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This paper studies deterministic relative attitude determination of a formation of ve-
hicles. The results provide an assessment of the accuracy of the deterministic attitude
solutions, given statistical properties of the assumed noisy measurements. A formation
of three vehicles is considered in which each vehicle is equipped with sensors to provide
line-of-sight, and possibly range, measurements between them. Three vehicles are chosen
because this is the minimum number required to determine all relative attitudes given min-
imal measurement information. Three cases are studied. The first determines the absolute
(inertial) attitude of a vehicle knowing the absolute positions of the other two. The second
assumes parallel beams between each vehicle, and the third assumes non-parallel beams
which requires range information to find deterministic solutions. Covariance analyses are
provided to gain insight on the stochastic properties of the attitude errors for all three
cases.

I. Introduction

Attitude determination is the calculation of the relative orientation between two reference frames, two
objects, or a reference frame and an object. The amount of research conducted for this task as well as the
quantity of related publications is quite extensive, mostly shown in the spacecraft community. For example, a
star tracker is used onboard a space vehicle to observe line-of-sight (LOS) vectors to stars which are compared
with known inertial LOS vectors to estimate the inertial attitude of the space vehicle. It is obvious why this
topic has acquired so much attention as nearly every spacecraft ever launched into space requires at least
knowledge of its orientation if not, additionally, the specification.

Several sensors can be employed to determine the attitude of a vehicle. Basically, these sensors provide arc
length or dihedral angle information, which can be used for practical purposes to provide entire directions.
For example, a star tracker1 provides a direction, while a GPS attitude determination system2 provides
the cosine of an arc length. Solvable attitude determination can be broken into two categories: 1) purely
deterministic, where a minimal set of data is provided, and 2) over-deterministic, where more than the
minimal set is provided. A purely deterministic solution example involves one direction and one arc length,
essentially giving three “equations” and three “unknowns.” A solution for this case is shown in Ref. 3.
Two non-parallel directions, such as two LOS vectors to different stars, provide an over-deterministic case
because there are four equations and three unknowns. Solutions to this case generally involve solving the
classic Wahba problem4 and has been well studied. A survey of algorithms that solve Wahba’s problem is
presented in Ref. 5.

Formation flying employs multiple vehicles to maintain a specific relative attitude/position, either a stat-
ically or a dynamically closed trajectory. Applications are numerous involving all types of vehicles, including
land (robotics6), sea (autonomous underwater autonomous vehicles7), space (spacecraft formations8) and
air (uninhabited air vehicles9) systems. Relative attitude and position estimation schemes based on the
Kalman filter have been shown for both spacecraft10 and aircraft11 formations. LOS observations are as-
sumed between vehicles based on a system consisting of an optical sensor combined with a specific light
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source (beacon) to achieve selective vision.12 Deterministic solutions for both relative attitude and position
are possible using multiple beacons.13 A similar concept has been employed in Ref. 14 for robotic pose
estimation using multiple LOS observations from image data instead of beacon sources. Other sensors, such
as aligned laser communication devices,15 can also be used to provide LOS observations.

In the aforementioned applications, multiple LOS vectors are used to determine relative attitude between
vehicles. For example, consider a two-vehicle system with multiple beacons on the deputy vehicles and a focal-
plane detector (FPD) on the chief vehicle. For sake of simplicity, let us assume that the relative position is
known. Since the beacon location is known with respect to the deputy frame, then a corresponding reference
deputy-frame vector is given. Using the LOS observation from the FPD gives a vector with respect to the
chief frame. These vectors are related through the attitude matrix. It is well-known that using only one
light source provides only two of the three pieces of needed attitude information. Hence, multiple LOS
observations, from multiple light sources, must be employed to determine a full attitude solution. This is
related to the classic photogrammetry problem.16 In this paper, a relative attitude solution is obtained using
single LOS observations between two pairs of vehicles but employing a three-vehicle formation system. A
relative attitude solution is not possible if only each vehicle pair in the formation is considered separately.
But when all three-vehicle LOS observations are considered together, then a purely deterministic solution is
possible, which is shown here.

The organization of this paper is as follows. First, the problem definition and notation are stated for
the three-vehicle formation. Then, the sensor model for the LOS measurements is reviewed. Next, three
relative attitude determination cases are shown: 1) an inertial attitude case, 2) a parallel beam case, and
3) a non-parallel beam case. Covariance expressions are also derived for all three cases. Finally, simulation
results are shown.

II. Problem Definition

The geometry of the problem is described in Figure 1. There are three vehicles flying in formation, each
vehicle equipped with optical-type sensors, such as a beacon or laser communication system, that uses a
FPD. Through the sensor a vehicle measures the LOS vector to the two other vehicles, and this applies to
each vehicle, making three pairs of LOS measurements.
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Figure 1. Vehicle Formation

Both theoretical research and supporting simulations will require LOS vectors that describe with respect
to one object or frame, what direction another given object is along. Because different reference frames are
used to represent the various LOS vectors, a structured notation is required here as well. A subscript will
describe the vehicle for which the LOS is taken both from and to, while a superscript will denote to which
reference frame the LOS is both represented by and measured in. For example, bx

x/y = −bx
y/x is a LOS

vector beginning at x and ending at y while it is both expressed in and observed from frame X . Now the
LOS vectors in Figure 1 are properly defined.

2 of 19

American Institute of Aeronautics and Astronautics



For the relative attitude matrix the notation Ay
x denotes the attitude matrix that maps components

expressed in X -frame coordinates to components expressed in Y-frame coordinates. The inverse operator is

simply AyT

x ≡ Ax
y . The main contribution of this paper is the realization that there are only two relative

attitudes to be determined for the three-vehicle system. Using the characteristic of the attitude matrix,
the third attitude is easily obtainable if two relative attitudes are given. For example, knowing Ad1

c and

Ad2

c gives Ad2

d1
= Ad2

c Ad1
T

c . Using the configuration of the LOS vector measurements between vehicles, we
are capable of deterministically solving the relative attitude. More detailed literature about deterministic
attitude determination can be found in Ref. 3.

Three cases will be shown in this paper:

1. Inertial Attitude Case: Here, the two deputies are treated as reference points with their inertial posi-
tions assumed to be known. For this case only LOS vectors from the chief to each deputy are required
and the determined attitude is with respect to an inertial frame.

2. Parallel Beam Case: Here, the beams between vehicles are assumed to be parallel, so that common
vectors are given between vehicles but in different coordinates. For example, for a laser communication
system a feedback device can be employed to ensure parallel beams are given in realtime. As long as
the communication system latencies are sufficiently known and the link distance divided by the speed
of light is greater than the latencies, the communication system can simply be used as a repeater (or
relay if the signal strength is sufficient). It will be shown that deterministic solutions for all relative
attitudes with three vehicles are possible for the parallel beam case.

3. Non-Parallel Beam Case: Here, it assumed that non-parallel beams are present. To achieve common
vectors additional knowledge of range information is required in this case. The attitude solutions are
identical to the parallel beam case; however, additional attitude errors are introduced as a result of
the range measurements.

Although the unknown relative attitude is deterministically solvable, LOS vector measurements are usu-
ally associated with measurement errors. Therefore, it is critical to investigate the confidence of the attitude
solution that is given deterministically with respect to the amount of error that is involved in the LOS mea-
surement. A covariance analysis gives an analytical interpretation regarding to this issue. Before showing
this analysis though, we begin with the sensor model used for the LOS measurements.

III. Sensor Model

A FPD sensor is assumed for all LOS observations, where (α, β) are the image-space LOS observations.
Denoting α and β by the 2 × 1 vector m ≡ [α β]T , the measurement model follows

m̃ = m + w (1)

where m̃ denotes measurement. A typical noise model used to describe the uncertainty in the focal-plane
coordinate observations is given as10

w∼N
(

0, RFOCAL
)

(2a)

RFOCAL =
σ2

1 + d (α2 + β2)

[

(

1 + dα2
)2

(dαβ)
2

(dαβ)2
(

1 + dβ2
)2

]

(2b)

where σ2 is the variance of the measurement errors associated with α and β, and d is on the order of 1.
This model accounts for an increased measurement standard deviation as distance from the FPD boresight
increases.

Assuming a focal length of unity, the sensor LOS observations can be expressed in unit vector form,
which is given by

b =
1

√

1 + α2 + β2







α

β

1






(3)

The measurement vector is defined as
b̃ = b + υ (4)
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with
υ∼N (0, Ω) (5)

Under the assumption that the focal-plane measurements are normally distributed with known mean and
covariance, it is further assumed that under the focal-plane transformation, the resulting LOS uncertainty
is approximately Gaussian. Also recall that because a LOS vector is of unit length it must lie on the unit
sphere, which leads to a rank deficient covariance matrix in R3. To characterize the LOS noise process
resulting from the focal-plane model, Shuster suggests the following approximation:17

Ω ≡ E
{

υυT
}

= σ2
(

I3×3 − bbT
)

(6)

known as the QUEST Measurement Model (QMM). A geometric interpretation of the covariance given by
the QMM can be obtained by first considering the outer-product. The operator formed by the outer product
of a vector, b with itself, is a projection operator whose image is the component of the domain spanned by
b. Similarly, the operator

(

I3×3 − bbT
)

is also a projection, this time yielding an image perpendicular to
b.

What this means for the covariance given in Eq. (6) is that the error in the vector b̃ is assumed to
lie in a plane tangent to the focal sphere. It is clear that this is only valid for a small FOV in which a
tangent plane closely approximates the surface of a unit sphere. For wide FOV (WFOV) sensors, a more
accurate measurement covariance is shown in Ref. 18. This formulation employs a first-order Taylor series
approximation about the focal-plane axes. The partial derivative operator is used to linearly expand the
focal-plane covariance in Eq. (2), given by

H =
∂b

∂m
=

1
√

1 + α2 + β2







1 0

0 1

0 0






−

1

1 + α2 + β2
bmT (7)

Then the WFOV covariance model is given by

Ω = H RFOCALHT (8)

If a small FOV model is valid, then Eq. (8) can still be used, but is nearly identical to Eq. (6). For both
equations, Ω is a singular matrix.18 The implications of this singularity will be discussed later. Also note
that from Eq. (8) different body-frame vectors, b, give different corresponding covariance matrices. Hence,
from this point forward the notation will specifically show the frames used for both the body vector and
its associated covariance. In particular, the six body-vector measurements from the onboard sensors, along
with their respective error characteristics are given by

b̃d2

d2/d1

= bd2

d2/d1

+ υd2

d2/d1

, υd2

d2/d1

∼N
(

0, Ωd2

d2/d1

)

(9a)

b̃d1

d2/d1

= bd1

d2/d1

+ υd1

d2/d1

, υd1

d2/d1

∼N
(

0, Ωd1

d2/d1

)

(9b)

b̃c
c/d1

= bc
c/d1

+ υc
c/d1

, υc
c/d1

∼N
(

0, Ωc
c/d1

)

(9c)

b̃d1

c/d1

= bd1

c/d1

+ υd1

c/d1

, υd1

c/d1

∼N
(

0, Ωd1

c/d1

)

(9d)

b̃c
c/d2

= bc
c/d2

+ υc
c/d2

, υc
c/d2

∼N
(

0, Ωc
c/d2

)

(9e)

b̃d2

c/d2

= bd2

c/d2

+ υd2

c/d2

, υd2

c/d2

∼N
(

0, Ωd2

c/d2

)

(9f)

IV. Inertial Attitude Case

This case assumes a three-vehicle configuration where each vehicle can only communicate with its nearest
two neighbors. Using only relative LOS observations between each vehicle does not allow for a deterministic
inertial attitude solution in this case. Hence, more information must be employed. Here, it is assumed that
the absolute position of each vehicle is known. Figure 2 shows the inertial position vectors for a chief and
deputy case, where the superscript i denotes inertial coordinates and pi

c/d1

= pi
d1
−pi

c. The absolute position
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Figure 2. Inertial Position Vectors for Chief and Deputy 1

of a deputy can be determined using relative observations between vehicles and absolute information of one
vehicle in the formation. The relative unit vector is given by

ri
c/d1

= pi
c/d1

/||pi
c/d1

|| (10)

This vector is also observed in the body frame of the vehicle, denoted by bc
c/d1

. The mapping between the

vectors ri
c/d1

and bc
c/d1

is given by

bc
c/d1

= Ac
ir

i
c/d1

(11)

where Ac
i is the attitude matrix. The same approach can be applied to the chief and second deputy vectors,

giving ri
c/d2

and bc
c/d2

with the same attitude mapping, Ac
i .

The main problem with this approach is that noise not only is present in the LOS observations, but also
in the position knowledge. Ignoring subscripts and superscripts for the moment, the measurement model
follows

b̃ = A r̃ + υ (12)

where υ has covariance Ω, which is represented by Eq. (9) for the respective body measurement. If the
position error is small, then a first-order expansion of the noise process in r̃ is possible. The error process
for the position vector is given by

p̃ = p + δp (13)

where the covariance of δp is denoted by Ωp. To within first order r̃ is approximated by

r̃ = r + δr (14)

where the covariance of δr is given by

Ωr =

(

∂r

∂p

)

Ωp

(

∂r

∂p

)T

(15)

with
∂r

∂p
= ||p||−1

(

I3×3 − ||p||−2ppT
)

= −||p||−3[p×]2 (16)

where [p×] is the standard cross product matrix.19 Therefore, assuming that υ and δr are uncorrelated, the
measurement error covariance for Eq. (12) is given by

R = AΩrA
T + Ω (17)

Note that R is a function of the unknown attitude matrix. We now prove that this matrix is a singular matrix
using the QMM for Ω. Using the identity A [p×] = [Ap×] A (see Ref. 19) and the identity b = Ap/||p||,
then the matrix AΩrA

T can be written as

AΩrA
T = ||p||−2[b×]2AΩp AT [b×]2 (18)
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Next using the identity Ω = −σ2[b×]2 = σ2[b×]4, along with b = A r and repeated use of AT [r×] A =
[AT r×], leads to

R = [b×]2(||p||−2AΩp AT + σ2I3×3)[b×]2

= A [r×]2(||p||−2Ωp + σ2I3×3)[r×]2AT
(19)

Clearly b is a null vector, so R must be singular. This matrix is also singular using the WFOV model because
b is in the null space of Ω given by Eq. (8), due to HTb = 0, and is also in the null space of AΩrA

T .
A discussion on a probability density function (pdf) with a singular covariance matrix is now given.a

Suppose that x is a zero-mean Gaussian distribution with nonsingular covariance Rx. Its pdf is given by

p(x) =
1

[det(2π Rx)]1/2
exp

(

−
1

2
xT R−1

x x

)

(20)

Let y = U x, where UT U = I and U maps x into a higher dimensional space. So, x = UTy, and the singular
covariance matrix of y is given by Ry = U RxUT . Rewriting p(x) in terms of y leads to

p(x) =
1

[det(2π UT Ry U)]1/2
exp

(

−
1

2
yT R−1

y y

)

(21)

where R−1
y = U R−1

x UT denotes the pseudo-inverse of Ry. The value of det(UT Ry U) is equal to the product
of the nonzero eigenvalues of Ry. The null vector of the matrix in Eq. (19) is clearly b. At first glance, the
likelihood function associated with this matrix includes a term ln[det(R)], which depends on the attitude
matrix. However, since this term is effectively given by ln[det(UT R U)], with U being a 3 × 2 matrix
explained above, and p(x) = p(y), then the ln-det term can be ignored in the likelihood because UT R U is
independent of b or A. Note that the null vector of the WFOV model in Eq. (8) is also b,18 so the same
proof applies to this model as well.

The negative log-likelihood function to determine Ac
i is given by

J(Ac
i ) =

1

2

(

b̃c
c/d1

− Ac
i r̃i

c/d1

)T

R−1

c/d1

(

b̃c
c/d1

− Ac
i r̃i

c/d1

)

+
1

2

(

b̃c
c/d2

− Ac
i r̃i

c/d2

)T

R−1

c/d2

(

b̃c
c/d2

− Ac
i r̃i

c/d2

)

(22)

with

Rc/d1
= Ac

i

(

∂ri
c/d1

∂pi
c/d1

)

Ωp1

(

∂ri
c/d1

∂pi
c/d1

)T

AcT

i + Ωc
c/d1

(23a)

Rc/d2
= Ac

i

(

∂ri
c/d2

∂pi
c/d2

)

Ωp2

(

∂ri
c/d2

∂pi
c/d2

)T

AcT

i + Ωc
c/d2

(23b)

where Ωp1
and Ωp2

are the covariances associated with the errors in p̃i
c/d1

and p̃i
c/d2

, respectively. As shown

previously, the matrices Rc/d1
and Rc/d2

are singular. However, Shuster20 has shown that these matrices
can effectively be replaced with nonsingular matrices, which does not affect the likelihood function in the
asymptotic sense. This approach was expanded for wide FOVs in Ref. 18. For example, the matrix Rc/d1

can

be replaced by Rc/d1
+ 1

2
bc

c/d1

bcT

c/d1

Tr(Rc/d1
), which is a nonsingular matrix. The resulting new matrices are

generally not diagonal matrices so a standard attitude determination algorithm, such as QUEST,21 cannot
be directly applied. A solution can be found by assuming that Rc/d1

and Rc/d2
are diagonal, using QUEST

to find an approximate solution, which is then used in an iterative least-squares approach to determine the
optimal estimate for Ac

i .
22

A simulation is now shown that assesses how the position errors affect the overall covariance given in
Eq. (23). In particular only the first term on the right-hand-side of Eq. (23) is investigated. A two-spacecraft
configuration is used with relative positions starting at low-Earth orbit (300 km) up geostationary orbits
(42,164 km) separated by 2 degrees. The attitude of the chief is assumed to be the identity matrix. The

aThis portion is credited to Yang Cheng from the University at Buffalo.
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Figure 3. Average 3σ Bounds

position error-covariance is assumed to isotropic (a scalar times identity matrix), with 3σ bounds for the
position errors ranging from 0.1 to 100 km. The average 3σ bounds for the noise induced by the position
errors are shown in Figure 3. Clearly, the position errors can provide significant error effects into the overall
process if precise attitude knowledge is required.

C

D1D2

1v

s 2v

1w

Figure 4. Vectors Used for Attitude Solution

V. Parallel Beam Case

The LOS measurement equations for each vehicle pair are given by

b̃c
c/d1

= Ac
d1

b̃d1

c/d1

(24a)

b̃c
c/d2

= Ac
d2

b̃d2

c/d2

(24b)

b̃d2

d2/d1

= Ad2

c Ac
d1

b̃d1

d2/d1

= Ad2

d1
b̃d1

d2/d1

(24c)

The model in Eq. (24) assumes parallel beams, which must be maintained through hardware calibrations.
From the six LOS vector observations, as long as all three vehicles are not aligned along a straight line, then
it is possible to uniquely determine all components of all relative attitude matrices. Taking the dot product
of Eq. (24a) and Eq. (24b) gives

b̃cT

c/d2
b̃c

c/d1
= b̃d2

T

c/d2

Ad2

d1
b̃d1

c/d1

(25)

Equations (24c) and (25) represent a direction and an arc length, respectively, which can be used to determine
Ad2

d1
, given by an algorithm in Ref. 3. This algorithm is now reviewed. Considering the measurements shown

in Figure 4, to determine the full attitude between the D2 and D1 frames we must find the attitude matrix
that satisfies the following general relations:

w1 = Av1 (26a)

d = sT Av2 (26b)
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where d and all vectors in Eq. (26) are given. Also, all vectors have unit length. The solution can be found
by first finding an attitude matrix that satisfies Eq. (26a) and then finding the angle that one must rotate
about the reference direction to satisfy Eq. (26b). The first rotation can be found by rotating about any
direction by an angle θ, with B = R(n1, θ), where R(n1, θ) is a general rotation about some rotational axis
n1 that satisfies w1 = B v1. The choice of the initial rotation axis is arbitrary; here the vector between the
two reference direction vectors is used, so that

B =
(v1 + w1)(v1 + w1)

T

(1 + vT
1
w1)

− I3×3 (27)

where n1 = v1 + w1. The vector w∗ is now defined, which is the vector produced after applying the rotation
B on the vector v2. This will allow us to determine the second rotation needed to map v2 to the second
frame: w∗ = B v2. Since the rotation axis is about the w1 vector, this vector will be invariant under this
transformation and the solution to the full attitude can be written as A = R(n2, θ)B. So a rotation that
satisfies the following equation must be found: d = sT R(n2, θ)w

∗, where

R(n2, θ) = cos(θ)I3×3 + [1 − cos(θ)]n2n
T
2 − sin(θ)[n2×] (28)

Substituting Eq. (28) with n2 = w1 into d, and then rearranging terms leads to

||s× w1|| ||w1 × w∗|| cos(θ − ϕ) =
(

sTw1

) (

vT
1 w∗

)

− d (29a)

ϕ = atan2

[

sT (w1 × w∗) , sT (w1 × (w1 × w∗))
]

(29b)

Then the angle for the rotation about w1 is

θ = ϕ + cos−1

[

(

sTw1

) (

vT
1 w∗

)

− d

||s× w1|| ||w1 × w∗||

]

(30)

The inverse cosine function returns the same solution for angles in the first and forth quadrants and for
angles in the second and third quadrant. This will create an two-fold ambiguity, which is easily resolved
from the geometry of the vehicle system since it forms a triangle. The argument of this function cannot be
greater than one, so the following inequality must be satisfied for a solution to exist:

|
(

sTw1

) (

vT
1 w∗

)

− d| ≤ ||s× w1|| ||w1 × w∗|| (31)

With this attitude determination method there are some cases where a solution doesn’t exist. If one set of
vectors cannot satisfy the inequality then another set from the formation must be used, which will determine
a different attitude matrix. But this is not a concern because the arc-length/vector solution only needs to
be used to determine one of the relative attitudes. The attitude solution is given by

A = R(w1, θ)B (32)

For example, to determine Ad2

d1
, choose d = b̃cT

c/d2

b̃c
c/d1

, w1 = b̃d2

d2/d1

, v1 = b̃d1

d2/d1

, s = b̃d2

c/d2

and v2 = b̃d1

c/d1

.

It is important to note that without the resolution of the attitude ambiguity any covariance developed would
have no meaning. If the wrong attitude is used, then the errors may be fairly large and not bounded by the
attitude error-covariance.

The same procedure can be used to determine the remaining attitudes; however, once the first relative
attitude is determined a standard and computationally efficient attitude determination approach is employed
instead. To determine one of the remaining attitudes the TRIAD algorithm can be employed:

A = McM
T
d (33)

Mc =

[

c1

c1 × c2

||c1 × c2||

c1 × (c1 × c2)

||c1 × (c1 × c2)||

]

(34)

Md =

[

d1

d1 × d2

||d1 × d2||

d1 × (d1 × d2)

||d1 × (d1 × d2)||

]

(35)

For example, to find Ac
d1

, choose c1 = b̃c
c/d1

, c2 = b̃c
c/d2

, d1 = b̃d1

c/d1

and d2 = Ad1

d2
b̃d2

c/d2

. Once this attitude

is found the final relative attitude can be determined by simply using Ac
d2

= Ac
d1

Ad1

d2
.
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A. Covariance Analysis

To determine the covariance of the estimated attitude error for Ad2

d1
, the covariance of the LOS measurement

vector in Eq. (24c) and variance of the dot product in Eq. (25) must be determined.

1. Vector LOS Covariance

Substituting Eq. (9) into Eq. (24c) leads to

bd2

d2/d1

= Ad2

d1
bd1

d2/d1

+ Ad2

d1
υd1

d2/d1

− υd2

d2/d1

(36)

Equation (36) is linear in the noise terms, υ, and as a result bd2

d2/d1

has Gaussian distributed uncertainty

that can be described by two parameters: the mean and covariance, µd2

d2/d1

and Rd2

d2/d1

respectively:

µd2

d2/d1

= E
{

bd2

d2/d1

}

= Ad2

d1
bd1

d2/d1

(37)

Rd2

d2/d1

= E
{(

bd2

d2/d1

− µd2

d2/d1

)(

bd2

d2/d1

− µd2

d2/d1

)T}

(38)

Substituting Eqs. (36) and (37) into Eq. (38) and expanding leads to the following expression:

Rd2

d2/d1

= E
{

Ad2

d1
υd1

d2/d1

υd1
T

d2/d1

Ad2
T

d1
− Ad2

d1
υd1

d2/d1

υd2
T

d2/d1

− υd2

d2/d1

υd1
T

d2/d1

Ad2
T

d1
+ υd2

d2/d1

υd2
T

d2/d1

}

(39)

Completing the term-by-term expectation in Eq. (39) leads immediately to the covariance expression for the
vector LOS bd2

d2/d1

:

Rd2

d2/d1

= Ad2

d1
Ωd1

d2/d1

Ad2
T

d1
+ Ωd2

d2/d1

(40)

The covariance of bd2

d2/d1

is a function of the true (and not known) attitude matrix as well as the assumed

known noise process characteristics of the vehicle sensors. The two-term solution in Eq. (40) is indicative of
the fact that both the measured LOS as well as the “reference” vector contain uncertainty. The covariance
associated with bd1

d2/d1

needs to be transformed to the D2 coordinate space before being summed with the

covariance of bd2

d2/d1

.

There are two primary approaches to address the fact that the covariance is a function of the unknown
true relative attitude matrix. First, the true attitude matrix can be approximated by the estimated attitude
matrix. This simply requires that the true attitude matrix be replaced by its estimate in all covariance
expressions. This method is a good approximation that produces second-order error effects which can be
ignored.23 Second, because each pair of LOS vectors are parallel, the focal planes for each of the two involved
sensors are aligned. Under the logical assumption that both sensors have the same noise characteristics, we

have Ad2

d1
Ωd1

d2/d1

Ad2
T

d1
= Ωd2

d2/d1

. Making this substitution into Eq. (40) leads to the attitude independent

expression for the covariance, namely
Rd2

d2/d1

= 2Ωd2

d2/d1

(41)

This relation is clearly obvious using the QMM. For the WFOV model, Eq. (41) is only approximately
correct. The eigenvectors of both the QMM and the WFOV model are identical; the only difference is in
their nonzero eigenvalues.18 The nonzero eigenvalues of the QMM are both given by σ2. If the nonzero
eigenvalues of the WFOV model are “close” to σ2, then Eq. (41) is a approximately valid. This can easily be
checked using the available measurements. Also, since a purely deterministic solution is possible with a three-
vehicle formation, then the covariance of the measurement errors does not affect the attitude solution. That
is, there are exactly the same number of “equations” as “unknowns” to find a solution and any weighting of
the measurements does not change the solution. Hence, Eq. (41) is only needed to study the bounds on the
expected measurement errors, which may be used to perform an initial assessment, while using Eq. (40) to
determine a more accurate one if needed.
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2. Angle Cosine Variance

Substituting Eq. (9) into Eq. (25) leads to

(

bc
c/d2

+ υc
c/d2

)T (

bc
c/d1

+ υc
c/d1

)

=
(

bd2

c/d2

+ υd2

c/d2

)T

Ad2

d1

(

bd1

c/d1

+ υd1

c/d1

)

(42)

Similar to the vector LOS analysis, Eq. (42) can be expanded and solved for the measured angle. The result
of this is given by

bcT

c/d2
bc

c/d1
= bd2

T

c/d2

Ad2

d1
bd1

c/d1

+ bd2
T

c/d2

Ad2

d1
υd1

c/d1

+ υd2
T

c/d2

Ad2

d1
bd1

c/d1

+ υd2
T

c/d2

Ad2

d1
υd1

c/d1

− bcT

c/d2
υc

c/d1
− υcT

c/d2
bc

c/d1
− υcT

c/d2
υc

c/d1

(43)

The expression in Eq. (43) can be used to determine the mean and covariance of the angle cosine which
entirely describes the probabilistic distribution of this relationship. This methodology is again permitted by
the properties assumed of the measurement noise and the linearity of the expression:

µθ = E
{

bcT

c/d2
bc

c/d1

}

= bd2
T

c/d2

Ad2

d1
bd1

c/d1

(44)

Rθd2/d1

= E
{(

bcT

c/d2
bc

c/d1
− µθ

)2}

(45)

To complete the expression for the angle variance, Eqs. (43) and (44) are substituted into Eq. (45) and
then expanded to yield the expression given by

Rθd2/d1

= E
{

bd2
T

c/d2

Ad2

d1
υd1

c/d1

υd1
T

c/d1

Ad2
T

d1
bd2

c/d2

+ bd2
T

c/d2

Ad2

d1
υd1

c/d1

bd1
T

c/d1

Ad2
T

d1
υd2

c/d2

+ bd2
T

c/d2

Ad2

d1
υd1

c/d1

υd1
T

c/d1

Ad2
T

d1
υd2

c/d2

− bd2
T

c/d2

Ad2

d1
υd1

c/d1

υcT

c/d1
bc

c/d2

− bd2
T

c/d2

Ad2

d1
υd1

c/d1

bcT

c/d1
υc

c/d2
− bd2

T

c/d2

Ad2

d1
υd1

c/d1

υcT

c/d1
υc

c/d2

+ υd2
T

c/d2

Ad2

d1
bd1

c/d1

υd1
T

c/d1

Ad2
T

d1
bd2

c/d2

+ υd2
T

c/d2

Ad2

d1
bd1

c/d1

bd1
T

c/d1

Ad2
T

d1
υd2

c/d2

+ υd2
T

c/d2

Ad2

d1
bd1

c/d1

υd1
T

c/d1

Ad2
T

d1
υd2

c/d2

− υd2
T

c/d2

Ad2

d1
bd1

c/d1

υcT

c/d1
bc

c/d2

− υd2
T

c/d2

Ad2

d1
bd1

c/d1

bcT

c/d1
υc

c/d2
− υd2

T

c/d2

Ad2

d1
bd1

c/d1

υcT

c/d1
υc

c/d2

+ υd2
T

c/d2

Ad2

d1
υd1

c/d1

υd1
T

c/d1

Ad2
T

d1
bd2

c/d2

+ υd2
T

c/d2

Ad2

d1
υd1

c/d1

bd1
T

c/d1

Ad2
T

d1
υd2

c/d2

+ υd2
T

c/d2

Ad2

d1
υd1

c/d1

υd1
T

c/d1

Ad2
T

d1
υd2

c/d2

− υd2
T

c/d2

Ad2

d1
υd1

c/d1

υcT

c/d1
bc

c/d2

− υd2
T

c/d2

Ad2

d1
υd1

c/d1

bcT

c/d1
υc

c/d2
− υd2

T

c/d2

Ad2

d1
υd1

c/d1

υcT

c/d1
υc

c/d2

− bcT

c/d2
υc

c/d1
υd1

T

c/d1

Ad2
T

d1
bd1

c/d1

− bcT

c/d2
υc

c/d1
bd1

T

c/d1

Ad2
T

d1
υd2

c/d2

− bcT

c/d2
υc

c/d1
υd1

T

c/d1

Ad2
T

d1
υd2

c/d2

+ bcT

c/d2
υc

c/d1
υcT

c/d1
bc

c/d2

+ bcT

c/d2
υc

c/d1
bcT

c/d1
υc

c/d2
+ bcT

c/d2
υc

c/d1
υcT

c/d1
υc

c/d2
− υcT

c/d2
bc

c/d1
υd1

T

c/d1

Ad2
T

d1
bd2

c/d2

− υcT

c/d2
bc

c/d1
bd1

T

c/d1

Ad2
T

d1
υd2

c/d2

− υcT

c/d2
bc

c/d1
υd1

T

c/d1

Ad2
T

d1
υd2

c/d2

+ υcT

c/d2
bc

c/d1
υcT

c/d1
bc

c/d2
+ υcT

c/d2
bc

c/d1
bcT

c/d1
υc

c/d2

+ υcT

c/d2
bc

c/d1
υcT

c/d1
υc

c/d2
− υcT

c/d2
υc

c/d1
υd1

T

c/d1

Ad2
T

d1
bd2

c/d2

− υcT

c/d2
υc

c/d1
bd1

T

c/d1

Ad2
T

d1
υd2

c/d2

− υcT

c/d2
υc

c/d1
υd1

T

c/d1

Ad2
T

d1
υd2

c/d2

+ υcT

c/d2
υc

c/d1
υcT

c/d1
bc

c/d2
+ υcT

c/d2
υc

c/d1
bcT

c/d1
υc

c/d2
+ υcT

c/d2
υc

c/d1
υcT

c/d1
υc

c/d2

}

(46)

Fortunately, some valid simplifications exist that decrease the complexity of the variance. Firstly, as with
the LOS analysis, it has been assumed that all the noise processes are uncorrelated. As a result, all the
terms with products of unlike noise components are zero. Additionally, third moments of the given noise
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processes are also zero due to parity (in C [−∞,∞], this would parallel the integral of an odd function over
an even interval). After the cancellation of these terms, the variance is given by

Rθd2/d1

= E
{

bd2
T

c/d2

Ad2

d1
υd1

c/d1

υd1
T

c/d1

Ad2
T

d1
bd2

c/d2

+ υd2
T

c/d2

Ad2

d1
bd1

c/d1

bd1
T

c/d1

Ad2
T

d1
υd2

c/d2

+ υcT

c/d2
υc

c/d1
υcT

c/d1
υc

c/d2
+ υd2

T

c/d2

Ad2

d1
υd1

c/d1

υd1
T

c/d1

Ad2
T

d1
υd2

c/d2

+ bcT

c/d2
υc

c/d1
υcT

c/d1
bc

c/d2
+ υcT

c/d2
bc

c/d1
bcT

c/d1
υc

c/d2

}

(47)

Evaluation of the expectation in Eq. (47) requires that most of the terms be examined individually (as
permitted by the linearity of the expectation over summation). The resulting components from the first and
fifth terms are immediately acquired by factoring out the deterministic quantities from the expectation:

E
{

bd2
T

c/d2

Ad2

d1
υd1

c/d1

υd1
T

c/d1

Ad2
T

d1
bd2

c/d2

}

= bd2
T

c/d2

Ad2

d1
Ωd1

c/d1

Ad2
T

d1
bd2

c/d2

(48a)

E
{

bcT

c/d2
υc

c/d1
υcT

c/d1
bc

c/d2

}

= bcT

c/d2
Ωd2

c/d2

bc
c/d2

(48b)

It is also helpful to note the property that the inner product is equal to the trace of its outer product
counterpart, given mathematically as aT b = Tr

(

baT
)

. This can be applied to the second and sixth terms
of the variance. By grouping vector quantities, we note that the following equalities are true:

υd2
T

c/d2

Ad2

d1
bd1

c/d1

bd1
T

c/d1

Ad2
T

d1
υd2

c/d2

=
(

υd2
T

c/d2

Ad2

d1
bd1

c/d1

bd1
T

c/d1

)(

Ad2
T

d1
υd2

c/d2

)

= Tr
{(

Ad2
T

d1
υd2

c/d2

)(

υd2
T

c/d2

Ad2

d1
bd1

c/d1

bd1
T

c/d1

)} (49)

υcT

c/d2
bc

c/d1
bcT

c/d1
υc

c/d2
= Tr

{(

bcT

c/d1
υc

c/d2

)(

υcT

c/d2
bc

c/d1

)}

(50)

The expectation operator can be carried inside the trace functional in Eqs. (49) and (50). The third and
fourth terms of Eq. (47) require an additional step. These terms are first factored into their trace counter-
parts:

υcT

c/d2
υc

c/d1
υcT

c/d1
υc

c/d2
= Tr

{(

υc
c/d1

υcT

c/d1
υc

c/d2

)(

υcT

c/d2

)}

(51)

υd2
T

c/d2

Ad2

d1
υd1

c/d1

υd1
T

c/d1

Ad2
T

d1
υd2

c/d2

= Tr
{(

υd1

c/d1

υd1
T

c/d1

Ad2
T

d1
υd2

c/d2

)(

υd2
T

c/d2

Ad2

d1

)}

(52)

Equations (51) and (52) are different than the previous terms dealt with because they involve second mo-
ments of two different random variables. We recall that given two random variables, x1 and x2, under the
assumption that they are zero mean and mutually independent, the expectation of their product squares is
given as E{x2

1x
2
2} = E{x2

1}E{x2
2}. Applying this property to the remaining terms and collecting the previous

results leads to the angle scalar variance:

Rθd2/d1

= Tr
(

bd2

c/d2

bd2
T

c/d2

Ad2

d1
Ωd1

c/d1

Ad2
T

d1

)

+ Tr
(

bd1

c/d1

bd1
T

c/d1

Ad2
T

d1
Ωd2

c/d2

Ad2

d1

)

+ Tr
(

Ad2

d1
Ωd1

c/d1

Ad2
T

d1
Ωd2

c/d2

)

+ Tr
(

bc
c/d2

bcT

c/d2
Ωc

c/d1

)

+ Tr
(

bc
c/d1

bcT

c/d1
Ωc

c/d2

)

+ Tr
(

Ωc
c/d1

Ωc
c/d2

)

(53)

If the approximation used to obtain Eq. (41) is valid for all covariance expressions in Eq. (53), then the
angle cosine variance can be simplified and be determined by known quantities from the LOS observations.
Noting the property Tr

(

baT A
)

= aT Ab, where A is a square matrix, and the fact that an attitude matrix

can be split into two different matrices as Ad2

d1
= Ad2

c Ad1
T

c , then the first term on the right-hand-side of
Eq. (53) can be simplified to

Tr
(

bd2

c/d2

bd2
T

c/d2

Ad2

d1
Ωd1

c/d1

Ad2
T

d1

)

= bd2
T

c/d2

Ad2

c Ac
d1

Ωd1

c/d1

AcT

d1
Ad2

T

c bd2

c/d2

= bd2
T

c/d2

Ad2

c Ωc
c/d1

Ad2
T

c bd2

c/d2

=
(

Ac
d2

bd2

c/d2

)T

Ωc
c/d1

Ac
d2

bd2

c/d2

= bcT

c/d2
Ωc

c/d1
bc

c/d2

(54)
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The second term can be simplified using the same method:

Tr
(

bd1

c/d1

bd1
T

c/d1

Ad2
T

d1
Ωd2

c/d2

Ad2

d1

)

= bcT

c/d1
Ωc

c/d2
bc

c/d1
(55)

Using the cyclic property of the trace, the third term can be modified as

Tr
(

Ad2

d1
Ωd1

c/d1

Ad2
T

d1
Ωd2

c/d2

)

= Tr
(

Ad2

c Ac
d1

Ωd1

c/d1

AcT

d1
Ad2

T

c Ωd2

c/d2

)

= Tr
(

Ad2

c Ωc
c/d1

Ad2
T

c Ωd2

c/d2

)

= Tr
(

Ωc
c/d1

Ad2
T

c Ωd2

c/d2

Ad2

c

)

= Tr
(

Ωc
c/d1

Ωc
c/d2

)

(56)

The fourth and the fifth terms are respectively identical to the first and the second terms, while the last
term is the same as the third term. Thus the angle cosine variance becomes

Rθd2/d1

= 2
[

bcT

c/d2
Ωc

c/d1
bc

c/d2
+ bcT

c/d1
Ωc

c/d2
bc

c/d1
+ Tr

(

Ωc
c/d1

Ωc
c/d2

)]

(57)

which is not a function of the attitude matrix Ad2

d1
.

3. Attitude Estimate Covariance

With the uncertainty of all the LOS measurements characterized within Rθ and Rd2

d2/d1

, a theoretical bound

can be found for the relative attitude estimate error. As described earlier, a Gaussian distribution requires
only the mean and (co)variance to describe it. In the current case, the mean is zero and expressions for the
(co)variances have been determined. We now seek a characterization of P , the covariance for the attitude
angle errors, δα.

Characterization of the attitude angle error covariance is accomplished using the Cramèr-Rao inequality.
A theoretical lower bound for the covariance can be found using the Fisher information matrix, F . The
estimate covariance, P , is bounded by the following relationship:

P = E
{

(x̂ − x) (x̂− x)
T
}

≥F−1 (58)

where x is the truth, x̂ is its corresponding estimate, and the Fisher information matrix is given by

F = −E

{

∂2

∂x∂xT
lnL (ỹ;x)

}

(59)

where L (ỹ;x) is the likelihood function for a measurement ỹ. Clearly, to bound the estimate covariance,
all that is needed is the second derivative of the negative-log likelihood function constructed using vector
measurements with their theoretical covariance expressions previously calculated.

Though there are no truth quantities available in the system, the uncertainty of all the measurements
has been captured in the following measurements:

ỹ =







b̃d2

d2/d1

b̃cT

c/d2

b̃c
c/d1






(60)

The remaining measurements can thus be treated as deterministic quantities in the covariance analysis. The
covariance and variance for the LOS and angle measurement, given by Rd2

d2/d1

and Rθ, have been determined

in Eqs. (40) and (53) and are restated as follows

b̃d2

d2/d1

∼ N
(

bd2

d2/d1

, Rd2

d2/d1

)

(61a)

b̃cT

c/d2
b̃c

c/d1
∼ N

(

bcT

c/d2
bc

c/d1
, Rθd2/d1

)

(61b)
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Using both the measurements from Eq. (60), those taken as deterministic quantities, and the known probabil-
ity density functions described by Eq. (61), a negative-log likelihood function can be constructed (neglecting
terms independent of the attitude):

J
(

Âd2

d1

)

=
1

2

(

bcT

c/d2
bc

c/d1
− bd2

T

c/d2

Âd2

d1
bd1

c/d1

)2

R−1

θd2/d1

+
1

2

(

bd2

d2/d1

− Âd2

d1
bd1

d2/d1

)T

Rd2
−1

d2/d1

(

bd2

d2/d1

− Âd2

d1
bd1

d2/d1

)

(62)

Because the attitude error is not expected to be large, a small error angle assumption is made in Eq. (62).
The attitude estimate can be expressed in terms of the true attitude and the angle errors, δα, here understood
to map D1 to D2:

Âd2

d1
=
(

I3×3 −
[

δαd2

d1
×
])

Ad2

d1
(63)

Since a unique deterministic solution is given for Ad2

d1
for the three-vehicle configuration, then the estimate

covariance must achieve the Cramèr-Rao lower bound. Substituting Eq. (63) into Eq. (62) and taking the
appropriate partials with respect to δαd2

d1
leads to the following covariance:

P d2

d1
≡ E

{

δαd2

d1
δαd2

T

d1

}

=

(

[

Ad2

d1
bd1

c/d1

×
]

bd2

c/d2

R−1

θd2/d1

bd2
T

c/d2

[

Ad2

d1
bd1

c/d1

×
]T

+
[

Ad2

d1
bd1

d2/d1

×
]

Rd2
−1

d2/d1

[

Ad2

d1
bd1

d2/d1

×
]T
)

−1 (64)

Note that Rd2

d2/d1

, given by Eq. (41), is a singular matrix. As shown before, this matrix can be effectively

replaced by Rd2

d2/d1

+ 1

2
bd2

d2/d1

bd2
T

d2/d1

Tr(Rd2

d2/d1

), which is a nonsingular matrix.

The estimated attitude matrix must be used in Eq. (64) to compute the covariance. Also, the true values
for the b vectors can effectively be replaced with their respective measured or estimated values, which leads
to only second-order error effects, as stated previously. determination performance.

4. Chief to Deputy Mappings

Because the analysis for the relative attitude mappings from C to D1 and from C to D2 follows similarly to
the previous analysis, only the results will be given. The equations for the C to D1 mapping are given by

bd1

c/d1

= Ad1

c bc
c/d1

(65a)

bd2
T

d2/d1

bd2

c/d2

=
(

Ad2

d1
bd1

d2/d1

)T (

Ad2

c bc
c/d2

)

= bd1
T

d2/d1

Ad1

c bc
c/d2

(65b)

The LOS covariance for bd1

c/d1

can be shown to be

Rd1

c/d1

= Ad1

c Ωc
c/d1

Ad1
T

c + Ωd1

c/d1

(66)

The variance for the angle cosine, bd2
T

d2/d1

bd2

c/d2

, is similarly given by

Rθc/d1

= Tr
(

bd1

d2/d1

bd1
T

d2/d1

Ad1

c Ωc
c/d2

Ad1
T

c

)

+ Tr
(

bcT

c/d2
Ad1

T

c Ωd1

d2/d1

Ad1

c bc
c/d2

)

+ Tr
(

Ωc
c/d2

Ad1
T

c Ωd1

d2/d1

Ad1

c

)

+ Tr
(

bd2

d2/d1

bd2
T

d2/d1

Ωd2

c/d2

)

+ Tr
(

bd2

c/d2

bd2
T

c/d2

Ωd2

d2/d1

)

+ Tr
(

Ωd2

c/d2

Ωd2

d2/d1

)

(67)

which can be simplified to

Rθc/d1

= 2
{

b
d2

T

d2/d1

Ωd2

c/d2

b
d2

c/d2

+ b
d2

T

c/d2

Ωd2

d2/d1

b
d2

c/d2

+ Tr
(

Ωd2

c/d2

Ωd2

d2/d1

)}

(68)

Constructing the appropriate negative-log likelihood function counterpart to Eq. (62), and following through
the same progression of simplifications will yield an analog to Eq. (64):

P d1

c =

(

[

Ad1

c bc
c/d2

×
]

bd1

d2/d1

R−1

θc/d1

bd1
T

d2/d1

[

Ad1

c bc
c/d2

×
]T

+
[

Ad1

c bc
c/d1

×
]

Rd1
−1

c/d1

[

Ad1

c bc
c/d1

×
]T
)

−1

(69)
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The equations for the C to D2 mapping are given by

bd2

c/d2

= Ad2

c bc
c/d2

(70a)

bd1
T

d1/d2

bd1

c/d1

=
(

Ad1

d2
bd2

d1/d2

)T (

Ad1

c bc
c/d1

)

= bd2
T

d1/d2

Ad2

c bc
c/d1

(70b)

The LOS covariance for bd2

c/d2

can be shown to be

Rd2

c/d2

= Ad2

c Ωc
c/d2

Ad2
T

c + Ωd2

c/d2

(71)

The variance for the angle cosine, bd1
T

d1/d2

bd1

c/d1

, is similarly given by

Rθc/d2

=Tr
(

bd2

d1/d2

bd2
T

d1/d2

Ad2

c Ωc
c/d1

Ad2
T

c

)

+ Tr
(

bc
c/d1

bcT

c/d1
Ad2

T

c Ωd2

d1/d2

Ad2

c

)

+ Tr
(

Ωc
c/d1

Ad2
T

c Ωd2

d1/d2

Ad2

c

)

+ Tr
(

bd1

d1/d2

bd1
T

d1/d2

Ωd1

c/d1

)

+ Tr
(

bd1

c/d1

bd1
T

c/d1

Ωd1

d1/d2

)

+ Tr
(

Ωd1

c/d1

Ωd1

d1/d2

)

(72)

which can be simplified to

Rθc/d2

= 2
{

b
d1

T

d1/d2

Ωd1

c/d1

b
d1

d1/d2

+ b
d1

T

c/d1

Ωd1

d1/d2

b
d1

c/d1

+ Tr
(

Ωd1

c/d1

Ωd1

d1/d2

)}

(73)

Constructing the appropriate negative-log likelihood function counterpart to Eq. (62), and following through
the same progression of simplifications will yield an analog to Eq. (64):

P d2

c =

(

[

Ad2

c bc
c/d1

×
]

bd2

d1/d2

R−1

θc/d2

bd2
T

d1/d2

[

Ad2

c bc
c/d1

×
]T

+
[

Ad2

c bc
c/d2

×
]

Rd2
−1

c/d2

[

Ad2

c bc
c/d2

×
]T
)

−1

(74)
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Figure 5. Non-Parallel Beams

VI. Non-Parallel Beam Case

All previous cases assumed prefect alignment in the beams transmitted between the neighboring vehicles.
The third case assumes non-parallel beams. The misalignment in the beams can arise when the FPD and
the beam source do not reside in the same location, as shown in Figure 5. To establish a common vector
represented in two different coordinate frames, the displacement vectors between each beam source and
respective FPD must be used for each vehicle, denoted by zc

c/c for the chief and zd1

d1/d1

for the deputy.

These vectors are well known through calibration procedures and remain fixed with respect to the vehicle
body. Since the FPD measurement gives a unit vector in the direction of the incoming beam, then range
information is also needed to determine the relative position between the FPD on the receiving vehicle and
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the beam source of the other vehicle. This vector, and the displacement between the FPD and laser on the
chief frame, can be used to generate a triangle. From Figure 5 we have

yc
c/d1

= rc
c/d1

− zc
c/c (75a)

yd1

c/d1

= rd1

c/d1

+ zd1

d1/d1

(75b)

where rc
c/d1

= rc
c/d1

bc
c/d1

and rd1

c/d1

= rd1

c/d1

bd1

c/d1

. The quantities rc
c/d1

≡ ||rc
c/d1

|| and rd1

c/d1

≡ || rd1

c/d1

||

are given from range observations between vehicles. The vectors yc
c/d1

and yd1

c/d1

are common sides of the

triangle, but do not necessarily have the same length. Therefore, these common vector observations are
related between frames by the following attitude transformation:

b̄c
c/d1

= Ac
d1

b̄d1

c/d1

(76)

where b̄c
c/d1

≡ yc
c/d1

/||yc
c/d1

|| and b̄d1

c/d1

≡ yd1

c/d1

/||yd1

c/d1

|| are unit vectors. Measurement errors exist for both

the range measurements and focal-plane measurements. Ignoring subscripts and superscripts, we wish to

obtain a linear measurement error-model as follows: ˜̄b = b̄ + ῡ. The measured y vector, denoted by ỹ, can
be written in terms of the measured LOS and range:

ỹ = (r + vr) (b + υ) + z = y + w (77)

where the variance of the range error, vr, is denoted by ̟2, the covariance of υ is Ω as before, and w ≡
vr b + rυ + vrυ. Since vr and υ are uncorrelated, then E

{

wwT
}

= ̟2bbT + r2Ω. The covariance of ῡ,
denoted by Ω̄, can be derived using the same approach as shown in §IV:

Ω̄ =

(

∂b̄

∂y

)

(̟2bbT + r2Ω)

(

∂b̄

∂y

)T

(78)

with
∂b̄

∂y
= ||y||−1

(

I3×3 − ||y||−2yyT
)

(79)

The algorithms and attitude error-covariances shown in §V can now be directly applied using the appropriate
˜̄b measurement vectors and Ω̄ covariances.

Intuitively speaking, as the distance between vehicles becomes large, the beams become more parallel.
We now study this effect on the measurement covariance by explicitly multiplying out the terms in Eq. (79)
and using the QMM for Ω, which leads to

Ω̄ =
r2σ2

||y||2

[

I3×3 − b̄ b̄T −
(

b̄Tb
)2

bbT +
(

b̄T b
) (

b̄ bT + b b̄T
)

− bbT
]

+
̟2

||y||2

[

(

b̄Tb
)2

bbT −
(

b̄T b
) (

b̄ bT + b b̄T
)

+ bbT
]

(80)

where b̄ ≡ y/||y|| has been used. When r → ∞, then ||y|| → r and b̄ → b. Thus, Eq. (80) reduces down to

Ω̄ = σ2
(

I3×3 − bbT
)

= Ω (81)

The above analysis demonstrates that as the distance between vehicles increases, the error in the measurement
approaches and converges to that of the parallel case. Therefore, any additional error, induced by the range
measurement in the non-parallel case, becomes less significant when the formation distance is large, as
expected.

VII. Simulations

This simulations use a static formation of three vehicles, with each vehicle having two FPDs and light
source devices. The relative attitude mapping between each vehicle’s body frame is determined from LOS
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Figure 6. Relative Attitude Estimate Errors

measurements, assuming prefect alignment between beams. The formation configuration uses the following
true LOS vectors:

bc
c/d1

=







sin(−30◦) cos(35◦)

sin(35◦)

cos(−30◦) cos(35◦)






, bc

c/d2
=







sin(30◦) cos(25◦)

sin(25◦)

cos(30◦) cos(25◦)






, bd1

d1/d2

=







− cos(−45◦) cos(10◦)

sin(10◦)

sin(−45◦) cos(10◦)






(82)

The last vector is chosen so that a triangle configuration is assured for the true vectors. The remaining three
LOS truth vectors are determined from those listed in Eq. (24), without noise added, using the appropriate
attitude transformation. For this configuration, the true relative attitudes are given by

Ad1

c =







0 0 −1

0 1 0

1 0 0






, Ad2

c =







1 0 0

0 0 1

0 −1 0






(83)

The LOS vectors are determined from the focal-plane measurements containing noise which is described
in §III, with σ = 17 × 10−6. In practice, each vehicle must have two FPDs to ensure that the light
source is acquired for any relative orientation; this will be generally be required for many systems, such
as laser communication devices. The letter S is used to denote sensor frame. The six matrix orthogonal
transformations for their respective sensor frame, denoted by a subscript, used to orientate the FPD to the
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specific vehicle, denoted by the superscript, are given by

Ac
sd1

=







−0.9131 −0.1871 −0.3624

−0.1871 −0.5973 0, 7799

−0.3624 0.7799 0.5103






, Ad1

sc
=







−0.1623 0.0840 0.9832

0.0840 −0.9916 0.0986

0.9832 0.0986 0.1539






(84a)

Ad2

sd1

=







−0.6541 −0.3990 −0.6427

−0.3990 −0.5399 0.7412

−0.6427 0.7412 0.1939






, Ac

sd2

=







−0.4394 0.5125 0.7378

0.5125 −0.5316 0.6744

0.7378 0.6744 −0.0290






(84b)

Ad1

sc
=







−0.5232 0.3952 0.7550

0.3952 −0.6724 0.6259

0.7550 0.6259 0.1955






, Ad2

sc
=







−0.9698 −0.0721 0.2330

−0.0721 −0.8280 −0.5561

0.2330 −0.5561 0.7978






(84c)

Since each FPD has its own boresight axis and the measurement covariance in Eq. (2) is described with
respect to the boresight, individual sensor frames must be defined to generate the FPD measurements. The
measurement error-covariance for each FPD is determined with respect to the corresponding sensor frames
and must be rotated to the vehicle’s body frame as well. The estimated attitude error-covariance for each
mapping is determined using either of Eqs. (64), (69) or (74). The relative attitude estimates are calculated
by the method outlined in §V from the measurement containing random noise described by the measurement
covariance. The configuration is considered for 1,000 Monte Carlo trials. Measurements are generated in
the sensor frame and rotated to the body frame to be combined with the other measurements to determine
the full relative attitudes. The WFOV measurement model for the FPD LOS covariance is used. Relative
attitude angle errors are displayed with their theoretical 3σ bounds. Figure 6(a) shows the errors for the
D1 to D2 mapping. Figure 6(a) shows the errors for the C to D1 mapping and Figure 6(c) shows the errors
for the final relative attitude mapping C to D2. Clearly, the theoretical covariance expressions provide an
accurate means to predict expected performance.
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Figure 7. Average 3σ Bounds for Parallel and Non-Parallel Cases

A comparison of the attitude error for the non-parallel case with the parallel case, as the relative distance
between vehicles increases, in now shown. The same three-vehicle configuration as the last simulation is
considered, with each vector having the same sensor displacement, denoted by z. The relative distance
between each vehicle is assumed to be equal, denoted by r. From the observation geometry shown in Figure
5, the FPD and the range measurements made in each frame can be deduced from the true LOS vector and
distance between vehicles. Range measurements are generated using a zero-mean Gaussian white-noise with
a standard deviation of 1 meter. FPD measurement errors are generated using the same standard deviation
as before, σ = 17 × 10−6. This formation is then expanded out incrementing all the distances between
vehicles by an equal amount. The average 3σ bounds for increasing r/z are shown in Figure 7. Clearly, as
the formation size increases, for this case when r/z approaches a value of 30, the relative attitude error for
the non-parallel case approaches that of the parallel case, which confirms the analysis leading to Eq. (81).
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VIII. Conclusions

This paper has shown that with a three-vehicle configuration, deterministic relative attitude solutions are
possible assuming line-of-sight information between each vehicle pair. Covariance expressions were derived
to determine the relative attitude-error 3σ bounds, which closely matched with Monte Carlo simulations.
Three cases were shown. One involved using the two deputy vehicles as reference points to determine the
inertial attitude of the chief. Care must be taken for this case since the attitude accuracy depends not
only on the line-of-sight errors, but also on the position errors of the deputies. The second case involved
using parallel beams. The advantage of this approach is that no other information, such as position-type
knowledge, is required to find a solution; however, a feedback mechanism must be employed at each light
source to maintain the parallel beams. The third case involved non-parallel beams. Additional information
involving range knowledge between vehicles must be given for this case; however, the adverse effects from
this range measurement become less important as the distance between the vehicles becomes larger. The
derived covariance expressions can be used to assess this range effect. It is important to note that although the
examples discussed in this paper primarily involve spacecraft applications, the relative attitude determination
approaches shown herein can be employed to any three-vehicle system with similar sensors used here.
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