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Abstract

In this paper new real-time approaches for three-axis magnetometer sensor calibration are

derived. These approaches rely on a conversion of the magnetometer-body and geomagnetic-

reference vectors into an attitude independent observation by using scalar checking. The goal

of the full calibration problem involves the determination of the magnetometer bias vector,

scale factors and non-orthogonality corrections. Although the actual solution to this full

calibration problem involves the minimization of a quartic loss function, the problem can be

converted into a quadratic loss function by a centering approximation. This leads to a simple

batch linear least squares solution, which is easily converted into a sequential algorithm

that can executed in real time. Alternative real-time algorithms are also developed in this

paper, based on both the extended Kalman filter and Unscented filter. With these real-time

algorithms, a full magnetometer calibration can now be performed on-orbit during typical

spacecraft mission-mode operations. The algorithms are tested using both simulated data

of an Earth-pointing spacecraft and actual data from the Transition Region and Coronal

Explorer.
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Introduction

Three-axis magnetometers (TAMs) are widely used for onboard spacecraft operations.

A paramount issue to the attitude accuracy obtained using magnetometer measurements

is the precision of the onboard calibration. The accuracy obtained using a TAM depends

on a number of factors, including: biases, scale factors and non-orthogonality corrections.

Scale factors and non-orthogonality corrections occur because the individual magnetometer

axes are not orthonormal, typically due to thermal gradients within the magnetometer or

to mechanical stress from the spacecraft.1 Magnetometer calibration is often accomplished

using batch methods, where an entire set of data must be stored to determine the unknown

parameters. This process is often repeated many times during the lifetime of a spacecraft in

order to ensure the best possible precision obtained from magnetometer measurements.

If an attitude is known accurately, then the magnetometer calibration problem is easy to

solve. However, this is generally not the case. Fortunately, an attitude-independent scalar

observation can be obtained using the norms of the body-measurement and geomagnetic-

reference vectors. For the noise-free case, these norms are identical because the attitude

matrix preserves the length of a vector. This process is also known as “scalar checking”.2

Unfortunately, even for the simpler magnetometer-bias determination problem, the loss func-

tion to be minimized is quartic in nature. The most common technique to overcome this

difficulty has been proposed by Gambhir, who applies a “centering” approximation to yield

a quadratic loss function that can be minimized using simple linear least squares.3 Alonso

and Shuster expand upon Gambhir’s approach by using a second step that employs the cen-

tered estimate as an initial value to an iterative Gauss-Newton method. Their algorithm,

called “TWOSTEP”,4 has been shown to perform well when other algorithms fail due to

divergence problems. Furthermore, Alonso and Shuster have extended this approach to per-

form a complete calibration involving biases as well as scale factors and non-orthogonality

corrections.1

One of the current goals for modern-day spacecraft is the ability to perform onboard and
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autonomous calibrations in real time without ground support. The TWOSTEP algorithm

requires an iterative process on a batch of data, so it cannot be performed in real time.

The main objective of this paper is to present and compare several sequential algorithms

that are suitable for real-time applications. The centering approximation leads to a non-

iterative least-squares solution, and has been shown to be nearly optimal for many realistic

cases.5 Since this approximation is linear, then it can be converted into a sequential process,

which is the first real-time algorithm shown in this paper. The second algorithm uses an

extended Kalman filter approach that is developed with commonly employed estimation

techniques. The third algorithm uses an Unscented filter approach that offers very good

results for robust calibration when the initial conditions are poorly known. Simulated test

cases and results using real data obtained from the Transition Region and Coronal Explorer

(TRACE) spacecraft show the validity of the new real-time algorithms to perform onboard

and autonomous calibrations.

Measurement Model

In this section the TAM measurement model and attitude-independent observation are

summarized. More details on these concepts can be found in Ref. 1. The magnetometer

measurements can be modelled as

Bk = (I3×3 +D)−1(OTAkHk + b + εk), k = 1, 2, . . . , N (1)

where Bk is the measurement of the magnetic field by the magnetometer at time tk, Hk is

the corresponding value of the geomagnetic field with respect to an Earth-fixed coordinate

system, Ak is the unknown attitude matrix of the magnetometer with respect to the Earth-

fixed coordinates, D is an unknown fully-populated matrix of scale factors (the diagonal

elements) and non-orthogonality corrections (the off-diagonal elements), O is an orthogonal

matrix (see Ref. 1 for a discussion on the physical connotations of this matrix), b is the bias

vector, and εk is the measurement noise vector that is assumed to be a zero-mean Gaussian
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process with covariance Σk. The matrix D can be assumed to be symmetric without loss of

generality. Also, In×n is an n × n identity matrix. The goal of the full calibration problem

is to estimate D and b. We first define the following quantities:

θ ≡
[

bT DT
]T

(2a)

D ≡
[

D11 D22 D33 D12 D13 D23

]T

(2b)

E ≡ 2D +D2 (2c)

c ≡ (I3×3 +D)b (2d)

Sk ≡
[

B2
1k

B2
2k

B2
3k

2B1k
B2k

2B1k
B3k

2B2k
B3k

]

(2e)

E ≡
[

E11 E22 E33 E12 E13 E23

]T

(2f)

An attitude-independent observation can be computed from

zk ≡ ||Bk||2 − ||Hk||2 = Lkθ
′ − ||b(θ′)||2 + vk (3)

where

Lk ≡
[

2BT

k
−Sk

]

(4a)

θ′ ≡
[

cT ET
]T

(4b)

vk ≡ 2[(I3×3 +D)Bk − b]Tεk − ||εk||2 (4c)
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The effective measurement noise, vk, is approximately Gaussian with mean denoted by µk

and variance denoted by σ2
k
, each given by

µk ≡ E {vk} = −Tr(Σk) (5a)

σ2
k
≡ E

{

v2
k

}

− µ2
k
= 4[(I3×3 +D)Bk − b]TΣk[(I3×3 +D)Bk − b] + 2

(

TrΣ2
k

)

(5b)

Σk = E
{

εkε
T

k

}

(5c)

where E { } denotes expectation. Note that the measurement variance in Eq. (5b) is a

function of the unknown parameters. A conversion from c and E to the sought variables b

and D can be found in Ref. 1.

Sequential Centered Algorithm

The measurement model in Eq. (3) is clearly nonlinear in the unknown parameter vector

θ′. Therefore, linear least squares cannot be applied directly. However, it is possible to

determine an approximate linear solution by applying a centering approach. The complete

batch algorithm is shown in Ref. 1. Since this solution is linear, then a sequential formulation

can be derived that provides real-time estimates. A formal derivation of this process can be

found in Ref. 6; we only present the final algorithm here. First, the sequential formulas for

the averaged quantities are given by

L̄k+1 =
1

σ2
k+1

+ σ̄2
k

(

σ2
k+1L̄k + σ̄2

k+1Lk+1

)

(6a)

z̄k+1 =
1

σ2
k+1

+ σ̄2
k

(

σ2
k+1z̄k + σ̄2

k+1zk+1

)

(6b)

µ̄k+1 =
1

σ2
k+1

+ σ̄2
k

(

σ2
k+1µ̄k + σ̄2

k+1µk+1

)

(6c)

where

1

σ̄2
k+1

=
1

σ̄2
k

+
1

σ2
k+1

(7)
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Next, the following centered variables are defined:

L̃k+1 ≡ Lk+1 − L̄k+1 (8a)

z̃k+1 ≡ zk+1 − z̄k+1 (8b)

µ̃k+1 ≡ µk+1 − µ̄k+1 (8c)

Finally, the sequential formulas for the optimal centered estimate of θ ′, denoted by θ̃′∗, and

covariance of θ̃′∗, denoted by P̃θ′θ′ , are given by

θ̃′∗
k+1 = Kkθ̃

′∗

k
+

1

σ2
k+1

(z̃k+1 − µ̃k+1) P̃θ′θ′

k+1
L̃T

k+1 (9a)

P̃θ′θ′

k+1
= KkP̃θ′θ′

k
(9b)

Kk ≡ I9×9 − P̃θ′θ′

k
L̃T

k+1

(

L̃k+1P̃θ′θ′

k
L̃T

k+1 + σ2
k+1

)

−1

L̃k+1 (9c)

Note that only an inverse of a scalar quantity is required in the sequential process. The

sequential process can be initialized using a small batch of data. A conversion from P̃θ′θ′ to

the covariance of the parameters b and D can be found in Ref. 1. Also, an approach for

determining σ2
k+1 involves using the previous estimate in Eq. (5b).

Kalman Filter Formulation

In this section an extended Kalman filter (EKF) is derived to determine the calibration

parameters in real time. An advantage of the EKF formulation over the sequential centered

approach is that b and D can be computed directly without a conversion from c and E. A

summary of the EKF equations can be found in Ref. 7. Since the vector θ in Eq. (2a) is

constant, then the state model is given by ˙̂x(t) = 0, where x̂ ≡ θ∗, which is used to denote

the optimal estimate of θ. The measurement model is given by zk = hk(xk) + vk, where

hk(xk) ≡ −BT

k
(2Dk +D2

k
)Bk + 2BT

k
(I3×3 +Dk)bk − ||bk||2 (10)
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Since no process noise appears in the state model, then the updated quantities (state and

covariance) are given by their respective propagated quantities. The EKF equations then

reduce down to

x̂k+1 = x̂k +Kk[zk+1 − hk+1(x̂k)] (11a)

Pk+1 = [I9×9 −KkHk+1(x̂k)]Pk (11b)

Kk = PkH
T

k+1(x̂k)
[

Hk+1(x̂k)PkH
T

k+1(x̂k) + σ2
k+1(x̂k)

]

−1
(11c)

where P ≡ Pθθ, which is the covariance of the estimated parameters for b and D. The state

dependence of the measurement variance is shown through Eq. (5b). The 1× 9 matrix H(x)

is the partial derivative of h(x) with respect to x. This quantity is given by

H(x) =

[

2BT (I3×3 +D)− 2bT −S ∂E
∂D

+ 2J

]

(12)

where S is defined in Eq. (2e) and

∂E

∂D
=

































2(1 +D11) 0 0 2D12 2D13 0

0 2(1 +D22) 0 2D12 0 2D23

0 0 2(1 +D33) 0 2D13 2D23

D12 D12 0 2 +D11 +D22 D23 D13

D13 0 D13 D23 2 +D11 +D33 D12

0 D23 D23 D13 D12 2 +D22 +D33

































(13a)

J ≡
[

B1b1 B2b2 B3b3 B1b2 +B2b1 B1b3 +B3b1 B2b3 +B3b2

]

(13b)

The sensitivity matrix H(x̂) in the EKF evaluates H(x) at its current estimate, and the

notations hk+1(x̂k), Hk+1(x̂k) and σ2
k+1(x̂k) denote an evaluation at the k + 1 time-step

measurement using Bk+1 and at the k time-step estimate using x̂k.
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Unscented Filter Formulation

In this section a new approach, developed by Julier, Uhlmann and Durrant-Whyte,8 is

discussed as an alternative to the EKF. This approach, which they called the Unscented

filter (UF), works on the premise that with a fixed number of parameters it should be

easier to approximate a Gaussian distribution than to approximate an arbitrary nonlinear

function. The Unscented filter uses a different propagation than the form given by the

standard extended Kalman filter. Given an n × n covariance matrix P , a set of order n

points can be generated from the columns (or rows) of the matrices ±
√
nP . The set of

points is zero-mean, but if the distribution has mean µ, then simply adding µ to each of the

points yields a symmetric set of 2n points having the desired mean and covariance. Due to

the symmetric nature of this set, its odd central moments are zero, so its first three moments

are the same as the original Gaussian distribution (see Ref. 9 for more details).

The implementation of the UF for real-time magnetometer calibration is straightforward.

First, the following set of sigma points are computed from P ≡ Pθθ:

σk ← 2n columns from ±γ
√

Pk (14a)

χk(0) = x̂k (14b)

χk(i) = σk(i) + x̂k, i = 1, 2, . . . , 2n (14c)

The parameter γ is given by γ =
√
n+ λ, where the composite scaling parameter, λ, is given

by λ = α2(n + κ) − n. The constant α determines the spread of the sigma points and is

usually set to a small positive value (e.g. 1×10−4 ≤ α ≤ 1).9 Also, the parameter κ is usually

given by κ = 3 − n. Efficient methods to compute the matrix square root can be found by
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using the Cholesky decomposition.10 The following weights are now defined:

Wmean
0 =

λ

n+ λ
(15a)

W cov
0 =

λ

n+ λ
+ (1− α2 + β) (15b)

Wmean
i

= W cov
i

=
1

2(n+ λ)
, i = 1, 2, . . . , 2n (15c)

where β is used to incorporate prior knowledge of the distribution (for Gaussian distributions

β = 2 is optimal).

Since the state model estimate is given by ˙̂x(t) = 0, then the propagated values for the

state and covariance are given by their respective updated values, which significantly reduces

the computational requirements in the UF. Hence, the only essential difference between the

EKF and UF formulations is in the computation of the innovations covariance, where the

EKF uses a first-order expansion to compute this quantity, while the UF uses a nonlinear

transformation to compute this quantity. For the TAM calibration algorithm using the UF,

the state estimate is calculated by

x̂k+1 = x̂k +Kk(zk+1 − ẑk) (16)

where ẑk is the mean observation, given by

ẑk =
2n
∑

i=0

Wmean
i

hk+1 [χk(i)] (17)

where hk+1 [χk(i)] is defined in Eq. (10). Note that hk+1 [χk(i)] denotes an evaluation at the

k + 1 time-step measurement using Bk+1 and at the k time-step sigma point using χk(i).

The gain Kk is computed by

Kk = P xz

k
[P zz

k
+ σ2

k+1(x̂k)]
−1 (18)
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where P xz

k
is the cross-correlation matrix between x̂k and ẑk, given by

P xz

k
=

2n
∑

i=0

W cov
i
{χx

k
(i)− x̂k} {hk+1 [χk(i)]− ẑk}T (19)

and P zz

k
is the output covariance, given by

P zz

k
=

2n
∑

i=0

W cov
i
{hk+1 [χk(i)]− ẑk} {hk+1 [χk(i)]− ẑk}T (20)

Finally, the propagated covariance is given by

Pk+1 = Pk −Kk[P
zz

k
+ σ2

k+1(x̂k)]K
T

k
(21)

New sigma points can now be calculated using Pk+1 for the sequential UF process.

Another approach for the UF uses the measurement noise model of Eq. (3) with an

augmented vector given by the state and ε in Eq. (4c). Therefore, a decomposition of

a 12 × 12 matrix is now required. In the strictest sense this approach is more optimal

than the first approach because the effect of the nonlinear-appearing measurement noise is

directly used in the UF. But, the computational requirements are vastly increased due to the

decomposition of a higher dimensional augmented matrix. Also, from numerous simulation

trials no apparent advantages to using the augmented approach in the UF is seen. More

details on this UF formulation for magnetometer calibration can be found in Ref. 11.

Simulated and Real Data Results

In this section results of the EKF and UF formulations are shown using both simulated

and real data. The simulated spacecraft is modelled after the Tropical Rainfall Measurement

Mission (TRMM) spacecraft. This is an Earth-pointing spacecraft (rotating about its y-axis)

in low-Earth orbit (currently near-circular at 402 km), with an inclination of 35◦.12 The

geomagnetic field is simulated using a 10th-order International Geomagnetic Reference Field
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model.13 The magnetometer-body and geomagnetic-reference vectors for the simulated runs

each have a magnitude of about 500 milliGauss (mG). The measurement noise is assumed to

be white and Gaussian, and the covariance is taken to be isotropic with a standard deviation

of 0.5 mG. The measurements are sampled every 10 seconds over an 8-hour span. The true

values for the bias b and elements of the D matrix are shown in Table 1. Large values for the

biases are used to test the robustness of the sequential centered, EKF and UF algorithms.

Thirty runs have been executed, which provide a Monte-Carlo type simulation. Shown in

Table 1 are the averaged batch solutions given by the TWOSTEP and centered algorithms,

each with their maximum deviations obtained. Since the TWOSTEP approach is the most

rigorous, all comparisons are made with respect to this algorithm. The centered algorithm

does a fairly good job at estimating all parameters, with the exception of b2. This parameter

corresponds to the least observable variable, which results in a wide variation from the

averaged value.

The EKF and UF are both executed at time t = 0 using initial conditions of zeros for all

states. The initial covariance matrix is diagonal, given by

P0 =













500I3×3 03×6

06×3 0.001I6×6













(22)

This assumes a 3σ bound on the initial bias estimates to be about 70 mG and a 3σ bound

on the initial estimates for the elements of the D matrix to be about 0.1. The parameters

used in the UF are α = 0.1, β = 2, κ = 3 − n, and n = 9. The EKF and UF solutions at

the final time are shown in Table 1. The EKF does not converge to the correct solution for

many of the parameters, while the UF gave results that are just as good as the TWOSTEP

solutions. Also, the maximum deviations for the UF are much smaller than for the EKF

and centered algorithm. Even though the mean values of the centered algorithm are better

than the UF results, it is important to note the +/− values are more important because
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they represent the variability over the 30 Monte-Carlo runs.

Figures 1 and 2 show the EKF and UF estimates for the parameter b3 for a typical case.

The EKF does not converge to the correct solution during the 8-hour simulated run. This is

due to the fact that the first-order approximation in the EKF does not adequately capture

the large initial errors. The biggest concern with the EKF solutions is the confidence of

the results dictated by the 3σ bounds, with b3 shown in Figure 3. In fact, this plot shows

that the EKF is performing better than the UF. This can certainly provide some misleading

results. However, unlike the EKF, the maximum deviations associated with the UF shown

in Table 1 are within the 3σ bounds for all the parameters, also shown in Figure 2 for the

parameter b3. This indicates that the UF is performing in an optimal manner. But, the UF

algorithm comes with a computational cost, mainly due to the covariance decomposition.

Our experience has shown that the UF algorithm is about 2 times slower than the EKF

algorithm. Still, the performance enhancements of the UF over the EKF may outweigh the

increased computational costs.

The robustness of the real-time algorithms is now tested by adding colored noise to

the measurements, which more closely models the actual geomagnetic field errors. This

noise is modelled using a first-order Markov process driven by white noise, where the “time

constant” corresponds to an orbital arc length of 18 degrees4 and the standard deviation of

the output magnitude has a steady-state value of 2 mG for each axis. The initial conditions

and covariances are the same as the previous simulation. Shown in Table 2 are the averaged

batch solutions given by the TWOSTEP, sequential centered, EKF and UF algorithms, each

with their maximum deviations obtained. Larger deviations are present due to the colored-

noise process. We should also note that the actual errors are outside the bounds computed

from the covariance of all the estimators based on the now incorrect assumptions of the

measurement noise.4 Clearly, b2 is not well estimated for any of the algorithms. Moreover,

the sequential centered algorithm gave the worst results for b2. A surprising outcome is given

for the EKF algorithm because it is now performing nearly as well as the TWOSTEP and
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UF algorithms in terms of the final solutions, which contradicts the results of the previous

simulation using white-noise errors only. This may be due to an increased observability from

the artificial “motion” induced by the colored noise. Figure 4 shows the convergence of b3

for both the EKF and UF. Even though the EKF estimates converge to nearly the same

value as the UF estimates, the UF converges near the true value of 60 mG much faster

than the EKF. Similar results are seen in the other parameters as well. Both simulation

results, one using white-noise errors only and the other using colored-noise errors, indicate

that the UF provides the most robust real-time algorithm in terms of both overall accuracy

and convergence properties.

Next, results using real data from the TRACE spacecraft are shown. This is an Sun-

synchronous spacecraft in low-Earth orbit (currently near-circular at 402 km). The data

collected for the spacecraft is given during an inertial pointing mode. The errors associated

with the geomagnetic field model are typically spacially correlated and may be non-Gaussian

in nature.14 This violates the assumptions for all the estimators shown in this paper. We

still assume that the measurement noise is white and Gaussian, but the standard deviation

is now increased to a value of 3 mG, which bounds the errors in a practical sense. The

measurements are sampled every 3 seconds over a 6-hour span.

The EKF and UF are both executed at time t = 0 using initial conditions of zeros for all

states. The initial covariance matrix is diagonal, given by

P0 =













10I3×3 03×6

06×3 0.001I6×6













(23)

This assumes a 3σ bound on the initial bias estimates to be about 10 mG and a 3σ bound

on the initial estimates for the elements of the D matrix to be about 0.1. The parameters

used in the UF are α = 0.1, β = 2, κ = 3 − n, and n = 9. For the experimental data the

solutions obtained using TWOSTEP, and the EKF and UF algorithms are nearly identical.
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This is most likely due to the well-behaved nature of the data (i.e., the calibration errors

are small). However, the sequential centered algorithm gave slightly different results. The

centered algorithm final results are given by

b∗ =

[

1.4007 −8.7350 −3.7927
]T

(24a)

D∗ =

[

0.0086 0.0437 0.0065 0.0006 0.0035 −0.0120
]T

(24b)

The TWOSTEP, EKF and UF final results are given by

b∗ =

[

1.6056 −8.4140 −4.6123
]T

(25a)

D∗ =

[

0.0123 0.0181 0.0040 −0.0005 0.0038 −0.0019
]T

(25b)

Figure 5 shows EKF estimates for the bias vector b. Another advantage of a real-time

approach is the convergence properties of the particular estimator. From Figure 5 good

convergence is seen for all the parameters, which indicates that the calibration parameters

are well behaved (i.e., truly constant in a practical sense). Figure 6 shows the 3σ bounds for

the bias estimates. This at least qualitatively indicates that good parameter estimates are

achieved since these bounds are fairly small compared to the TAM measurements. Similar

results are obtained for the D matrix parameters.

An investigation of the residuals between the norm of the estimated vector, using the

calibrated parameters, and the geomagnetic-reference vector is useful to check the consistency

of the results. A plot of these residuals is shown in Figure 7. A spectrum analysis shows the

presence of sinusoidal motions with periods equivalent to the orbital period (≈ 90 min) and

higher-order harmonics (see Ref. 14 for a model of this process). The mean value for the

sequential centered residuals is 0.60 mG, while the mean value for the EKF and UF residuals

is only 0.02 mG. Also, the magnitudes of the EKF and UF residuals are smaller than the

centered residuals.
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Conclusions

In this paper three real-time algorithms were developed for the calibration of three-axis

magnetometers. The first algorithm was derived from a linear least squares approach based

on a centering approximation. The other algorithms were derived using the extended Kalman

filter and Unscented filter. Simulated Monte-Carlo test cases showed that the Unscented

filter gave accurate results with the least amount of variation compared to the other real-

time algorithms, and is very robust to realistic non-white noise errors. Results using real data

indicated that the residuals from the extended Kalman filter and Unscented filter algorithms

have mean closer to zero and have smaller magnitudes than the residuals from the from the

sequential centered algorithm. Taken together, the simulation and real data results indicate

that the Unscented filter provided the most robust real-time algorithm in terms of both

overall accuracy and convergence properties. Therefore, this algorithm is recommended for

actual implementation when computational requirements are not burdensome.
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Table 1: Simulation Results for White-Noise Errors
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Truth TWOSTEP Centered EKF UF
b1 50 mG 49.9620± 0.4320 49.9700± 0.5525 49.4029± 2.2625 49.7289± 0.4328
b2 30 mG 29.8174± 0.4258 29.5937± 5.5779 19.5297± 2.2044 29.4657± 0.3598
b3 60 mG 60.0331± 0.3165 60.0456± 0.3165 50.3248± 1.2340 59.4561± 0.2331
D11 0.05 0.0500± 0.0001 0.0500± 0.0001 0.0492± 0.0008 0.0499± 0.0001
D22 0.10 0.0993± 0.0014 0.0988± 0.0123 0.0736± 0.0075 0.0949± 0.0013
D33 0.05 0.0500± 0.0001 0.0500± 0.0001 0.0481± 0.0004 0.0499± 0.0001
D12 0.05 0.0499± 0.0010 0.0499± 0.0011 0.0313± 0.0051 0.0486± 0.0010
D13 0.05 0.0499± 0.0001 0.0499± 0.0001 0.0440± 0.0006 0.0495± 0.0002
D23 0.05 0.0501± 0.0007 0.0501± 0.0007 0.0287± 0.0030 0.0487± 0.0006
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Truth TWOSTEP Centered EKF UF
b1 50 mG 49.4639± 5.8713 48.8273± 5.7715 47.8364± 5.7580 48.4291± 5.6001
b2 30 mG 25.6061± 6.8879 41.7811± 76.5934 25.0715± 7.7910 25.7210± 6.6465
b3 60 mG 59.8327± 5.6847 58.8314± 7.1579 57.6702± 6.0841 59.0407± 5.9030
D11 0.05 0.0506± 0.0042 0.0509± 0.0094 0.0475± 0.0039 0.0483± 0.0040
D22 0.10 0.0836± 0.0270 0.1350± 0.1452 0.0824± 0.0311 0.0882± 0.0278
D33 0.05 0.0508± 0.0042 0.0526± 0.0200 0.0480± 0.0040 0.0486± 0.0036
D12 0.05 0.0482± 0.0124 0.0452± 0.0306 0.0448± 0.0145 0.0460± 0.0136
D13 0.05 0.0478± 0.0028 0.0488± 0.0117 0.0497± 0.0024 0.0498± 0.0019
D23 0.05 0.0494± 0.0118 0.0431± 0.0359 0.0445± 0.0156 0.0473± 0.0136
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List of Figure Captions

Figure 1: EKF Errors and 3σ Bounds

Figure 2: UF Errors and 3σ Bounds

Figure 3: EKF and UF 3σ Bounds

Figure 4: EKF and UF Estimates for b3

Figure 5: Bias Estimates from the Centered, EKF and UF Algorithms

Figure 6: 3σ Bounds from the Centered, EKF and UF Algorithms

Figure 7: Norm Residual Between Body Estimates and Reference Vectors
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