
AAS 07-213

AVERAGING QUATERNIONS

Yang Cheng∗, F. Landis Markley†, John L. Crassidis‡,

and Yaakov Oshman§

This paper presents an algorithm to average a set of quaternion observa-
tions. The average quaternion is determined by minimizing the weighted
sum of the squared Frobenius norms of the corresponding attitude matrix
differences, subject to the unit-norm constraint in the determined solution.
Two cases are presented: one that incorporates scalar weights and one that
incorporates general weights on the quaternions. For both cases, the opti-
mal quaternion is found from an eigenvalue/eigenvector decomposition of a
matrix formed by the weights and quaternion observations. The relation-
ship between the solution for the average quaternion and familiar q-method
for attitude estimation is discussed. Also, the uniqueness of the solution
is shown and the relationship of the matrix weighted case to maximum
likelihood estimation is given.

INTRODUCTION

AN algorithm that averages quaternions in an optimal manner is useful for many ap-
plications. For example, modern-day star trackers provide a quaternion-out capabil-

ity. When multiple trackers are used, it is desirable to properly average the associated
quaternions without recomputing the attitude from the the raw star tracker data. Other
applications involve particle filtering [1] and multiple-model adaptive estimation [2], where
weighted quaternions are used to determine the quaternion estimate, which require some
sort of optimal quaternion averaging scheme.

For spacecraft attitude estimation applications, [1] derives an optimal averaging scheme
to compute the average of a set of weighted attitude matrices using the singular value
decomposition method [3]. Focusing on a 4-dimensional quaternion Gaussian distribution
on the unit hypersphere, [4] provides an approach to computing the average quaternion by
minimizing a quaternion cost function that is equivalent to the attitude matrix cost function
in [1]. Motivated by [1] and extending its results, this Note derives an algorithm that deter-
mines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions.
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Furthermore, a sufficient condition for the uniqueness of the average quaternion, and the
equivalence of the minimization problem, stated herein, to maximum likelihood estimation,
are shown.

For the scalar weighted case the goal is to find the average of a set of n attitude estimates,
qi, in quaternion form with associated weights wi. The simple procedure

q̄ ,

(

n
∑

i=1

wi

)−1 n
∑

i=1

wi qi (1)

has two flaws. The first and most obvious flaw, that q̄ is not a unit quaternion, is easily
fixed by the ad hoc procedure of dividing q̄ by its norm. The second flaw is subtler. It is
well known that q and −q represent the same rotation, so that the quaternions provide a
2:1 mapping of the rotation group [5]. Thus changing the sign of any qi should not change
the average, but it is clear that Eq. (1) does not have this property.

The observation that we really want to average attitudes rather than quaternions, first
presented in [1], provides a way to avoid both of these flaws. Following this observation,
the average quaternion should minimize a weighted sum of the squared Frobenius norms of
attitude matrix differences:

q̄ , arg min
q∈S3

n
∑

i=1

wi ‖A(q) − A(qi)‖
2
F

(2)

where S
3 denotes the unit 3-sphere.

THE AVERAGE QUATERNION

Using the definition of the Frobenius norm, the orthogonality of A(q) and A(qi), and
some properties of the matrix trace (denoted by Tr) gives

‖A(q) − A(qi)‖
2
F

= Tr
{

[A(q) − A(qi)]
T [A(q) − A(qi)]

}

= 6 − 2Tr
[

A(q)AT (qi)
]

(3)

This allows us to express Eq. (2) as

q̄ = arg max
q∈S3

Tr
[

A(q)BT
]

(4)

where

B ,

n
∑

i=1

wi A(qi) (5)

Equation (4) is in a form found in solving Wahba’s Problem [6], so many of the techniques
used for solving that problem [7] can be applied to finding the average quaternion. If compu-
tational efficiency is important, the well-known QUEST algorithm [8] can be recommended,
as will be discussed later. The matrix B is known as the attitude profile matrix [9] since it
contains all the information on the attitude.

A detailed review of quaternions can be found in [5], but we only need a few results

for this paper. We denote the vector and scalar parts of a quaternion by q ,
[

̺T q4

]T
,
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which are assumed to obey the normalization condition ||̺||2 + q2
4 = qT q = 1. The attitude

matrix is related to the quaternion by

A(q) =
(

q2
4 − ||̺||2

)

I3×3 + 2̺ ̺T − 2 q4[̺×] (6)

where I3×3 is a 3 × 3 identity matrix and [̺×] is the cross-product matrix defined by

[̺×] ,





0 −q3 q2

q3 0 −q1

−q2 q1 0



 (7)

Equation (6) can be used to verify the identity

Tr[A(q)BT ] = qT Kq (8)

where K is the symmetric traceless 4 × 4 matrix

K ,





B + BT − Tr(B)I3×3 z

zT Tr(B)



 (9)

with z being defined by
[z×] , BT − B (10)

This is the basis of Davenport’s q-method [7]. The case at hand admits considerable sim-
plification, however. Substituting Eq. (6) for A(qi) into Eq. (5) and then into Eq. (9)
gives

K , 4M − wtotI4×4 (11)

where wtot ,
∑

n

i=1 wi, I4×4 is a 4 × 4 identity matrix and M is the 4 × 4 matrix

M ,

n
∑

i=1

wi qi q
T
i (12)

Thus the average quaternion can be found by the following maximization procedure:

q̄ = arg max
q∈S3

qT Mq (13)

The solution of this maximization problem is well known [10]. The average quaternion is
the eigenvector of M corresponding to the maximum eigenvalue. This avoids both of the
flaws of Eq. (1). The eigenvector is chosen to have unit norm to avoid the first flaw. The
second flaw is obviously avoided because changing the sign of any qi does not change the
value of M . The averaging procedure only determines q̄ up to a sign, which is consistent
with the 2:1 nature of the quaternion representation. If the QUEST algorithm is used to
find the eigenvector associated with the maximum eigenvalue, then the K matrix in Eq. (11)
must be used instead of the M matrix in Eq. (12), because the QUEST algorithm requires
a traceless matrix.

A closer look at the attitude error matrix defined by A(δqi) , A(q)AT (qi) gives a nice
interpretation of the optimization problem. The error quaternion is the product of q and
the inverse of qi, which can be written as [5]

δqi , q⊗ q−1
i

= [Ξ(qi) qi]
T

q (14)
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where

Ξ(q) ,

[

q4I3×3 + [̺×]
−̺T

]

(15)

Note for future reference that [Ξ(qi) qi] is an orthogonal matrix representing a norm-
preserving rotation in quaternion space. The vector and scalar parts of the error quaternion
are given by

δ̺i = êi sin(δφi/2) = ΞT (qi)q (16a)

δq4i = cos(δφi/2) = qT
i q (16b)

with êi being the unit Euler axis and δφi the rotation angle of the error. Substituting
Eqs. (16) into Eqs. (2) and (3) and using the quaternion normalization condition shows
that the average quaternion is given by

q̄ = arg min
q∈S3

n
∑

i=1

wi||δ̺i||
2 = arg min

q∈S3

n
∑

i=1

wi sin2(δφi/2) (17)

The fact that the average quaternion minimizes the weighted sum of the squared lengths
of the vector parts of the error quaternions, or the weighted sum of the squares of the
sines of the half-error-angles, may be more intuitively pleasing than the argument based on
the Frobenius norm. Equation (17) will be used in the sequel for the generalization of the
results to non-scalar weights.

Averaging Two Quaternions

The two quaternion case can be solved in closed form. The optimal quaternion average
is given by

q̄ = ±
[(w1 − w2 + z)q1 + 2w2(q

T
1 q2)q2]

||(w1 − w2 + z)q1 + 2w2(qT
1 q2)q2||

= ±
[2w1(q

T
1 q2)q1 + (w2 − w1 + z)q2]

||2w1(qT
1 q2)q1 + (w2 − w1 + z)q2||

(18)

where z ,

√

(w1 − w2)2 + 4w1w2(qT
1 q2)2. These two forms are equivalent if qT

1 q2 6= 0. If

qT
1 q2 = 0, then z = |w1 − w2|; the first form gives the correct limit q̄ = q1 if w1 > w2,

while the second form gives the correct limit q̄ = q2 if w1 < w2. If qT
1 q2 = 0 and w1 = w2,

neither form has a well-defined limit. This is true because the maximum eigenvalue of M ,
which is equal to w1 = w2, is not unique in this case. This is the only two-observation case
for which the average quaternion is not uniquely defined.

UNIQUENESS OF THE AVERAGE QUATERNION

Because the average quaternion q̄ is the eigenvector associated with the maximum eigen-
value of M , q̄ is unique if and only if the two largest eigenvalues of M are not equal. A
sufficient condition for the uniqueness of the average quaternion is shown here. It is assumed
there is a reference frame in which every quaternion estimate qi differs from the identity
quaternion qref = [0 0 0 1]T by a rotation of less than π/2. This section proves that the
average quaternion q̄ minimizing Eq. (2) is unique with this assumption.
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The angle of rotation between qi and qref is given by 2 arccos |q4i
|. When the angle is

less than π/2, q2
4i

> 1/2, hence

q2
4i

> q2
1i

+ q2
2i

+ q2
3i

(19)

Now consider an attitude quaternion that is orthogonal to the identity quaternion qref, given

by q⊥ =
[

q⊥1 q⊥2 q⊥3 0
]T

. Define the gain function g(q) , qT Mq. The gain functions of
q⊥ and qref are

g(q⊥) =
n
∑

i=1

wi(q
⊥
1 q1i

+ q⊥2 q2i
+ q⊥3 q3i

)2 (20)

and

g(qref) =

n
∑

i=1

wi q
2
4i

(21)

We have
g(qref) > g(q⊥) (22)

because
q2
4i

> (q⊥1 q1i
+ q⊥2 q2i

+ q⊥3 q3i
)2 (23)

To prove inequality (23), notice that, by the Cauchy inequality,

(q⊥1 q1i
+ q⊥2 q2i

+ q⊥3 q3i
)2 ≤

[

(q⊥1 )2 + (q⊥2 )2 + (q⊥3 )2
]

(q2
1i

+ q2
2i

+ q2
3i

) = q2
1i

+ q2
2i

+ q2
3i

(24)

where the fact that q⊥ has unit norm has been used. Inequality (23) then follows upon
combining Eqs. (19) and (24).

Now, if the two largest eigenvalues of M are equal, the eigenvectors associated with the
maximum eigenvalue span a 2D subspace. The intersection of this subspace and the orthog-
onal complement of the identity quaternion (the subspace spanned by all q⊥ quaternions)
cannot be empty. A quaternion q in that intersection must satisfy g(q) = g(q̄) ≥ g(qref)
and g(q) < g(qref) simultaneously. By contradiction, the two largest eigenvalues cannot be
equal, hence the average quaternion is unique.

MATRIX WEIGHTED CASE

This section expands upon the scalar weighted case to include general matrix weights.
For this case, a matrix weighted version of the minimization problem in Eq. (17) is assumed:

q̄ , arg min
q∈S3

n
∑

i=1

δ̺T
i R−1

i
δ̺T

i = arg min
q∈S3

n
∑

i=1

qT Ξ(qi)R−1
i

ΞT (qi)q (25)

where R−1
i

is the ith symmetric weighting matrix. In this case the average quaternion is
the eigenvector corresponding to the maximum eigenvalue of the matrix

M = −

n
∑

i=1

Ξ(qi)R−1
i

ΞT (qi) (26)

5



If R−1
i

= wi I3×3, the identity Ξ(qi) ΞT (qi) = I4×4 − qi q
T
i

can be used to show that
M = M −wtot I4×4, where M is given by Eq. (12). The traceless K matrix for the matrix-
weighted case is

K = 4M + Tr

(

n
∑

i=1

R−1
i

)

I4×4 =
n
∑

i=1

Ki (27)

with
Ki , −4Ξ(qi)R−1

i
ΞT (qi) + Tr

(

R−1
i

)

I4×4 = [Ξ(qi) qi] K̃i [Ξ(qi) qi]
T (28)

where

K̃i = 2





2Fi − Tr(Fi)I3×3 03×1

0T
3×1 Tr(Fi)



 (29)

Fi ,
1

2
Tr(R−1

i
) I3×3 − R−1

i
(30)

and 03×1 denotes a 3 × 1 vector of zeros.

The matrix K̃i has the same structure as the one in Eq. (9) with the corresponding
attitude profile matrix given by B̃i = 2Fi. Because [Ξ(qi) qi] is an orthogonal matrix,
Eq. (28) shows that Ki and K̃i are related by a rotation. Their corresponding attitude
profile matrices are related by the same rotation. The attitude profile matrix corresponding
to Ki is given by Bi = B̃i A(qi), as is shown in the Appendix, and the attitude profile
matrix corresponding to K is given by

B =

n
∑

i=1

Bi = 2

n
∑

i=1

FiA(qi) (31)

If R−1
i

= wi I3×3, Eqs. (27) and (31) reduce to the corresponding quantities for scalar
weights.

Relation to Maximum Likelihood Estimation

The relationship of the minimization problem in Eq. (25) to a maximum likelihood
estimation problem is now shown. Reference [11] establishes a maximum likelihood problem
for attitude matrices, which is related to the averaging problem in this paper. The maximum
likelihood estimate of the attitude matrix, denoted ÂML, is given as

ÂML , arg min
A∈SO

3

1

2

n
∑

i=1

Tr
[

(Ai − A)TFi(Ai − A)
]

(32)

where Ai is the ith given attitude matrix, SO
3 denotes the (special orthogonal) group of

rotational matrices and the matrix Fi defined by Eq. (30) is the Fisher information matrix
of the small attitude matrix errors, with Ri being the covariance of the small attitude vector
errors. Using properties of the matrix trace, we can write

Ji(A) ,
1

2
Tr
[

(Ai − A)TFi(Ai − A)
]

= Tr(Fi) −
1

2
Tr(ABT

i ) (33)

where Bi is the attitude profile matrix defined by Eq. (31). Using A = A(q) and the
definition of Fi gives Ji as a function of the quaternion:

Ji(q) = Tr(Fi) −
1

2
Tr
[

A(q)BT
i

]

=
1

2

[

Tr(R−1
i

) − qT Ki q
]

= 2 δ̺T
i R−1

i
δ̺T

i (34)
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where Eqs. (8) and (28) have been used. Using the invariance property of the maximum
likelihood estimate [12],

ÂML = A(q̂ML) (35)

where q̂ML is the maximum likelihood estimate of the quaternion. Hence, using Eq. (34) in
Eq. (32) gives

q̂ML = arg min
q∈S3

n
∑

i=1

δ̺T
i R−1

i
δ̺T

i (36)

which is identical with Eq. (25). Thus, we conclude that the average quaternion defined by
Eq. (25) is a maximum likelihood estimate.

The error-covariance associated with the small-angle attitude errors of the average
quaternion is given by

R̄ =

{

ΞT (q̄)

[

n
∑

i=1

Ξ(qi)R
−1
i

ΞT (qi)

]

Ξ(q̄)

}−1

(37)

For small errors, this matrix is well approximated by

R̄ ≈

(

n
∑

i=1

R−1
i

)−1

(38)

Equation (38) can be used to develop 3-sigma bounds for the attitude errors between the
average and true quaternion.

CONCLUSIONS

An algorithm is presented for determining the average norm-preserving quaternion from
a set of weighted quaternions. The solution involves performing an eigenvalue/eigenvector
decomposition of a matrix composed of the given quaternions and weights. For both the
scalar- and matrix-weighted cases, the optimal average quaternion can be determined by the
computationally efficient QUEST algorithm. A uniqueness sufficient condition is presented
for the scalar-weighted case. In the matrix-weighted case, when the matrix weight is given
by the inverse of the covariance of the small attitude-vector errors, the average quaternion
is shown to be a maximum likelihood estimate. Thus, in this case, the averaging proce-
dure introduced here enjoys the well known desirable properties of maximum likelihood
estimators.

APPENDIX

This appendix proves that Bi = B̃i A(qi). Here we let unsubscribed q denote a normal-
ized, but otherwise completely arbitrary, quaternion. Then from Eqs. (8) and (28),

Tr[A(q)BT
i ] = qT Ki q = qT [Ξ(qi) qi] K̃i [Ξ(qi) qi]

T
q (A-1)

Using Eq. (14) and the fact that the attitude profile matrix of K̃i is B̃i gives

Tr[A(q)BT
i ] = δqT

i K̃i δqi = Tr[A(δqi)B̃
T
i ] (A-2)
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It follows from Eq. (14) that A(δqi) = A(q⊗ q
−1
i

) = A(q)AT (qi), so

Tr[A(q)BT
i ] = Tr[A(q)AT (qi)B̃

T
i ] (A-3)

Since this must be true for any quaternion q, it follows that

Bi = [AT (qi)B̃
T
i ]T = B̃i A(qi) (A-4)
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