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Robust Control of Nonlinear Systems
Using Model-Error Control Synthesis

John L. Crassidis1

Abstract
A new approach for the robust control of nonlinear systems is presented. This approach

employs an optimal real-time nonlinear estimator to determine model error corrections to the

control input using a one time-step ahead technique. Control compensation is achieved by using

the estimated model error as a signal synthesis adaptive correction to the nominal control input so

that maximum performance is achieved in the face of extreme model uncertainty and disturbance

inputs. A significant advantage of this approach over other adaptive methods is that model

parameters need not be updated online. Instead, the effects of these errors are used to update the

actual control signal, which leads to a simple design strategy. The model-error control synthesis

approach is used in conjunction with a variable structure controller to suppress the wing-rock

motion of a slender delta wing. Simulation results indicate that the model-error control synthesis

approach is extremely effective in providing closed-loop robustness in the face of significant

model uncertainties and disturbance inputs.
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Introduction
Robust control of dynamic systems is usually achieved using one of two schemes. The first

scheme involves the design of a controller that is insensitive as possible to model uncertainty

and/or disturbance inputs. The second scheme involves updating model parameters or control

gains in real-time in order to achieve desired performance specifications. Adaptive control

methods fall into this category. These control schemes can be used to provide robustness in a

dynamic system with uncertainties, each with its own advantages and disadvantages.

Uncertainty in a dynamic system may take many forms, but among the most significant are

noise/disturbance uncertainty and modeling/parametric uncertainty. The current design of robust

controllers synthesizes a control law that maintains system responses and error signals to within

pre-specified tolerances despite the effects of uncertainty on the system. Several robust control

techniques have been applied to linear systems, such as H∞
1 and µ-synthesis2 controllers. These

are based on singular value decompositions using weighted functions at varying frequencies for

closed-loop specifications, which include sensitivity (disturbance), complementary sensitivity

(tracking), and control input requirements. Singular values provide information in terms of

guaranteed bounds on system performance or tolerable perturbations.

The control of nonlinear systems is inherently more difficult than linear systems. Variable

structure (sliding mode) control3 (VSC) is an evolving method for robust control of nonlinear

systems that provides stability in the face of modeling uncertainties. Variable structure control

requires that bounds on the modeling uncertainties are known in order to provide robust stability.

However, “chattering” in the control signal occurs because of the conservative nature of the

controller, which is highly undesirable in many systems. Chattering can be eliminated by

smoothing the control signal in a thin boundary layer with a slight reduction in the controller’s

performance on the system.

Another class of controllers for both linear and nonlinear systems is adaptive control. These

methods generally apply to systems where the dynamic structure of the model is known; but with

unknown constant parameters. For linear systems, adaptive control methods have focused on the

certainty-equivalence principle,4 where a particular parameter estimation technique is combined

with an existing control law. The parameter estimates are treated as the true values in the control

law. However, the demonstration of asymptotic behavior for nonlinear systems using the

certainty-equivalence principle becomes increasingly complex. Recent approaches to this
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difficulty have focused on feedback linearization control schemes, employing a differential

geometric formulation in conjunction with adaptive control. In particular, the backstepping

design with tuning functions5 has been successfully shown to globally stabilize a subclass of

feedback linearizable systems described in parametric strict-feedback form. A further advantage

of the approach in ref. [5] is that overparametrization was removed, so that only as many

controller parameters are updated as there are unknown plant parameters. This approach has

been used to control a wide variety of nonlinear systems (e.g., see ref. [6]).

Disturbance attenuation is also an objective in the design of most feedback systems. Just as

in the case of modeling errors, disturbance attenuation is typically achieved using one of two

schemes. The first involves designing controllers that are insensitive as possible to exogenous

disturbances. This is an inherent attribute in H∞ controllers, which has also been extended to

nonlinear systems.7 Also, a worst case adaptive control-design methodology8 has recently been

developed, which synthesizes a control law that meets desired asymptotic tracking and

disturbance attenuation specifications. The second scheme involves canceling out disturbance

effects on the output through disturbance estimation schemes. For linear systems, this has

become a mainstream approach,9 where the exogenous disturbances are represented as

polynomials in time with unknown coefficients that satisfy a linear differential equation. For

nonlinear systems, combining variable structure control with a disturbance-accommodating

observer has been developed,10-11 and has been adopted for the spacecraft attitude-control

problem.12 The disturbance-accommodating observer approach has been shown to be extremely

effective for disturbance attenuation; however, the performance of the observer can significantly

vary for different types of exogenous disturbances, which is due to observer gain sensitivity.

The new approach developed in this paper, called model-error control synthesis (MECS),

provides robust stability and performance in a controlled nonlinear system. In this approach a

new control scheme is not explicitly derived. Rather, existing control techniques are combined

with an optimal nonlinear estimator to determine model-error corrections which update the

nominal control-input signal itself. This represents a significant departure from standard

adaptive control approaches. The MECS approach has many significant advances, including: (1)

system parameters need not be updated in order to achieve robust performance, (2) the largest

dimension model in the MECS is equal to the plant order which leads to a computationally

efficient algorithm, and (3) it can easily handle both time-varying parameter changes in the
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model and unmodeled disturbance inputs. The estimator is based upon a predictive filter for

nonlinear systems.13 The main advantage of this filter is that, unlike most filter/estimation

algorithms, the model error is determined during the estimation process. The predictive filter

determines the corrections added to the assumed model such that the model and corrections yield

an accurate representation of the actual system behavior. This new filter has been shown to be

superior to the traditional Kalman filter when model error characteristics are unknown (e.g., see

ref. [14-15]). If stochastic measurement errors are not present, then the filter is reduced to a state

estimator only. The determined model error, which is a natural by-product of the predictive

estimator, is subsequently used to update the control input in order to achieve robust

performance. It will be shown that the MECS approach combined with variable structure control

provides robust performance characteristics in the face of extreme parameter variations and

exogenous disturbances.

The organization of this paper is as follows. First, a brief overview of the predictive filter for

nonlinear systems is shown. Then, the MECS approach is summarized, followed by an analysis

of the closed-loop properties. Next, a brief review of the analytical model of wing rock for

slender delta wings is shown. A variable structure controller is then designed for wing-rock

suppression using the nominal system parameters. Finally, results are shown using variable

structure control only, and variable structure control with MECS.

Predictive Filtering
This section reviews the predictive filter (see ref. [13] for more details). In the nonlinear

predictive filter it is assumed that the state and output estimates are given by a preliminary model

and a to-be-determined model error vector, given by

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆˆ ˆ ˆ ˆ ˆ, , ,t t t B t t t G t t tÈ ˘ È ˘ È ˘= + +Î ˚ Î ˚ Î ˚x f x x u x u! (1a)

( ) ( )ˆ ˆ ˆ ,t t tÈ ˘= Î ˚y c x (1b)

where ˆ : n n¬ Æ¬f is the assumed model vector, ( )ˆ nt Œ¬x is the state estimate vector,

( ) qt Œ¬u is the control input, ( )ˆ lt Œ¬u is the model error vector, ( )ˆ ˆ , : n n qB t t ¥È ˘ ¬ Æ¬Î ˚x is

the assumed control input matrix, ( )ˆ ˆ , : n n lG t t ¥È ˘ ¬ Æ¬Î ˚x is the assumed model-error

distribution matrix, ˆ : n m¬ Æ¬c is the measurement vector, and ( )ˆ mt Œ¬y is the estimated
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output vector. State-observable measurements are assumed for Equation (1b) in the following

form

( ) ( ) ( ),t t t tÈ ˘= +Î ˚y c x v" (2)

where ( ) mt Œ¬y" is the measurement vector, ( ) nt Œ¬x is the true state vector, : n m¬ Æ¬c is

the true output vector, and ( ) mt Œ¬v is the measurement noise vector which is assumed to be a

zero-mean, stationary, Gaussian white-noise distributed process with

( ){ }E t =v 0 (3a)

( ) ( ){ } ( )TE t R tt d t= -v v (3b)

where m mR ¥Œ¬ is the covariance matrix.

A Taylor series expansion using a small tD of the output estimate in Equation (1b) is given

by

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ,t t t t t t S t tÈ ˘ È ˘+ D ª + D + L DÎ ˚ Î ˚y y z x x u (4)

where ( )ˆ : n m lS t ¥È ˘ ¬ Æ¬Î ˚x is a generalized sensitivity matrix, and ( ) m mt ¥L D Œ¬ is diagonal

matrix with elements given by

, 1,2, ,
!

ip

ii
i

t
i m

p
l D= = … (5)

where ip , 1, 2, ,i m= … , is the lowest order of the derivative of ( )ˆˆ ,ic t tÈ ˘Î ˚x in which any

component of ( )ˆ tu first appears due to successive differentiation and substitution for ( )ˆix t! on

the right side. The thi component of ( )ˆ , tDz x is given by

( ) ( )ˆ
1

ˆ ˆ,
!

ip k
k

i if
k

t
z t L c

k
=

DD =Âx (6)

where ( )ˆ ˆk
if

L c is the thk Lie derivative, defined by
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( )

( ) ( )

0
ˆ

1

ˆ

ˆ ˆ

ˆ
ˆ ˆˆ for 1

ˆ

i if

k
f ik

if

L c c

L c
L c B k

∂
∂

-

=

È ˘= + ≥Î ˚f u
x

(7)

The thi row of ( )ˆS tÈ ˘Î ˚x is given by

( ) ( )
1

1 1
ˆ ˆˆ ˆˆ ˆ, , , 1,2, ,i i

l

p p
i g i g if f

s L L c L L c i m- -Ï ¸È ˘ È ˘= =Ì ˝Í ˙ Í ˙Î ˚ Î ˚Ó ˛
… … (8)

where ˆ jg is the thj column of ( )Ĝ t , and the Lie derivative is defined by

( )
( )1

ˆ1
ˆ ˆ

ˆ
ˆ ˆ , 1, 2, ,

ˆ

i

i
j

p
ifp

g i jf

L c
L L c g j l

∂

∂

-
-È ˘ ∫ =Í ˙Î ˚ x

… (9)

A loss functional consisting of the weighted sum square of the measurement-minus-estimate

residuals plus the weighted sum square of the model correction term is minimized, given by

( ) ( ) ( ) ( )

( ) ( )

11
ˆ ˆ

2
1

ˆ ˆ
2

T

T

J t t t t R t t t t

t W t

-È ˘ È ˘= + D - + D + D - + DÎ ˚ Î ˚

+

y y y y

u u

" "
(10)

where l lW ¥Œ¬ is weighting matrix. The necessary conditions for the minimization of

Equation (10) lead to the following model error solution

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( )

1
1

1

ˆ ˆ ˆ

ˆ ˆ ˆ,

T

T

t t S R t S W

t S R t t t t

-
-

-

È ˘= - L D L D +Î ˚

È ˘ È ˘¥ L D D - + D +Î ˚ Î ˚

u x x

x z x y y"
(11)

Therefore, given a state estimate at time t , then Equation (11) is used to process the

measurement at time t t+ D to find the ( )ˆ tu to be used in [ ],t t t+ D to propagate the state

estimate to time t t+ D using Equation (1a). The weighting matrix W serves to weight the

relative importance between the propagated model and measured quantities. If this matrix is set

to zero, then no weight is placed on minimizing the model corrections so that a memoryless

estimator is given. In this case, the predictive filter reduces to a state estimator only (known as

the predictive estimator, with =y y" ).
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Special Case

In this paper we consider the following special case for a (SISO) single-input-single-output

system (which is typically used in VSC)

( ) ( ) ( )( ) ( ) ( )1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , ,n nx t f x x x x t b u t u t- È ˘= + +Î ˚
! !!… (12a)

( ) ( )ˆ ˆy t x t= (12b)

The state vector is given by

( )1ˆ ˆ ˆ ˆ ˆ
T

nx x x x -È ˘∫ Í ˙Î ˚
x ! !! $ (13)

Equation (12a) implicitly implies that the SISO system can be locally given in normal form with

relative degree equal to the state dimension ( )n .16 Also, any output can be used as long as the

system is locally observable; however ( ) ( )ˆ ˆy t x t= is chosen since this usually represents a

position output in a dynamical system. The determined model error using Equation (11) with

0W = can be shown to be given by (dropping the time ( )t notation for now)

( ) ( )1! ˆˆ ˆ ˆˆ ˆ
!

n

n

n t
u b f bu y x

nt
z- DÈ ˘D= - + + - -Í ˙

D Í ˙Î ˚
(14)

where ( )y y t tD ∫ + D , and ẑ is given by

( )
1

1

ˆ ˆ
!

n i
i

i

t
x

i
z

-

=

D=Â (15)

Substituting Equation (14) into Equation (12a) yields

( ) ( )! !ˆˆ ˆn
n n

n n
x x y

t t
z D= - + +

D D
(16)

This corresponds to a feedback linearization of the assumed dynamics.

Model-Error Control Synthesis
Control Design

The concept of model-error control synthesis is a simple one. The actual system is

represented by the following
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( ) ( )( )1, , , , ,n nx f x x x x t bu e d-= + +! !!… (17a)

y x= (17b)

where 1d Œ¬ is an exogenous disturbance and e is a scalar. The control design is given by

using the assumed model for the system, given by

( ) ( )( )1ˆ ˆˆ ˆ ˆ ˆ ˆ, , , , ,n nx f x x x x t b u-= +! !!… (18a)

ˆ ˆy x= (18b)

Equation (18) inherently uses the certainty-equivalence principle4 since estimated states are used.

A VSC design can be used for the nominal controller, given by

( )1ˆ ˆ ˆ satn s
u b f s x h

r
- È ˘Ê ˆ

= - + - +Í ˙Á ˜Ë ¯Î ˚
! (19)

where h is a control gain and r is the control boundary layer thickness. The sliding line ( )s is

given by

( )
1

ˆ
nd

s x r
dt

J
-Ê ˆ= + -Á ˜Ë ¯

(20)

where J is another control gain, r represents a reference input, and the function sat is the

saturation function defined by

( )
( ) ( )

sat if 1

sat sgn otherwise

y y y

y y

= £
=

(21)

In the MECS approach Equation (12a) is used to compensate the control input for any general

model error. Adding the model-error into the control signal is a valid since we are free to choose

where to place the model-error correction in the system (the system is implicitly implied to be

both controllable and observable). A block diagram of a controlled system with MECS is shown

in Figure 1. First, a controller is designed using nominal system parameters, with the control

signal represented by u . The predictive estimator is used for both state estimation and model

error determination using Equation (11). Since Equation (12a) is used to determine this model
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error, û now represents a correction to the control. In order to compensate the effects of the

model errors and disturbances on the control signal, the actual control input is now given by

( ) ( ) ( )ˆu t u t u t t= - - D (22)

with ( )0ˆ 0u t = . The model-error is taken at time t t- D since a response from the plant must be

given before the model error can be determined. The ramifications of this time delay in the

control law will be shown later. The main advantage of this update law is that the system

parameters need not be updated since only their effects on the nominal system are used to update

the control input, which can provide closed-loop robustness with respect to the model errors.

The same concept holds true for the effects of disturbances on the closed-loop system.

Analysis

For the analysis we first make the standard assumption that the true state variables are

replaced with the estimated state variables. It is well know that when no model errors and

disturbances exist, the variable structure controller performs a feedback linearization. This can

easily be shown by substituting Equation (22) into Equation (17a) with ˆ 0u = , 0d = , and with

f̂ f= , b̂ b= (i.e., no model errors), yielding

( )nx g= - (23)

where

( ) satn s
g s x h

r
Ê ˆ

= - + Á ˜Ë ¯
! (24)

The stability using this control law can be shown by considering the following candidate

Lyapunov equation

21

2
V s= (25)

Taking the time derivative of Equation (25) yields

sat
s

V sh
r

Ê ˆ
= - Á ˜Ë ¯
! (26)
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which is always negative definite for positive values of h . Therefore, closed-loop stability is

proven. However, if model errors and external disturbances are present, then the dynamics

become

( ) ( )1 1ˆ ˆ ˆnx f b b f b b g e d- -= - - + (27)

Equation (27) shows that parameter errors and external disturbances can clearly affect closed-

loop performance using VSC.

In order to demonstrate the stability of the MECS approach, we first re-write Equation (4)

with the output given in Equation (17b), so that

( )
!

nt
y y f bu e d

n
zD D= + + + + (28)

with

( )
1

1
!

n i
i

i

t
x

i
z

-

=

D=Â (29)

Substituting Equation (29) into Equation (14) yields

( ) ( )1ˆ ˆ ˆû b f f b b u e d- È ˘= - + - +Î ˚ (30)

Equation (30) clearly show how û determines the model error and external disturbance.

Therefore, as ˆf fÆ and as ˆb bÆ , with no disturbance the determined model-error approaches

zero. Note, the derivation leading to Equation (30) again uses the certainty-equivalence

principle, since ( )ix is assumed to be equivalent to ( )ˆ ix . This is a valid assumption as long as

tD for the Taylor series expansion in Equation (4) is small enough so that ( )ŷ t accurately

approximates ( )y t .

If the control input is assumed to be given by ( ) ( ) ( )ˆu t u t u t= - , then the following

expression for the control input is given

( )1u b f g e d-= - + + (31)

Then the closed-loop equation for ( )nx becomes
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( )nx g= - (32)

which is again the feedback linearization case with disturbance removed. Therefore, the effects

of the parameter uncertainties and external disturbances have been exactly cancelled through the

determined model-error in Equation (30).

For practical control purposes, Equation (22) must be used for the control law. To see the

effects of this control law, we first re-write Equation (30) with a one time-step delay

( ) ( ) ( ) ( ) ( ) ( ){ }1ˆ ˆ ˆû t t b f t t f t t b b u t t e d t t- È ˘- D = - D - - D + - - D + - DÎ ˚ (33)

Next, using a one time-step delay in Equations (19) and (28), the following expressions can be

written

( ) ( ) ( )ˆ ˆf t t g t t bu t t- D = - - D - - D (34a)

( ) ( ) ( ) ( ) ( ) ( )! !
n n

n n
f t t y t y t t t t bu t t e d t t

t t
zÈ ˘- D = - - D - - D - - D - - DÎ ˚D D

(34b)

Substituting Equation (34) into (33), and using the one-time delay in Equation (22) yields

( ) ( ) ( ) ( ) ( ) ( )1 ! !ˆˆ ˆ 2
n n

n n
u t t u t t b y t y t t t t g t t

t t
z- È ˘È ˘- D = - D + - - D - - D + - DÍ ˙Î ˚D DÎ ˚

(35)

Next, substituting Equation (34b) for ( )t tz - D into (35), and taking a one time-step ahead leads

to

( ) ( ) ( ) ( ) ( ) ( )1ˆˆ ˆu t t u t b f t bu t e d t g t- È ˘- D = - + + +Î ˚ (36)

Therefore, the control law becomes

( ) ( ) ( ) ( ) ( ) ( )1 1 ˆ ˆ ˆu t b f t e d t g t b b u t u t t- -È ˘ È ˘= - + + + - - DÎ ˚ Î ˚ (37)

A feedback linearization still occurs in the closed-loop system, but with an extra term given by

( ) ( )ˆ ˆ ˆb u t u t tÈ ˘- - DÎ ˚ . From Equations (30) and (33), the error produced by this control law are

given by the difference from time ( )t t- D to t of the model errors and disturbance input.

Therefore, the errors caused by the extra term are in fact second-order, as opposed to the first-
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order errors affecting the standard VSC, shown by Equation (27). This leads to a more robust

control design than using VSC only.

Wing Rock Suppression
In this section the MECS approach is used to suppress wing rock motion in slender delta

wings. Wing rock represents a self-induced limit cycle oscillation in the presence of some initial

disturbance or asymmetry in the flow field. The primary causes of wing rock are the interactions

between the forebody and the wing vortices at high angles of attack.17 This has been verified

using a video-based experimental investigation for wing rock of sharp-edged delta wings with

leading-edge sweep angles of 70° and 80°, which also suggests that the limit cycle behavior is

due to the relative phasing between model oscillations and vortex movements.18 Analytical

models of this highly nonlinear phenomenon have been developed and used to predict roll

divergence as well as other characteristics in the oscillations, such as the period and amplitude of

the oscillations.19

Recently, the control of wing rock has gained much attention, including, optimal control

methods,20 adaptive control using backstepping,6 and variable structure adaptive control.21 One

of the difficult aspects in the control of wing rock motion is the extreme sensitivity to parameter

variations (i.e., a slight change in a model parameter can significantly affect overall system

response). This was evident in the optimal control method in ref. [20], in which the

aerodynamics parameters are assumed to be known. The backstepping design with tuning

functions in ref. [6] has been successfully shown to globally suppress wing rock motion in the

face of significant parametric uncertainties. A further advantage of this approach is that

overparametrization was removed, so that only as many controller parameters are updated as

there are unknown plant parameters. However, disturbance inputs were not considered, which

can adversely affect closed-loop performance. The variable structure adaptive control approach

in ref. [21] has been shown to provide good disturbance rejection capability, and is insensitive to

plant nonlinearities or parametric variations. However, bounds on the uncertain functions are

needed in the control design. Also, higher-order filters are required for the controller synthesis.

For the interested reader, refs. [6], [20], and [21] also summarize other past control approaches

for wing rock suppression.

Model-Error Control Synthesis Design

The wing-rock equation of motion for slender delta wings is given by19
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pf =! (38a)

1 2 3 4 5 6 6p c c c p c p c p p c u c df f= + + + + + +! (38b)

where f is the roll angle, p is the roll rate, u represents the control surface angle, and d is a

control disturbance. For an angle of attack of 30 degrees the following coefficients are given6

1 2 3 4 5 6ˆ ˆ ˆ ˆ ˆ ˆ5, 26.7, 0.765, 2.9, 2.5, 0.75c c c c c c= = - = = - = - = (39)

where the symbol ^ denotes nominal values. Measurements of roll only are assumed, so that

y f= (40)

The lowest order time-derivative of Equation (40) in which the model error first appears is two.

Therefore, the determined model error is given by

( ) ( )1 2 3 4 5 6
1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2

t
u p c c c p c p c p p c u

t
a f f f fDDÈ ˘= - + + + + + + - -Í ˙DÎ ˚

(41)

where

3
6

2 4
6

ˆ2

ˆ 4

c t

c t RW
a D

=
D +

(42)

The case where 0W = corresponds to the feedback linearization case, yielding

2 2

ˆ0 1 0ˆ

ˆ2 2 2ˆ pt t tp

ff fDÈ ˘ È ˘ È ˘È ˘
Í ˙ = +Í ˙ Í ˙Í ˙

- D - D DÍ ˙ Í ˙ Í ˙Î ˚Î ˚ Î ˚Î ˚

!

!
(43)

The eigenvalues of the state estimator matrix are given by

( )1,2
1

1s j
t

= - ±
D

(44)

Therefore, the estimator’s dynamics are dependent only on the interval tD . This provides a very

computationally efficient routine, since a nonlinear model does not have to be integrated using

numerical techniques.

The design goal is to suppress any wing-rock motion within 2 seconds. A variable structure

controller has been designed to meet this requirement, given by
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( )

( )
( ) ( )

1 2 3 4 5
6

6

1 ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ

ˆˆ1
ˆ sat

ˆ

u c c c p c p c p p
c

p r r
r p r

c

f f

J f
J h

r

= - + + + +

Ï ¸È ˘- + -Ô ÔÍ ˙+ - - -Ì ˝Í ˙Ô ÔÎ ˚Ó ˛

!
!! !

(45)

To meet the design goal (with 0r = ), the following gains are used: 3h = , 0.1r = , and 10J = .

Simulation Results

For the first simulation, the variable structure controller has been designed to bring an initial

roll angle of 30 degrees to zero within 2 seconds (with 0r = ). For all simulations, Equations

(38) and (43) have been integrated using ( ) ( )0 0
ˆ 30t tf f= = % and ( ) ( )0 0ˆ 0p t p t= = deg/sec. A

plot of the response and control input with no model errors is shown in Figure 2. Clearly, the

variable structure controller is able to meet the desired specification. The next case assumes an

error in 1c , with 1 6c = . The nominal values for the controller are still given by Equation (39).

This essentially adds a constant control disturbance. A plot of the variable structure controller

results without MECS ( )u u= is shown in Figure 3. Clearly, for this case the variable structure

controller does not meet the requirement. A plot of the determined model error is shown in

Figure 4. The predictive estimator is able to correctly determine the actual model error. A plot

of the variable structure controller results with MECS is shown in Figure 5. Clearly, MECS

provides robust performance for this case.

The next two cases show how MECS can be effective even for radical parameter changes.

For the first case, the true parameters are given by ( )1 5sin 15c t= , ( )4 3cos 5c t= ,

( )5 10sin 10c t= . The parameter changes do not have any physical meaning; however they show

how well the MECS approach can handle even time-varying parameter changes. The nominal

values for the controller are given by Equation (39). A plot of the variable structure controller

results without MECS is shown in Figure 6. The variable structure controller cannot remain on

the sliding line since the model parameters for 1c , 4c , and 5c are assumed to be constant. A plot

of the determined model error is shown in Figure 7. As stated previously, the changes in the

individual model parameters are not important. The MECS approach updates the control signal

from the overall effects of these parameter errors. A plot of the variable structure controller

results with MECS for this case is shown in Figure 8. Again, MECS provides robust
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performance. The second case involves a radical change in the model itself. Suppose that the

actual system is given by

pf =! (46a)

3
1 2 3 4 5 6 6p c c c p c p c p p c u c df f= + + + + + +! (46b)

For this system a cubic dependence in f is present for the 2c term. The assumed model for the

variable structure controller and predictive estimator is still given by Equation (38), with nominal

parameter values equal to the true parameter values. A plot of the variable structure controller

results without MECS is shown in Figure 9. This again shows that variable structure control

does not provide robust performance. A plot of the determined model error is shown in Figure

10, and a plot of the variable structure controller with MECS is shown in Figure 11. Again, the

MECS approach provides robust performance. These two cases clearly show advantages over

parameter-adaptive techniques, which typically assume that the model parameters are constant

(or slowly time-varying) and that the structure of the model is well known.

In order to further test the MECS approach, a number of additional simulations have been

performed. The first case involves multiplying the nominal model parameters by some constant

factor ( )b to obtain the true parameters, with

ˆ , 1, 5i ic c ib= = … (47)

Various constant factors have been used in the simulations. Table 1 gives the norm-error results

in roll angle (with the trajectory in the top plot of Figure 2 as the reference) produced using both

VSC-only and VSC with MECS for the 3 second simulations. Next, a change in the input value

6c was considered only with 6 6ˆc cb= . Results for this case are summarized in Table 2. From

this analysis, both controllers are more sensitive to variations in 6c . However, the MECS

approach is able to provide robust performance when compared to VSC-only, even for extreme

variations in model parameters.



16

Table 1 Norm-Error Results in Roll for Model Parameter Variations

b VSC MECS

0.1 4300.00 0.0213

0.5 13.2576 0.0118

0.8 1.3881 0.0047

1.1 0.4031 0.0024

1.5 2.4160 0.0118

2 4.6543 0.0236

5 6.8370 0.0935

10 7.2386 0.2075

Table 2 Norm-Error Results in Roll for Control-Input Parameter Variations

b VSC MECS

0.1 7.4658 0.1989

0.5 4.5660 0.0224

0.8 0.8193 0.0056

1.1 0.4248 0.0020

1.5 2.9329 0.0075

2 13.1282 0.2933

5 ∞ 208.42

10 ∞ ∞

Conclusions
In this paper, a new approach was presented for the control of nonlinear systems with

parametric and structural model uncertainties as well as external disturbance inputs. The new

control approach uses an optimal nonlinear estimator to update the control signal in order to

account for the effects of model errors on the system. The advantages of this approach include:

(1) the determined model is a natural by-product of the state estimator, (2) no model updating is

required, and (3) it easily handles time-varying system parameters. The new approach was used

in conjunction with variable structure control to suppress the wing rock motion of a slender delta

wing. Results indicated that the new approach is able to provide robust performance even for the

case of radically varying system parameters and exogenous disturbances.
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Fig. 1 Model-Error Control Synthesis

Fig. 2 Nominal Response

Fig. 3 Variable Structure Control Without Model-Error Control Synthesis

Fig. 4 Determined Model Error

Fig. 5 Variable Structure Control With Model-Error Control Synthesis

Fig. 6 Variable Structure Control Without Model-Error Control Synthesis

Fig. 7 Determined Model Error

Fig. 8 Variable Structure Control With Model-Error Control Synthesis

Fig. 9 Variable Structure Control Without Model-Error Control Synthesis

Fig. 10 Determined Model Error

Fig. 11 Variable Structure Control With Model-Error Control Synthesis
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