for constant system and covariance matrices. However,

for small ∆t it is a good approximation of the actual discrete-time matrices that are time

varying.
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Figure 2. Vision Based Navigation System

A. Measurement Equations

The measurements used in this filter consist of the relative LOS observations between the

two air vehicles. A schematic of this system is shown in Fig. 2. Beacons are located on the

follower at coordinates specified in the follower reference frame by (Xi, Yi, Zi). The relations

between image space measurements of the sensor (αi, βi) to the object space, using a focal

plane detector to detect the beacon light, are given by28

αi = −f
Af

l11
(Xi + x) + Af

l21
(Yi + y) + Af

l31
(Zi + z)

Af
l13

(Xi + x) + Af
l23

(Yi + y) + Af
l33

(Zi + z)
(44a)

βi = −f
Af

l12
(Xi + x) + Af

l22
(Yi + y) + Af

l32
(Zi + z)

Af
l13

(Xi + x) + Af
l23

(Yi + y) + Af
l33

(Zi + z)
(44b)

where f is the focal length, and the Af
lij

are components of the attitude matrix Af
l , which

transforms vectors from the leader frame to the follower frame. Since observations can be

given as αi/f and βi/f , the focal length is set equal to one in order to simplify the math.

The (x, y, z) coordinates are the components of the vector r
f

f |l.

Consider a measurement vector denoted by

γ̃i = γi + v (45a)

γi ≡





αi

βi



 (45b)
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A frequently used covariance of v is given by Ref. 29 as

RFOCAL
i =

σ2

1 + d(α2
i + β2

i )





(1 + dα2
i )

2 (dαiβi)
2

(dαiβi)
2 (1 + dβ2

i )
2



 (46)

where d is on the order of 1 and σ is assumed to be known. Note that the components of this

covariance matrix will increase as the image space coordinates increase. This demonstrates

that errors will increase as the observation moves away from the boresight. Reference 29 also

states that for practical purposes, the estimated values of αi and βi must be used in place

of the true quantities. This only leads to second-order error effects.

The problem with using Eq. (45a) as the measurement vector is that the definitions of

αi and βi in Eq. (44) are highly nonlinear in both the position and attitude components. A

simpler observation vector is given in unit vector form as

bi = (Af
l )

T ri (47a)

ri ≡
Ri + r

f

f |l

‖Ri + r
f

f |l‖
(47b)

where Ri = [ Xi Yi Zi ]T , r
f

f |l ≡ [ x y z ]T , and for a sensor facing in the positive Z

direction,

bi =
1

√

1 + α2
i + β2

i









−αi

−βi

1









(48)

Similar equations for the positive X and Y directions are found by rotating the elements of

the vector in a cyclic manner. Sensors facing in the negative direction use the same equations

multiplied by −1.

The QUEST measurement model shown in Ref. 30 works well for small field-of-view

sensors, but may produce significant errors for larger field of views, such as the VISNAV

sensor. A new covariance model is developed in Ref. 31 that provides better accuracy than

the QUEST model for this case. It is based upon a first-order Taylor series expansion of

the unit vector observation. The primary assumption is that the measurement noise is small

compared to the signal. The new covariance is defined as

RNEW
i = JiR

FOCAL
i JT

i (49)
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where Ji is the Jacobian of Eq. (48) and is given by

Ji ≡
∂bi

∂γi

=
1

√

1 + α2
i + β2

i









−1 0

0 −1

0 0









−
1

1 + α2
i + β2

i

bi

[

αi βi

]

(50)

Appropriate modifications to the Jacobian must be made for sensors facing along the other

axes. It should be noted that RNEW
i is also a singular matrix. This issue must be overcome

before the covariance can be used within the EKF framework. A rank-one update approach

is shown effective to overcome this difficulty, as shown in Ref. 31. The basic idea is to add

an additional term cibib
T
i (ci > 0) to the measurement covariance matrix to ensure that the

new covariance matrix is nonsingular and does not change the overall result in the EKF.

This is mathematically written as

RNEW
i = RNEW

i + cibib
T
i (51)

The coefficient ci is recommended to be given by

ci =
1

2
trace(RNEW

i ) (52)

where trace is the mathematical function denoting trace of a matrix.

The next step is to determine the partial derivative of the measurement vector with

respect to the state vector in order to form the H matrix of the filter. Using Eq. (25),

Eq. (47a) becomes

bi = (Âf
l )

T (I3×3 + [(δαf |l)×])ri

= (Âf
l )

T ri + (Âf
l )

T [(δαf |l)×]ri

= (Âf
l )

T ri − (Âf
l )

T [(ri)×]δαf |l (53)

The partial derivative with respect to the attitude states is simply given by

∂bi

∂δαf
l

= −(Âf
l )

T [(ri)×] (54)

The partial derivative with respect to the position vector is more complicated, and given by
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Table 1. Summary of Extended Kalman Filter for Relative Inertial Navigation

Initialize

q̂fl(t0) = qf |l0

r̂
f

f |l(t0) = r
f

f |l0

v̂
f

f |l(t0) = v
f

f |l0

βfg(t0) = βfg0

βfa(t0) = βfa0

P (t0) = P0

Gain
Kk = P−

k HT
k (x̂−

k )[Hk(x̂
−
k )P−

k HT
k (x̂−

k ) + Rk]
−1

Hk(x̂
−
k ) =

[

∂bi

∂δα
f
l

∂bi

∂r
f
f |l

03×3 03×3 03×3

]
∣

∣

∣

tk

Update

P+
k = [I − KkHk(x̂

−)]P−
k

∆ˆ̃x+
k = Kk[ỹk − ŷ−

k ]

∆ˆ̃x+
k ≡

[

δα+T
f |lk

∆r
f

f |lk
∆v

f

f |lk
∆β+T

fgk
∆β+T

fak

]

q̂+
f |lk

= q̂−
f |lk

+ 1
2
Ξ(q̂−

f |lk
)δαf |lk

q̂+
f |lk

=
q̂

+

f |lk

‖q̂+

f |lk
‖

r̂
f+
f |lk

= r̂
f−
f |lk

+ ∆r
f

f |lk

v̂
f+
f |lk

= v̂
f−
f |lk

+ ∆v
f

f |lk

β̂+
fgk

= β̂−
fgk

+ ∆β̂+
fgk

β̂+
fak

= β̂−
fak

+ ∆β̂+
fak

Propagation

â
f+
fk

= ã
f
fk
− β̂+

fak

ω̂
f+
f |Ik

= ω̃
f

f |Ik
− β̂+

fgk

q̂−
f |lk+1

= Ω̄(ω̂f+
f |Ik

)Γ̄(ωl+
l|Ik

)q̂+
f |lk

P−
k+1 = ΦkP

+
k ΦT

k + Qk

¨̂rf

f |l = − ˙̂ωf

f |I × r̂
f

f |l − [(ω̂f

f |I)×][(ω̂f

f |I)×]r̂f

f |l − 2ω̂f

f |I ×
˙̂rf

f |l

+â
f
f − Âf

l a
l
l + Âf

E

(

ĝE
f − gE

l

)

ĝE
f = −µ

‖r̂E
f |E

‖3 r̂
E
f |E

Ref. 17:

∂bi

∂r
f

f |l

= (Af
l )

T ∂ri

∂r
f

f |l

= (Af
l )

T 1

‖Ri + r
f

f |l‖

(

I3×3 −
1

‖Ri + r
f

f |l‖
2
(Ri + r

f

f |l)(Ri + r
f

f |l)
T

)

(55)
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Table 2. List of Beacon Locations

Beacon Number (i) Xi Yi Zi

1 0 m 7 m 0 m

2 −3.75 m 2.25 m −1.5 m

3 3.75 m 0 m 0 m

4 1.5 m 0 m 0 m

5 0 m −7 m 0 m

6 3.75 m −2.25 m 1.5 m

7 −3.75 m 0 m 0 m

8 −1.5 m 0 m 0 m

The overall sensitivity matrix is then given as

Hi =

[

∂bi

∂δαf
l

∂bi

∂r
f

f |l

03×3 03×3 03×3

]

(56)

The complete EKF is summarized in Table 1, where Rk is the block-diagonal matrix made

up of all the individual RNEW
ik

matrices, ỹk ≡ [b̃T
1k

· · · b̃T
Nk

]T and ŷ−
k ≡ [b̂−T

1k
· · · b̂−T

Nk
]T ,

where N is the total number of LOS observations at time tk. Detailed simulation results

can be seen in Ref. 14. The filter is shown robust to initial condition errors in all states.14

From the state error plots, a minimum of three beacons is seen to be necessary for continuous

convergence of all covariance bounds. Also, relative gravity terms are shown to be important

for the case of using only one beacon to update the states. Therefore, these terms should

not be ignored in general.

B. Calibration Maneuver Simulation Results

In this section simulations results are shown that involve a calibration maneuver designed to

estimate the gyro and accelerometer biases while also estimating the position and attitude.

Leader states are assumed known aboard the follower. Realistically, there will be some delay

between filtering of measurements onboard the leader and receipt of the state estimates

on the follower. For a relative distance of 1 km, it will take approximately 10−5 seconds

for a communication signal to be transmitted between the two vehicles. Adding in the

computational effort of data processing and signal transmission, it is assumed that the overall

lag will still be significantly smaller than filter update period. With that being the case, the

received leader states can be propagated forward over the lag interval without significant

loss in accuracy.
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Table 3. Noise Parameters

Gyro Noise Accelerometer Noise VISNAV Noise

σgv = 8.7266 × 10−7 rad
s1/2 σav = 1.5 × 10−5 m

s3/2 σm = 350 µrad = 72.2 arc-s

σgu = 2.15 × 10−8 rad
s3/2 σau = 6.0 × 10−5 m

s5/2

Trajectories for all simulations are given in the NED frame for a location of interest

starting at a latitude of 38 degrees, longitude of −77 degrees and zero height. The leader

trajectory is given by

rN
l|N =









50t

1000 sin(0.005t)

−10t









meters (57)

In practice, following the given trajectory will result in minor changes in attitude. Here

it is assumed that the attitude with respect to the NED reference frame remains constant,

which allows for a fairly realistic scenario that doesn’t require a control system with vehicle

dynamics. For an actual system, this will be heavily tied to the aerodynamics of the chosen

air vehicle, which is beyond the scope of the current paper. Eight beacons whose position are

shown in Table 2 will be used. Another assumption is made that the beacons will always be

visible to the focal plane arrays onboard the leader. This will generally not happen in practice

since parts of the air vehicle itself will block the lines of sight. Since that depends upon the

specific air vehicle being used, this factor will not be simulated here. The subsequent results

should be thought of as having enough beacons on the follower such that eight will always

have clear lines of sight.

The relative position trajectory for this maneuver will be given by

rN
f |l =









75 cos(ωrt)

75 sin(ωrt)

30









(58)

where ωr = 2π/3600 rad/s. The rotational rate of the follower is given by ωN
f |N = [ 0 0 ωr ]T .

This maneuver should be slow enough such that it can be followed by most available

air vehicle. Gyro, accelerometer and VISNAV measurements are sampled at 10 Hz using

noise parameters given in Table 3. The initial gyro and accelerometer biases are given

by βfg = [0.8 − 0.75 0.6]T deg/hr and βfa = [−0.002 0.0375 − 0.004]T m/s2. Both the

accelerometer and gyro biases are initially assumed to be zero in the EKF. The initial co-

variance matrix P0 is diagonal. The attitude components of the covariance are initialized to
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Figure 3. Relative Position and Attitude Errors
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Figure 4. Bias Errors

a 3σ bound of 5 deg. The position and velocity parts have 3σ bounds of 20 m and 0.5 m/s,

respectively. The accelerometer and gyro bias components have 3σ bounds 1 deg/hr and 0.1

m/s2, respectively.

Figures 3 and 4 show the estimation errors for the calibration maneuver. All plots show

the average of errors over 100 Monte Carlo runs. Estimates of all states can be seen to

converge within their respective theoretical covariance bounds. Position errors are contained

within 3σ bounds of 10 cm, while the attitude errors are contained within 3σ bounds of

50 arc-seconds. All bias estimates are shown to converge quickly. These results clearly

show that the derived relative equations provide a viable means to accurately estimate both

relative attitude and position.
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VI. Path Trajectory Application

In this section an application of the previously derived filter equations is shown. Specif-

ically, an optimal trajectory is designed to increase the observability of the relative position

states with control applied to the follower. In practical applications, this type of maneuver

would be applied between vehicle take-off and the arrival of the vehicles in their designated

mission area. The purpose is to achieve the best possible relative position information before

the mission begins. This task is assumed to be equivalent to improving the accuracy of the

position estimates of the EKF developed in the prior sections. Optimal control techniques

will be employed to design an optimal trajectory. It is assumed that this optimal path won’t

be used until after the primary state estimator has converged. This allows the bias states

to be ignored for this development. Two types of control are possible, rotational control

and translational control. In practical applications, the attitude of an air vehicle will be

constrained by the desired direction of motion and the aerodynamics that govern its flight.

For this reason, translational control will be the focus here. To keep this work from being

tied to any specific air vehicle, only a generic translational control term will be used. For

future applications, the following development will need to be repeated with the chosen air

vehicle’s dynamics to ensure that the resulting trajectory is feasible.

The measure of an EKF’s accuracy is defined by the 3σ bounds as given by the filter

covariance matrix. The cost function will look to minimize the diagonal elements of the

this matrix that correspond to the position states. In formulating the cost function, the

information form of the covariance update will be used:32

(P+
k )−1 = (P−

k )−1 + HT
k RkHk (59)

The previously derived filter used a sequential update, allowing the above equation to be

rewritten as

(P+
k )−1 = (P−

k )−1 +

n
∑

i=1

(

HT
kiRkHki

)

(60)

≡ (P−
k )−1 +

n
∑

i=1

Bki (61)

The subscript i corresponds to the beacon number of the current Measurement, and n is the

total number of beacons.

Minimizing the desired elements of the updated covariance P+
k requires maximizing its

inverse, and thus maximizing the right hand side of Eq. (59). Since the propagated covariance

P−
k is given at each time step, maximizing the right hand side requires maximizing the
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summation of Bki.
20 Using Eq. (56) and the QUEST covariance to simplify the control design

only (the navigation equations still used the generalized covariance model), the submatrix

corresponding to the position elements is written as









Bki(4, 4) Bki(4, 5) Bki(4, 6)

Bki(5, 4) Bki(5, 5) Bki(5, 6)

Bki(6, 4) Bki(6, 5) Bki(6, 6)









=

(

∂bi

∂r
f

f |l

)T

i

(

σ2I3×3

)

(

∂bi

∂r
f

f |l

)

i

= σ2

(

∂bi

∂r
f

f |l

)T

i

(

∂bi

∂r
f

f |l

)

i

(62)

with the diagonal elements of this matrix given by

Bki(4, 4) =
σ2 [(Yi + y)2 + (Zi + z)2]

(Ri + r
f

f |l)
T (Ri + r

f

f |l)
(63a)

Bki(5, 5) =
σ2 [(Xi + x)2 + (Zi + z)2]

(Ri + r
f

f |l)
T (Ri + r

f

f |l)
(63b)

Bki(6, 6) =
σ2 [(Xi + x)2 + (Yi + y)2]

(Ri + r
f

f |l)
T (Ri + r

f

f |l)
(63c)

Optimal control problems are generally stated in terms of minimizing a function. Therefore,

maximizing
∑n

i=1

∑6
j=4 Bki(j, j) is accomplished by minimizing (−1)

∑n

i=1

∑6
j=4 Bki(j, j),

which is written as

−
3
∑

i=1

6
∑

j=4

Bki(j, j) = −
3
∑

i=1

2σ2

(Ri + r
f

f |l)
T (Ri + r

f

f |l)
(64)

A numerical problem can be seen by examining the denominator. Minimizing Eq. (64)

requires the denominator to be made as small as possible. Its composition allows for it

to achieve a zero value, which results in a numerical singularity. To avoid this difficulty

a slightly different form of Eq. (64) will be used, given by w1

∑n
i=1(Ri + r

f

f |l)
T (Ri + r

f

f |l).

This removes the mathematical singularity while still resulting in the same minimum. The

constant coefficients have been replaced with a user specified weighting coefficient, w1.

Another difficulty with this term is that its minimum requires the follower to be driven

close to the leader. More specifically, the follower will asymptotically approach

(

r
f

f |l

)

∗
=

−1

n

n
∑

i=1

Ri ≡
−1

n
RT (65)

Physically, this means that the follower will asymptotically approach a relative position such
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that the mean beacon vector position will be located at the origin of the leader reference

frame. In practical applications, this will likely cause a collision between the vehicles. To

prevent such an occurrence, a state constraint will be imposed upon the system of the form

‖rf

f |l‖ ≥ rmin (66)

where rmin is the minimum desired distance between the origins of the two vehicles body

frames. For this constraint, it is assumed that the origins of the body frames are located

at the geometric center of each vehicle. If this is not the case, the constraint needs to be

modified appropriately.

The constraint can be appended into the loss function using a standard Lagrange multi-

plier approach.33 However, a numerical solution to this optimization problem may be difficult

to achieve. Here, a simpler method is used to impose the constraint, where an exponential

is appended to the cost function, which now has the form of

J [x(t),u(t)] =

∫ tf

t0

{

1

2
w1

n
∑

i=1

(Ri + r
f

f |l(t))
T (Ri + r

f

f |l(t)) +
1

2
w2

(

ṙ
f

f |l(t)
)T

ṙ
f

f |l(t)

+
1

2
w3

(

r̈
f

f |l(t)
)T

r̈
f

f |l(t) + w4 exp
(

k(rmin − ‖rf

f |l(t)‖)
)}

dt (67)

where k is a user-specified coefficient and u ≡ a
f
f = Af

Ia
I
f is contained within the relative

acceleration term. The primary goal of the follower during this calibration period is to

perform the same maneuver as the leader. Since improving the observability is a secondary

goal, the optimal trajectory should minimize deviations from that maneuver. This is why

the relative velocity and relative acceleration are used instead of the follower velocity and

follower acceleration.

The optimal control trajectory can be determined using standard unconstrained opti-

mization methods, but choosing w1 and w4 independently may violate the constraint. The

relation of the weight w4 to w1 is now shown. Equation (65) gives the minimum for an un-

constrained system. Now, consider a constraint sphere of radius rmin about the leader upon

which the follower is required to move. Because the cost function is based on the distance

from the beacons to the leader, the cost function will vary over the constraint sphere as

long as RT is non-zero. If this value is zero, the optimal trajectory will simply be a straight

line from the initial relative position to the closest point on the constraint sphere with the

speed and acceleration determined by the relative weights. The optimal relative position

will be that which forces RT to be normal to the constraint sphere and pointing inward.
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Mathematically, this is written as

(rf

f |l)∗ = −rmin

RT

‖RT‖
(68)

Since this value is constant, the optimal relative velocity and acceleration are given by

(ṙf

f |l)∗ = 0 (69a)

(r̈f

f |l)∗ = 0 (69b)

Knowing the desired location of the optimal position allows w4 to be determined as a function

of w1. The optimal position occurs when ∂J
∂x

= 0. Since the optimal relative velocity and

relative acceleration are equal to zero, they aren’t present in the following development.

Working from Eq. (72), this partial derivative is given by

∂J

∂x
= w1

n
∑

i=1

(Ri + r
f

f |l)
T − kw4 exp

(

k(rmin − ‖rf

f |l‖)
) (rf

f |l)
T

‖rf

f |l‖

= w1(RT + nr
f

f |l)
T − kw4 exp

(

k(rmin − ‖rf

f |l‖)
) (rf

f |l)
T

‖rf

f |l‖

= w1(‖RT‖ − n rmin)
(RT )T

‖RT‖
+ kw4 exp (k(rmin − rmin))

(RT )T

‖RT‖
= 0T

(70)

where the second line makes use of Eq. (68). Since the equation is solely a function of vectors

along the direction of RT , the magnitudes alone are used to solve the equation for w4. This

yields

w4 =
w1

k
(n rmin − ‖RT‖) (71)

Use of this equation allows an optimization to be performed without the use of Lagrange

multipliers to satisfy the inequality constraint. Equation (67) can then be written as

J [x(t),u(t)] =

∫ tf

t0

{

1

2
w1

n
∑

i=1

(Ri + r
f

f |l(t))
T (Ri + r

f

f |l(t))

+
1

2
w2

(

ṙ
f

f |l(t)
)T

ṙ
f

f |l(t) +
1

2
w3

(

r̈
f

f |l(t)
)T

r̈
f

f |l(t)

+
w1

k
(n rmin − ‖RT‖) exp

(

k(rmin − ‖rf

f |l(t)‖)
)}

dt (72)

Even though the optimal position is known, it is still necessary to develop the trajectories that
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will maneuver the follower from its initial location to that position. Trajectories developed

from this cost function will fall into one of two categories, which depend upon the location

of the follower with respect to the constraint sphere and the constrained optimal position. If

a direct path would require movement through the constraint sphere, the resulting optimal

trajectory will drive the follower onto that sphere, and then follow a path along the sphere

to the optimal position. Otherwise, the path will only be constrained by the user-specified

weighting coefficients.

A. Simulation Results

This section shows simulation results of a maneuver using the previously developed optimal

control law, along with several other trajectories to provide points of comparison. Three

beacons have been determined to be the minimum required for continuous observability by

simulations performed in Ref. 34. The first three beacons of Table 2 will therefore be used to

generate the optimal trajectory. Once again, the number of beacons onboard the air vehicle

will generally need to be higher to ensure that this minimum number always has clear lines

of sight. For practical applications, a geometric analysis of the host vehicle structure, the

possible locations of its beacons and the possible relative positions of the communicating

vehicles will be required.

The other relevant parameters in developing the trajectory are a minimum distance of

rmin = 20 meters and weights of w1 = 100, w2 = 1 and w3 = 40. The value of rmin is

chosen so that it would prevent collisions of larger air vehicles, such as the Predator which

has a wingspan of approximately fifteen meters. When computing an optimal trajectory for

smaller air vehicles, this constraint should be reduced appropriately. Weights for the cost

function are chosen by balancing the desire for a quick approach to the optimal position

with the need to prevent control inputs from becoming unrealistic. The above weights yield

a trajectory that reasonably satisfies these competing factors.

Figure 5 shows the resulting optimal trajectory in NED coordinates. Each subplot shows

two lines. The solid line corresponds to the computed true trajectory, while the dashed line

corresponds to the optimal position. Initially, all three position components move towards

their respective optimal positions. After about five seconds, the y component then begins

to increase. This is due to the fact that both the x and z components have to cross zero

in order to reach their optimal positions. In order for the minimum distance constraint

to be maintained, the y position must increase. It is this type of feature that requires an

optimal trajectory to be calculated. If the follower just traveled straight towards the optimal

position, there is a chance that the constraint will be violated resulting in a possible collision.

Two additional trajectories are tested for comparison. They are given by the following
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Figure 5. Optimal Relative Position Trajectory

equations:

rN
f |l(constant) =









60
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







meters (73a)

rN
f |l(sinusoid) =









30 sin(2πt/600)

20 sin(2πt/600)

40 sin(2πt/600)









meters (73b)

To provide an accurate comparison, they begin with the same relative position, relative

velocity and relative attitude as that of the optimal trajectory. A calibration maneuver has

been assumed to already take place before the optimal control law is invoked. Therefore,

the initial conditions of the biases are set to their respective true values, and the initial

covariances of the gyro and accelerometer biases are set to 3σ bounds 0.3 deg/hr and 0.3

mm/s2, respectively. Norms of the error bounds for both the relative position and relative

attitude states are shown in Fig. 6. Significant increases in accuracy are seen when using

the optimal trajectory when compared to the constant and sinusoidal trajectories. It should

be noted that an improvement in attitude estimation accuracy is also achieved even though

the optimization is performed with respect to the position components. This is a result of

the coupling between the two sets of states through the LOS measurements.

Conclusions

The relative navigation equations for a pair of air vehicles were developed. An extended

Kalman filter was then derived for estimation of relative position and attitude. Line-of-sight
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Figure 6. Error Bound Comparison

measurements are taken by simulating visual navigation beacons, which are assumed to be

placed on the follower while the focal plane arrays are on board the leader. Simulation results

demonstrated that the gyro and accelerometer biases can be estimated using a calibration

maneuver. An optimal controller has also been developed to generate a trajectory which

improves the estimation accuracy for a two vehicle system containing three visual navigation

beacons. This was accomplished by including the appropriate terms of the covariance update

equation within the cost function. A state constraint is also included, which sets a lower

bound on the norm of the relative position vector. The extended Kalman filter was tested

on the optimal trajectory along with two additional trajectories. Simulations showed that

accurate position and attitudes can be estimated, and that an optimal trajectory exists which

results in significantly reduced covariance bounds for both the relative position and relative

attitude states.
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