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Abstract

In this paper an optimal solution to the problem of determining both vehicle attitude and

position using line-of-sight measurements is presented. The new algorithm is derived from a

generalized predictive filter for nonlinear systems. This uses a one time-step ahead approach

to propagate a simple kinematics model for attitude and position determination. The new

algorithm is noniterative and is computationally efficient, which has significant advantages

over traditional nonlinear least squares approaches. The estimates from the new algorithm

are optimal in a probabilistic sense since the attitude/position covariance matrix is shown

to be equivalent to the Cramér-Rao lower bound. Also, a covariance analysis proves that

attitude and position determination is unobservable when only two line-of-sight observations

are available. The performance of the new algorithm is investigated using light-of-sight

measurements from a simulated sensor incorporating Position Sensing Diodes in the focal

plane of a camera. Results indicate that the new algorithm provides optimal attitude and

position estimates, and is robust to initial condition errors.

Introduction

Recent developments in Position Sensing Diodes (PSDs) in the focal plane of a cam-

era allow the inherent centroiding of a beacon’s incident light, from which a line-of-sight

(LOS) vector can be determined. The inverse (navigation) problem is essentially the “im-

age resection” problem of close-range photogrammetry [1]. To date, the basic aspects of a

first generation vision navigation (VISNAV) system based on PSDs have been demonstrated
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through proof of concept experimental studies [2]. Results show that a beacon’s LOS vector

can be determined with an accuracy of one part in 5,000 (of the sensor field-of-view angle)

and at a distance of 30m with an update rate of 100Hz, with essentially zero image processing

overhead.

The fundamental mechanism used to determine the attitude and position from LOS

observations involves an object to image projective transformation, achieved through the

colinearity equations [3]. These equations involve the angle of the body from the sensor

boresight in two mutually orthogonal planes, which can be reconstructed into unit vector

form. While these equations are theoretically valid only for the pin-hole camera model, we

have established a calibration procedure [2] which absorbs all non-ideal effects into calibra-

tion functions. Shuster [4] has shown an analysis of the probability density function for the

measurement error involving LOS observations in unit vector form. A significant conclusion

is that from a practical standpoint, the probability density on the sphere is indistinguishable

from the corresponding density on the tangent plane, so that the reconstructed unit vector

can in fact be used in standard forms, e.g. in Wahba’s problem [5] for the attitude-only de-

termination case. However, unlike Wahba’s problem where the attitude is the only unknown,

in the present work we treat both attitude and position as the unknowns (i.e. the full six

degree-of-freedom problem).

Determining attitude from LOS observations commonly involves finding a proper orthog-

onal matrix that minimizes the scalar weighted norm-error between sets of 3×1 body vector

observations and 3 × 1 known reference vectors mapped (via the attitude matrix) into the

body frame. If the reference vectors are known, then at least two non-colinear unit vector

observations are required to determine the attitude. Many methods have been developed

that solve this problem efficiently and accurately [6,7]. Determining the position from LOS

observations involves triangulation from known reference base points. If the attitude is

known, then at least two non-colinear unit vector observations are required to establish a

three-dimensional position. Determining both attitude and position from LOS observations

is more complex since more than two non-colinear unit vector observations are required (as

will be demonstrated in this paper), and, unlike Wahba’s problem, the unknown attitude

and position are interlaced in a highly nonlinear fashion.

The most common approach to determine attitude and position uses the colinearity equa-

tions and involves a Gaussian Least Squares Differential Correction (GLSDC) process [2,3].

However, this has several disadvantages. The GLSDC process is computationally inefficient

and iterative, and may take several iterations to converge. Also, it is highly sensitive to

initial guess errors. In this paper a new approach is presented, based on a predictive filter

for nonlinear systems [8]. This approach uses a recursive (one time-step ahead) method to
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“predict” the required model error so that the propagated model produces optimal estimates.

The filter developed in this paper is essentially reduced to a deterministic approach since the

corrections required to update the model are not weighted in the loss function. The main

advantages of this approach over the GLSDC process are: 1) the algorithm is not iterative

at each time instant (convergence is given as a differential correction in time), 2) it is robust

with respect to initial guess errors, 3) it determines angular and linear velocity as part of the

solution, and 4) the algorithm is easy to implement. A covariance analysis will be used to

show that the new algorithm produces estimates that have the same error covariance as the

ideal one derived from maximum likelihood. Therefore, the new algorithm is optimal from

a probabilistic viewpoint.

The organization of this paper proceeds as follows. First, a review of the colinearity

equations is shown. Then, a generalized loss function derived from maximum likelihood

for attitude and position determination is given. Next, the optimal estimate covariance is

derived, followed by an analysis using only two unit vector observations. Then, a review of

the predictive filter is given, followed by the application of this approach for attitude and

position determination from LOS observations. Also, an estimate error covariance expression

is derived for the new algorithm. Finally, the algorithm is tested using a simulated vehicle

maneuver.

The Colinearity Equations and Covariance

In this section an analysis of the colinearity equations for attitude and position determi-

nation is shown. First, the observation model is reviewed. Then, the estimate (attitude and

position) covariance matrix is derived using maximum likelihood. Finally, an analysis using

two unit vector observations is demonstrated.

Colinearity Equations

If we choose the z-axis of the sensor coordinate system to be directed outward along the

boresight, then given object space (X,Y, Z) and image space (x, y, z) coordinate frames (see

Fig. 1), the ideal object to image space projective transformation (noiseless) can be written

as follows:

xi = −f
A11(Xi −Xc) + A12(Yi − Yc) + A13(Zi − Zc)

A31(Xi −Xc) + A32(Yi − Yc) + A33(Zi − Zc)
, i = 1, 2, . . . , N (1a)

yi = −f
A21(Xi −Xc) + A22(Yi − Yc) + A23(Zi − Zc)

A31(Xi −Xc) + A32(Yi − Yc) + A33(Zi − Zc)
, i = 1, 2, . . . , N (1b)

where N is the total number of observations, (xi, yi) are the image space observations for

the ith light-of-sight, (Xi, Yi, Zi) are the known object space locations of the ith beacon,
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(Xc, Yc, Zc) is the unknown object space location of the sensor, f is the known focal length,

and Ajk are the unknown coefficients of the attitude matrix (A) associated to the orientation

from the object plane to the image plane.

The observation can be reconstructed in unit vector form as

bi = Ari, i = 1, 2, . . . , N (2)

where

bi ≡
1

√

f 2 + x2i + y2i







−xi

−yi

f






(3a)

ri ≡
1

√

(Xi −Xc)2 + (Yi − Yc)2 + (Zi − Zc)2







Xi −Xc

Yi − Yc

Zi − Zc






(3b)

When measurement noise is present, Shuster [6] has shown that nearly all the probability

of the errors is concentrated on a very small area about the direction of Ari, so the sphere

containing that point can be approximated by a tangent plane, characterized by

b̃i = Ari + υi, υT
i Ari = 0 (4)

where b̃i denotes the ith measurement, and the sensor error υi is approximately Gaussian

which satisfies

E {υi} = 0 (5a)

E
{

υiυ
T
i

}

= σ2i
[

I − (Ari)(Ari)
T
]

(5b)

and E { } denotes expectation. Equation (5b) makes the small field-of-view assumption

of Ref. [6]; however, for a large field-of-view lens with significant radial distortion, this

covariance model should be modified appropriately.

Maximum Likelihood Estimation and Covariance

Attitude and position determination using LOS measurements involves finding estimates

of the proper orthogonal matrix A and position vector p ≡ [Xc Yc Zc]
T that minimize the
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following loss function:

J(Â, p̂) =
1

2

N
∑

i=1

σ−2i ‖b̃i − Âr̂i‖
2 (6)

where ∧ denotes estimate. An estimate error covariance can be derived from the loss function

in equation (6). This is accomplished by using results from maximum likelihood estimation

[6, 9]. The Fisher information matrix for a parameter vector x is given by

Fxx = E

{

∂

∂x ∂xT
J(x)

}

xtrue

(7)

where J(x) is the negative log-likelihood function, which is the loss function in this case

(neglecting terms independent of A and p). Asymptotically, the Fisher information matrix

tends to the inverse of the estimate error covariance so that lim
N→∞

Fxx = P−1. The true

attitude matrix is approximated by

A = e−[δα×]Â ≈ (I3×3 − [δα×]) Â (8)

where δα represents a small angle error and I3×3 is a 3×3 identity matrix. The 3×3 matrix

[δα×] is referred to as a cross-product matrix because a× b = [a×] b, with

[a×] ≡







0 −a3 a2

a3 0 −a1

−a2 a1 0






(9)

The parameter vector is now given by x = [δαT p̂T ]T , and the covariance is defined by

P = E
{

xxT
}

−E {x}ET {x}. Substituting equation (8) into equation (6), and after taking

the appropriate partials the following optimal error covariance can be derived:

P =















−
N
∑

i=1

σ−2i [A ri×]2
N
∑

i=1

σ−2i ζ
−1/2
i A [ri×]

N
∑

i=1

σ−2i ζ
−1/2
i [ri×]TAT −

N
∑

i=1

σ−2i ζ−1i [ri×]2















−1

(10)

where ζi ≡ (Xi −Xc)
2 + (Yi − Yc)

2 + (Zi − Zc)
2. The terms A and ri are evaluated at their

respective true values (although in practice the estimates are used). It should be noted that

equation (10) gives the Cramér-Rao lower bound [9] (any estimator whose error covariance
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is equivalent to equation (10) is an efficient, i.e. optimal estimator).

Two Vector Observation Case

In this section an analysis of the covariance matrix using two vector observations (N = 2)

is shown. Although using one vector observation provides some information, the physical

interpretation of this case is difficult to visualize and demonstrate analytically. Note, as the

range to the beacons becomes large, the angular separation decreases and the beacons ulti-

mately approach co-location. The result is a geometric dilution of precision, and ultimately,

a loss of observability analogous to the one beacon case. The two vector case does provide

some physical insight, which is also worthy of study. From equation (10) the 1− 1 partition

of the inverse covariance (P−1) is equivalent to the inverse of the QUEST covariance ma-

trix [4, 6]. This 3 × 3 matrix is nonsingular if at least two non-colinear vector observations

exist and the reference vectors r1 and r2 are known. The 2 − 2 partition is nonsingular if

at least two non-colinear vectors exist, which is independent of attitude knowledge. The

1− 2 partition has at most rank 2 for any number of observations since it is given as a sum

of cross product matrices. We now will prove that the two vector observation case for the

coupled problem involving both attitude and position determination is unobservable. We

first partition the inverse covariance matrix into 3× 3 sub-matrices as

P =

[

P11 P12

P T
12 P22

]−1

, P =

[

P−111 P−112

P−T
12 P−122

]

(11)

with obvious definitions for P11, P12 and P22 from equation (10). The relationships between

P11, P12, P22 and P11, P12, P22 are given by [10]

P11 = (P11 − P12P
−1
22 P

T
12) (12a)

P12 = P−111 P12(P
T
12P

−1
11 P12 − P22) (12b)

P22 = (P22 − P T
12P

−1
11 P12) (12c)

We shall first concentrate on the attitude part of the covariance, given by equation (12a).

With two unit vector observations, P−122 is given by [6]

P−122 = σ̃2totI3×3 + ‖r1 × r2‖
−2[(σ̃22 − σ̃2tot)r1r

T
1 + (σ̃21 − σ̃2tot)r2r

T
2

+ σ̃2tot(r
T
1 r2)(r1r

T
2 + r2r

T
1 )]

(13)
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where

σ̃2i ≡
[

(Xi −Xc)
2 + (Yi − Yc)

2 + (Zi − Zc)
2
]

σ2i , i = 1, 2 (14a)

σ̃2tot ≡
σ̃21σ̃

2
2

σ̃21 + σ̃22
(14b)

Next, we make use of the following identity:

[Ari×] = A [ri×]AT (15)

which allows us to factor out the attitude matrix from equation (12a), so that

P11 = AGAT (16)

where

G ≡ −

2
∑

i=1

σ−2i [ri×]2 +

{

2
∑

i=1

σ−2i ζ
−1/2
i [ri×]

}

P−122

{

2
∑

i=1

σ−2i ζ
−1/2
i [ri×]

}

(17)

Substituting equation (13) into equation (17), after considerable algebra, leads to

G =
1

σ̃21 + σ̃22

{

− ([β1×]− [β2×])2 + η [β1×]β2β
T
2 [β1×]

}

(18)

where

βi =







Xi −Xc

Yi − Yc

Zi − Zc






, i = 1, 2 (19a)

η = ‖ρ‖2/‖γ‖ (19b)

and

ρ = β1 − β2 (20a)

γ = β1 × β2 (20b)

Equation (18) can also be given by

G =
1

σ̃21 + σ̃22
g gT (21)
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with

g =







±{(ρ22 + ρ23)− ‖ρ‖
2γ21/‖γ‖

2}
1/2

±{(ρ21 + ρ23)− ‖ρ‖
2γ22/‖γ‖

2}
1/2

±{(ρ21 + ρ22)− ‖ρ‖
2γ23/‖γ‖

2}
1/2






(22)

The ± terms define the sign of the off-diagonal elements of equation (18). Equation (21)

clearly has rank 1, which shows that only one angle is observable. An eigenvalue/eigenvector

decomposition of equation (16) can be used to assess the observability. The eigenvalues

of equation (16) are given by (0, 0, [σ̃21 + σ̃22]
−1‖ρ‖2), and the eigenvector associated with

the non-zero eigenvalue is given by v = Ag/‖g‖, which defines the axis of rotation for the

observable attitude angle. The eigenvector can easily be shown to lie in the plane of the

two body vector observations since vTA(β1 × β2) = 0. This vector is in essence a weighted

average of the body observations with

‖Aβ1‖ cos a1 = ‖Aβ2‖ cos a2 (23)

where a1 is the angle between Aβ1 and v, and a2 is the angle between Aβ2 and v, as

shown in Fig. 2 (a1 + a2 is the angle between Aβ1 and Aβ2). Equation (23) indicates that

the observable axis of rotation is closer to the vector with less length. For example, if the

magnitude of Aβ1 is much smaller than the magnitude of Aβ2 then the eigenvector will be

closer to Aβ1. This is because a slight change in the smallest vector produces more change in

the attitude than the same change in the largest vector. Also, if ‖β1‖ = ‖β2‖ or if βT
1 β2 = 0,

then the eigenvector reduces to v = ±A(β1+β2)/‖Aβ1+Aβ2‖, which is the bisector of the

body observations.

At first glance, the observable angle with two vector observations is counterintuitive to

standard attitude determination results because the matrix −[Ari×]2 = I3×3 − Ari r
T
i A

T in

P is the projection operator onto the space perpendicular to the body observation. Also, the

observable axis is independent of the measurement weights, which again is counterintuitive

to standard attitude determination results. This indicates that if one sensor is less accurate

than the other sensor, then the entire attitude solution will degrade due to the measurement

variance scaling in equation (18), but the observable axis of rotation remains the same.

Note, the limiting case of using only one sensor (i.e. where the measurement variance of

one sensor approaches infinity) cannot be analyzed using the analysis shown in this section.

In the standard attitude determination problem, the position is assumed to be known (or

immaterial for the case of line-of-sight vectors to stars since the measured vectors do not

depend on position). However, the coupling effects of determining both the attitude and
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position from line-of-sight observations to nearby objects alters our intuitive perception.

The remaining angles are unobservable since we cannot discern an attitude error about

an unobservable axes from a position error along the respective perpendicular axes. For

example, rotations about the vector perpendicular to the plane formed by the two body

observations cannot be distinguished from translations within the plane.

In a similar fashion, the position information matrix can be shown to be given by

P22 =
1

σ21 + σ22

{

− ([δ1×]− [δ2×])2 + λ [δ1×]δ2δ
T
2 [δ1×]

}

(24)

where

δi = βi/‖βi‖
2, i = 1, 2 (25a)

λ = ‖%‖2/‖ϑ‖ (25b)

and

% = δ1 − δ2 (26a)

ϑ = δ1 × δ2 (26b)

Equation (24) can also be given by

P22 =
1

σ21 + σ22
hhT (27)

with

h =







±{(%22 + %23)− ‖%‖
2ϑ21/‖ϑ‖

2}
1/2

±{(%21 + %23)− ‖%‖
2ϑ22/‖ϑ‖

2}
1/2

±{(%21 + %22)− ‖%‖
2ϑ23/‖ϑ‖

2}
1/2






(28)

The eigenvalues of equation (24) are given by (0, 0, [σ21 + σ22]
−1‖%‖2), and the eigenvector

associated with the non-zero eigenvalue is given by w = h/‖h‖, which defines the observable

position axis. The eigenvector can be shown to lie in the plane of the two reference vectors

since wT (β1 × β2) = 0. The weighted average relationship for the observable position axis

is given by

‖β1‖/cosα1 = ‖β2‖/cosα2 (29)

where α1 is the angle between β1 and w, and α2 is the angle between β2 and w (α1+α2 is the
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angle between β1 and β2). Equation (29) indicates that the observable position axis is closer

to the vector with greater length, which intuitively makes sense because the position solution

is more sensitive to the magnitude of the vectors. A slight change in the largest vector

produces more change in the position than the same change in the smallest vector. Also, if

‖β1‖ = ‖β2‖ or if βT
1 β2 = 0, then the eigenvector reduces to w = ±(β1 + β2)/‖β1 + β2‖,

which is the bisector of the reference vectors. As before, the information given by the two

observation vectors is used to calculate the part of the attitude needed to compute the

observable position.

The above analysis indicates that the beacon that is closest to the target provides the

most attitude information, but has the least position information. The converse is true as

well (i.e. the beacon that is farthest from the target provides the most position information,

but has the least attitude information). The covariance analysis can be useful to trade off

the relative importance between attitude and position requirements with beacon locations.

Also, when three vector observations are available, the covariance is nonsingular; however,

two geometric solutions for the attitude and position are possible in practice [2], although a

rigorous theoretical proof of this is difficult. Therefore, in practice, four unit vector obser-

vations are required to unambiguously determine both attitude and position.

Predictive Attitude and Position Determination

In this section a new algorithm for attitude and position determination is derived using a

nonlinear predictive approach. First, a brief review of the nonlinear predictive filter is shown

(see Ref. [8] for more details). Then, the filter is reduced to a deterministic-type approach

for attitude and position determination. Finally, a covariance expression for the attitude

and position errors using the new algorithm is derived.

Predictive Filtering

In the nonlinear predictive filter it is assumed that the state and output estimates are

given by a preliminary model and a to-be-determined model error vector, given by

˙̂x(t) = f [x̂(t), t] + G(t)d(t) (30a)

ŷ = c[x̂(t), t] (30b)

where f ∈ <n is the dynamics model vector, x̂(t) ∈ <n is the state estimate vector, d(t) ∈ <q

is the model error vector, G(t) ∈ <n×q is the model-error distribution matrix, c ∈ <m is

the output model vector, and ŷ(t) ∈ <m is the estimated output vector. State-observable
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discrete measurements are assumed for equation (30a) in the following form:

ỹ(tk) = c[x(tk), tk] + ν(tk) (31)

where ỹ(tk) ∈ <m is the measurement vector at time tk, x(tk) ∈ <n is the true state vector,

and ν(tk) ∈ <m is the measurement noise vector, which is assumed to be a zero-mean,

stationary, Gaussian noise distributed process with

E {ν(tk)} = 0 (32a)

E
{

ν(tk)νT (tk′)
}

= Rδkk′ (32b)

where R ∈ <m×m is a positive-definite covariance matrix.

A Taylor series expansion using small ∆t of the output estimate in equation (30b) is

given by

ŷ(tk+1) = ŷ(tk) + z(x̂k,∆t) + Λ(∆t)S(x̂k)d(tk) (33)

where x̂k ≡ x̂(tk), ∆t is the measurement sampling interval, S(x̂k) ∈ <m×q is a generalized

sensitivity matrix, and Λ(∆t) ∈ <m×m is a diagonal matrix with elements given by

λii =
∆t

pi!
, i = 1, 2, . . . , m (34)

where pi, i = 1, 2, . . . , m is the lowest order of the time derivative of ci[x̂(t), t] in which any

component of d(t) first appears due to successive differentiation and substitution for ˙̂xi(t)

on the right side. The ith component of z(x̂,∆t) is given by

zi(x̂,∆t) =

pi
∑

k=1

∆tk

k!
Lk

f (ci) (35)

where Lk
f (ci) is the kth Lie derivative, defined by

L0f (ci) = ci

ÃLk
f (ci) =

∂Lk−1
f (ci)

∂x̂
f , for k ≥ 1

(36)
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The ith row of S(x̂) is given by

si =
{

Lg1

[

Lpi−1
f (ci)

]

, . . . , Lgq

[

Lpi−1
f (ci)

]}

, i = 1, 2, . . . , m (37)

where gj is the jth column of G(t), and the Lie derivative in equation (37) is defined by

Lgj

[

Lpi−1
f (ci)

]

≡
∂Lpi−1

f (ci)

∂x̂
gj, j = 1, 2, . . . , q (38)

Equation (37) is in essence a generalized sensitivity matrix for nonlinear systems.

A loss function consisting of the weighted sum square of the measurement-minus-estimate

residuals plus the weighted sum square of the model correction is minimized, given by

J =
1

2
[ỹ(tk+1)− ŷ(tk+1)]

T R−1 [ỹ(tk+1)− ŷ(tk+1)] +
1

2
dT (tk)Wd(tk) (39)

where W ∈ <q×q is a positive semi-definite weighting matrix. Substituting equation (33)

into equation (39), the necessary conditions for the minimization of equation (39) lead to

the following model error solution [8]:

d(tk) = −
{

[Λ(∆t)S(x̂k)]T R−1Λ(∆t)S(x̂k) + W
}−1

× [Λ(∆t)S(x̂k)]T R−1 [z(x̂k,∆t)− ỹ(tk+1) + ŷ(tk)]
(40)

Therefore, given a state estimate at time tk, then equation (40) is used to process the

measurement at time tk+1 to find d(tk) to be used in [tk, tk+1] to propagate the state estimate

to time tk+1 using equation (30). The weighting matrix W serves to weight the relative

importance between the propagated model and measured quantities. If this matrix is set to

zero, then no weight is placed on minimizing the model corrections so that a memoryless

estimator is given.

Attitude and Position Determination

In this section the predictive filter is used to determine attitude and position from LOS

measurements using the colinearilty equations. The attitude matrix A in equation (2) is

parameterized by the quaternion, defined as [11]

q ≡

[

%

q4

]

(41)
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with

% ≡
[

q1 q2 q3

]T

= e sin(θ/2) (42a)

q4 = cos(θ/2) (42b)

where e is a unit vector corresponding to the axis of rotation and θ is the angle of rotation.

The quaternion satisfies a single constraint given by qTq = 1. The attitude matrix is related

to the quaternion by

A(q) = ΞT (q)Ψ(q) (43)

with

Ξ(q) ≡

[

q4I3×3 + [%×]

−%T

]

(44a)

Ψ(q) ≡

[

q4I3×3 − [%×]

−%T

]

(44b)

The states in the predictive filter are given by the quaternion q and the position vector p

so that x = [qT pT ]T . The propagation model for attitude determination is given by the

quaternion kinematics model [11], and the propagation model for position determination is

assumed to be given by a simple first-order process:

˙̂q =
1

2
Ξ(q̂)dq (45a)

˙̂p = dp (45b)

where the model error vector in this case is given by d = [dT
q dT

p ]T . The true observation

equation in the predictive filter is given by yi = Ari, i = 1, 2, . . . , N . The lowest-order

time derivative of both the quaternion and position in yi in which any component of d first

appears in equation (45) is one. So the S matrix in the predictive filter, formed by using

equation (37), can be shown to be given by

S =













[A(q̂)r̂1×] −A(q̂)ζ̂
−1/2
1 (I3×3 − r̂1r̂

T
1 )

[A(q̂)r̂2×] −A(q̂)ζ̂
−1/2
2 (I3×3 − r̂2r̂

T
2 )

...
...

[A(q̂)r̂N×] −A(q̂)ζ̂
−1/2
N (I3×3 − r̂N r̂T

N)













(46)
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The remaining quantities in equation (40) can be shown to be given by

ỹ = [b̃T
1 b̃T

2 . . . b̃T
N ]T (47a)

ŷ = [rT
1A

T (q̂) rT
2A

T (q̂) . . . rT
NA

T (q̂)]T (47b)

Λ = ∆t I(3N)×(3N) (47c)

R = diag[σ21I3×3 σ
2
2I3×3 . . . σ

2
NI3×3] (47d)

z(x̂,∆t) = 0 (47e)

ν = [υT
1 υ

T
2 . . . υT

N ]T (47f)

Therefore, the following model error equation is developed:

dk ≡ d(tk) = −
1

∆t
(STR−1S)−1

N
∑

i=1

σ−2i

[

[A(q̂)r̂i×]

ζ̂
−1/2
i (I3×3 − r̂ir̂

T
i )AT (q̂)

]

(b̃∆i − b̂i) (48)

where the superscript ∆ denotes that the quantity is measured at time tk+1 (all other quan-

tities are at time tk). The determined quaternion can be found by integrating equation (45a)

from time tk to tk+1. Because dq is assumed to be constant over this interval, a discrete

propagation for equation (45a) can be used, given by

q̂k+1 = [χkI4×4 + µkΩ(ωk)]q̂k (49)

where

χk = cos

(

1

2
‖dqk

‖∆t

)

(50a)

µk = sin

(

1

2
‖dqk

‖∆t

)

(50b)

ωk = dqk
/‖dqk

‖ (50c)

Ω(ωk) =

[

− [ωk×] ωk

−ωT
k 0

]

(50d)

A discrete propagation can also be used for equation (45b), given by

p̂k+1 = p̂k + ∆tdpk
(51)

For practical applications the sampling interval should be well below Nyquist’s limit [12].

Equations (48)-(51) are used to determine the attitude and position given LOS measurements

at time tk+1 and previous estimates at time tk.
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Covariance

In this section an error covariance expression is derived for the new attitude and position

determination algorithm. The attitude error propagation can be derived using a similar

approach found in Ref. [13]. The small angle attitude-error perturbation (δα) and position-

error perturbation (δp) equations are given by

δα̇ = −[dq×]δα+ δdq (52a)

δṗ = δdp (52b)

where δdq and δdp are model error perturbations. The discrete propagation equations are

given by

δαk+1 = Φkδαk + Γkδdqk
(53a)

δpk+1 = δpk + ∆t δdpk
(53b)

where

Φk = e−[dq×]∆t (54a)

Γk =

∫ ∆t

0

e−[dq×]t dt (54b)

The true output is given by a first-order expansion in the predictive filter output [8], so that

yk+1 = yk + ∆tS̄kd̄k (55)

where S̄k and d̄k correspond to the true quantities of Sk and dk, respectively. Therefore,

using equations (31), (55) and (47) in equation (40) leads to the following model error vector:

dk = (1/∆t)Kk

(

yk − ŷk + νk+1 + ∆tS̄kd̄k

)

(56)

where

Kk ≡
(

ST
k R

−1Sk

)−1
ST

k R
−1 (57)

The true position vector is given by p = δp + p̂. Next, using a small-angle approximation,

similar to equation (8), and making use of the following small perturbation in the reference
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vector

ri − r̂i ≈
∂r̂i

∂p̂
δp, i = 1, 2, . . . , N (58)

leads to

A(q)ri − A(q̂)r̂i ≈ [A(q̂)r̂i×] δα− A(q̂)ζ̂
−1/2
i (I3×3 − r̂ir̂

T
i )δp, i = 1, 2, . . . , N (59)

Therefore, from the definitions of yk, ŷk and Sk, equation (59) can be re-written in compact

form as

yk − ŷk ≈ Sk

[

δα

δp

]

(60)

Now, if δα is small, using equation (15), and ignoring second-order terms the following

approximation is given:

S̄k = Sk

[

I3×3 + [δα×] 03×3

03×3 I3×3

]

(61)

Hence, since KkSk = I6×6, and using equations (56), (60) and (61), with δdq = d̄q − dq and

δdp = d̄p − dp, the model error perturbation is now given by

[

δdqk

δdpk

]

= −
1

∆t
Kkνk+1 −

1

∆t

[

(

I3×3 −∆t[d̄qk
×]
)

δαk

δpk

]

(62)

Substituting equation (62) into equation (53) leads directly to

[

δαk+1

δpk+1

]

=

[

Φk − (1/∆t)Γk + Γk[d̄qk
×]

03×3

]

δαk −

[

(1/∆t)Γk 03×3

03×3 I3×3

]

Kkνk+1 (63)

If ∆t is small, as assumed in this approach, i.e. the sampling interval is within Nyquist’s

limit, then the quantities in equation (54) can be approximated adequately by

Φk ≈
(

I3×3 −∆t[d̄qk
×]
)

(64a)

Γk ≈ ∆t I3×3 (64b)
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Substituting these quantities into equation (63) leads to

[

δαk+1

δpk+1

]

= −Kkνk+1 (65)

The cancellation of the terms in δαk reflects that setting W = 0 in equation (40) gives a

memoryless estimator. The estimate error covariance is now clearly given by

Pk+1 ≡ E
{

[

δαT
k+1 δp

T
k+1

]T [

δαT
k+1 δp

T
k+1

]

}

= KkRK
T
k (66)

This can adequately be approximated by using the covariance at time tk with

Pk ≈ KkRK
T
k (67)

since the errors introduced by this approximation are of second-order in ∆t‖d‖, which can

be neglected. From the definitions of Sk, Kk and R, the error covariance is equivalent within

first-order to equation (10). Therefore, the estimator given by equations (48)-(51) is an

efficient estimator since it achieves the Cramér-Rao lower bound [9].

Simulation Results

In the following simulation the VISNAV system is used for navigation during a 45m to

zero approach of a vehicle in 30 minutes (see Fig. 3). The vehicle also performs a 10 degree roll

and pitch maneuver in the 30 minute timespan (the orientation is given by a 1-2-3 sequence).

The attitude and position data update rate is 100Hz, and for sake of simplicity the camera

image frame is assumed to be the same as that of the vehicle body frame. Six beacons

are used within a volume of 1m × 0.5m × 1m, with locations depicted in Fig. 4. The PSD

measurement error is assumed to be Gaussian with a standard deviation of 1/5000 of the focal

plane dimension, which for a 90 degree field-of-view corresponds to an angular resolution of

90/5000 ' 0.02 degrees. The initial conditions for this simulation are set to their respective

true values. Attitude and position determination is accomplished using equations (48)-(51).

A plot of the (roll, pitch, yaw) attitude errors with 3σ outliers using equation (10) is shown

in Fig. 5. The attitude errors at the beginning of the maneuver are relatively large at around

1 degree, and reduce to values less than 4/100th of a degree at rendezvous. As the vehicle

approaches the beacons they more completely span the PSD active area so that the attitude

becomes more observable. A plot of the (X, Y, Z) position errors is shown in Fig. 6. The

position errors at the beginning of the maneuver are around 1 meter, and reduce to errors of

a few millimeters as the vehicle reaches its target destination just in front of the beacons. As

in the case of the attitude errors, the position errors decrease as the vehicle approaches the
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beacons since the triangulation problem becomes better conditioned. It should be noted that

these results are not counterintuitive to the two vector observation study shown previously

since multiple beacons are now used for attitude and position determination.

To test the robustness of the new algorithm poor initial conditions are introduced. As

mentioned previously, because the new algorithm is sequential and noniterative unlike the

GLSDC process, convergence is given over the sampled intervals. A plot of the attitude and

position errors is shown in Fig. 7. The new algorithm converges very quickly (in less than

0.1 seconds). This has significant advantages over the GLSDC approach in Ref. [2], which

may take several iterations at each time stop to converge.

Conclusions

A new optimal and efficient algorithm has been developed for attitude and position

determination from line-of-sight measurements. The new noniterative algorithm provides

sequential estimates using a recursive one-time step ahead approach. Attitude and position

determination is accomplished by calculating the angular velocity and linear velocity compo-

nents which are used to propagate simple kinematic models. An error covariance expression

has been derived using a maximum likelihood approach of the associated cost function. Fur-

thermore, an observability analysis using two line-of-sight observations indicated that the

beacon that is closest to the target provides the most attitude information but has the least

position information, and the beacon that is farthest to the target provides the most position

information but has the least attitude information. An error covariance expression has also

been derived for the new algorithm using perturbation techniques. This covariance has been

shown to be equivalent to the covariance derived from maximum likelihood if the sample

interval is small enough (which poses no problem for most applications). Simulation results

indicate that the new algorithm provides optimal attitude and position estimates, and is

robust with respect to initial condition errors.
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