
Computer Communications 210 (2023) 342–355

A
0

✩

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

NeXT: Architecture, prototyping and measurement of a software-defined
testing framework for integrated RF network simulation, experimentation
and optimization✩,✩✩

Jiangqi Hu a, Zhiyuan Zhao a, Maxwell McManus a, Sabarish Krishna Moorthy a, Yuqing Cui a,
Nicholas Mastronarde a, Elizabeth Serena Bentley b, Michael Medley b, Zhangyu Guan a,∗

a Department of Electrical Engineering, University at Buffalo, USA
b Air Force Research Laboratory (AFRL), Rome, NY 13440, USA

A R T I C L E I N F O

Keywords:
Software-defined testbed
Wireless networks
AI/ML

A B S T R A C T

To support rigorous and repeatable experimental evaluation of wireless networked systems, the community has
made significant efforts to develop experimentation platforms. However, existing platforms primarily focus on
the data plane, i.e., the forwarding infrastructure, without explicitly considering the control plane. To fill this
gap, in this work we develop NeXT, a software-defined playground with integrated wireless network simulation,
experimentation and optimization capabilities. We first design the data plane, which integrates an event-driven
broadband wireless network simulator called UBSim and a software-defined wireless network testing facility
called RoboNet. We then design NeXT’s control plane, where a software toolchain is developed and deployed
to support both traditional model-based optimization and new data-driven control techniques. We showcase
the experimentation capability of NeXT considering a series of optimization and control problems in different
wireless networks.
1. Introduction

In the past decades, the evolution of wireless network systems has
significantly changed and will continue to change the way we live and
work, our commercial activities as well as national security. However,
as of today the wireless research community is still lacking a mature
ecosystem to support rigorous and repeatable experimental evaluation
of wireless networked systems. To fill this gap, significant efforts have
been made by the community. A recent milestone is the NSF Platforms
for Advanced Wireless Research (PAWR) program, which attempts to
develop four large-scale outdoor experimentation platforms for ad-
vanced wireless research [1]. As of today, three of them have already
been developed and are available to the wireless community. These
are POWDER-RENEW for experiments in the sub-6 GHz frequency
bands [2], COSMOS for experiments in both sub-6 GHz and mmWave

✩ A preliminary shorter version of this paper appeared in the Proceedings of IEEE FNWF Workshop on Federated Testbed as a Service for Future Networks: Challenges
& the State of the Art.

✩ Distribution A. Approved for public release: Distribution unlimited: AFRL-2023-2490 on 22 May 2023.
∗ Corresponding author.
E-mail addresses: jiangqih@buffalo.edu (J. Hu), zzhao24@buffalo.edu (Z. Zhao), memcmanu@buffalo.edu (M. McManus), sk382@buffalo.edu

(S.K. Moorthy), yuqingcu@buffalo.edu (Y. Cui), nmastron@buffalo.edu (N. Mastronarde), elizabeth.bentley.3@us.af.mil (E.S. Bentley),
michael.medley@us.af.mil (M. Medley), guan@buffalo.edu (Z. Guan).

frequency bands as well as edge computing [3], and AERPAW for
experiments with wireless unmanned aerial vehicles (UAVs) [4].

While existing community shared facilities have significantly ad-
vanced experimental research for new wireless systems, it is still chal-
lenging to fully meet the needs of experimental wireless research in the
era of data-driven networking. First, to simplify the modeling, control
and optimization of heterogeneous NextG networks, data-driven control
based on Artificial Intelligence (AI) and Machine Learning (ML) has at-
tracted significant research attention [5,6]. However, the effectiveness
of AI/ML algorithms largely relies on sufficient well-labeled data for
policy training [7,8]. It is typically time consuming and sometimes un-
safe to collect training data in real-world environments [9,10]. Second,
the design, prototyping and verification of new network control algo-
rithms require engineers to grapple simultaneously with mathematical
modeling, distributed control, protocol design across different layers of
vailable online 20 August 2023
140-3664/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2023.08.018
Received 27 March 2023; Received in revised form 15 July 2023; Accepted 17 Aug
ust 2023

https://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
mailto:jiangqih@buffalo.edu
mailto:zzhao24@buffalo.edu
mailto:memcmanu@buffalo.edu
mailto:sk382@buffalo.edu
mailto:yuqingcu@buffalo.edu
mailto:nmastron@buffalo.edu
mailto:elizabeth.bentley.3@us.af.mil
mailto:michael.medley@us.af.mil
mailto:guan@buffalo.edu
https://doi.org/10.1016/j.comcom.2023.08.018
https://doi.org/10.1016/j.comcom.2023.08.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2023.08.018&domain=pdf

Computer Communications 210 (2023) 342–355J. Hu et al.

m
a
t
o
a
T
a

Fig. 1. NeXT testbed architecture and paper organization.
s
a
a
c
i
w
t
h
a
t
i
t
o
A
s
H
w
w
A

o
i
a
o

3

t
b
R

3

the protocol stack, as well as their implementation and deployment.
This process is typically complex, tedious and error-prone.

To address these challenges, in this paper we present NeXT, a software-
defined wireless Network X-Control Testbed, where ‘‘X’’ refers to opti-
ization, simulation and experimentation. In a nutshell, NeXT provides
n integrated testing framework, in which researchers are allowed
o generate in an automated manner distributed cross-layer network
ptimization algorithms, simulate the generated algorithms in software,
nd then validate the simulation results based on testbed experiments.
he overall architecture of NeXT is illustrated in Fig. 1, where there
re two planes, Data Plane and Control Plane. The former provides

simulation and experimentation capabilities, and the latter implements
network optimization and control functionalities.

The main contributions of this work are as follows:

• We first design the data plane for the NeXT testbed. In this plane,
we first integrate UBSim with NeXT for software-based network
simulation. UBSim is an event-driven simulator that has been
developed at the University at Buffalo for broadband (microwave,
mmWave and terahertz bands) aerial and ground wireless net-
working. We also develop a testing facility for mobile networks
based on software defined radios (SDRs).

• We then design NeXT’s control plane, which supports traditional
model-based control and new data-driven control techniques. For
the former, Wireless Network Operating System (WNOS) [11]
has been deployed to enable automated generation of distributed
cross-layer control algorithms. For the latter, a reinforcement
learning (RL) repository is developed supporting various RL al-
gorithms. A scheme to automatically adjust robots’ posture and
positions is proposed to mitigate the error introduced by the
mobile hotspots.

• We showcase the optimization, simulation and experimentation
capabilities of the NeXT testbed considering a series of wireless
network control problems. These include narrow-band multi-hop
communications, srsRAN-based cellular networks and millimeter
wave (mmWave)-band communications. A set of application pro-
gramming interfaces (APIs) have been designed to simplify access
to NeXT’s data and control planes.

The remainder of the paper is organized as follows. In Section 2, we
discuss related work. We present the testbed’s data plane in Section 3
and its control plane design in Section 4. Seven example experiments
and results are given in Section 5. In Section 6, we discuss the new
research topics that can be studied by using our testbed. Finally, we
conclude in Section 7.

2. Related work

With the development of wireless technology, researchers from both
industry and academia are no longer satisfied testing their algorithms
in a single simulated environment. Thus a lot of testbeds have been
proposed and established to meet the needs of experimentation and
verifying algorithms in the real world. The NSF PAWR program aims to
enable experimental wireless communications research across devices,
communication techniques, networks, systems, and services conceived
by the US academic and industrial wireless research community and
deployed in partnership with local communities [12]. POWDER is a
343

s

facility for testing future wireless communications and networking
technologies in a city-scale ‘‘living laboratory’’ [2]. COSMOS aims at
design, development, and deployment of a city-scale advanced wireless
testbed to support real-world experimentation on next-generation wire-
less technologies and applications [3]. Colosseum is the world’s largest
network emulator providing researchers with testing at scale, offsetting
the site specificity of a physical testbed [13]. AERPAW is the first aerial
wireless experimentation platform spanning 5G technologies and be-
yond and with the potential to create transformative wireless advances
for aerial systems [4]. In [14], the world’s first fully programmable and
open-source massive-multiple input multiple output (MIMO) platform
named RENEW is introduced. However, these platforms either do not
consider mobile nodes or do not provide data-driven tools that simplify
the experimentation process.

A unique national research infrastructure called FABRIC is pro-
posed in [15] to enable cutting-edge and exploratory research at-scale
in networking, cybersecurity, distributed computing and storage sys-
tems, machine learning, and science applications. DeterLab is a shared
testbed providing a platform for research in cybersecurity and serving a
broad user community [16]. An open-source platform called 𝑀3 is de-
igned in [17,18] to facilitate research in 5G vehicular networking and
utomotive sensing. In [19], a community-shared, open-source, open-
rchitecture infrastructure for mobile underwater wireless networks
alled mu-Net is proposed. Readers are referred to [20,21] for more
nformation about the aforementioned testbeds. Arena is an open-access
ireless testing platform [22] that can be used to test key wireless

echnologies, such as synchronized MIMO transmission schemes, multi-
op ad hoc networking, multi-cell long term evolution (LTE) networks,
nd spectrum sensing for cognitive radio. The authors in [23] propose
he SkyHaul platform for channel modeling in mobile scenarios. An
ntegrated testbed TeraNova for ultra-broadband wireless communica-
ions is developed in [24], which supports the testing and validation
f new terahertz (THz) channel models and physical layer solutions.
testbed based on FlockLab [25] deployed in a campus-scale is de-

igned in [26] to better support testing of long-range communications.
owever, these primarily focus on the physical platform’s development,
hile neglecting the potential benefits of pairing the physical testbed
ith a simulator (e.g., using the simulator to accelerate the training of
I/ML algorithms).
Different from the above discussed testing facilities that primarily focus

n the development of the forwarding infrastructure, i.e., the data plane,
n this work, we focus on both data and control planes and aim to design
software-defined testbed with integrated simulation, experimentation and
ptimization capabilities for mobile wireless networks.

. Data plane design

The data plane provides the forwarding infrastructure for the NeXT
estbed. As illustrated in Fig. 1, two forwarding infrastructures have
een designed: UBSim for software-based network simulations and
oboNet for experiments based on SDRs.

.1. Software simulations based on UBSim

UBSim, evolved from simulators in [6,27], is a new wireless network

imulator written in Python and based on the SimPy discrete-event

Computer Communications 210 (2023) 342–355J. Hu et al.
Fig. 2. Architectural overview of UBSim network simulator.
simulation framework [28]. The simulator provides a configurable
network-layer simulation supported by analytical models for various
PHY- and MAC-layer protocols. This lightweight computational design
enables faster-than-real-time iteration as well as on-the-fly adjustments
to the protocol stack of each simulated node, which sets UBSim apart
as a highly effective simulator for experiments focusing on protocol
stack and topology self-configuration. The various node mobility types
supported by UBSim enables investigation into aerial networking, in-
cluding both UAV swarm and hybrid aerial–ground network control
problems. UBSim supports general AI/ML algorithm deployments, and
has been demonstrated for reinforcement learning (RL), deep RL, and
multi-agent RL experiments.

As depicted in Fig. 2, UBSim comprises three primary modules to
handle the behavior definition of various network elements, as well as
three APIs to support a wide range of custom networking scenarios.
Specifically, the network element module (NEM) defines the behav-
iors of all types of communication nodes, environmental blockages,
channels, and the network as a whole. The network controller module
(NCM) organizes the information from the NEM and each user API
to define the network topology, environment, and control objective.
The discrete event module (DEM) then takes the resulting full scenario
definition and starts the discrete event-driven simulation process.

The simulator APIs offer full configuration over network behaviors,
environment specification, and control specification. Specifically, the
network configuration API provides control over parameters such as
frequency, bandwidth, mobility, and location of nodes, as well as
networking area and propagation characteristics. The environmental
definition API provides control over the locations and sizes of blockages
as well as their RF absorption coefficients over different frequency
bands. In general, all physical environmental features, including lab
benches, server rack, and UAV enclosure as shown in Fig. 3(a), are
modeled as blockages within the networking area. Finally, the custom
algorithm API provides access to the run time behavior of all the
nodes, such as mobility, transmission patterns, band association, among
others. Particularly, this API module provides direct support for experi-
mental applications of AI/ML for tasks such as network automation and
self-configuration.
344
The parallel deployment of UBSim alongside the NeXT testbed
provides several advantages. The highly configurable nature of UBSim
provides a virtual sandbox in which experiments can be designed and
evaluated for deployment on the NeXT testbed much faster than using
SDR hardware alone. Additionally, the speed of simulation design and
execution in UBSim enables pre-training or parallel training of AI
models prior to deployment on hardware. This is particularly important
for models in which significant amounts of environmental data must be
available to generate an optimal solution, such as those used for deep
learning and reinforcement learning. Furthermore, over-the-air data
collected from the NeXT testbed can be used to improve the accuracy
of data generated by UBSim by means of system identification [29],
addressing challenges associated with high-quality data collection for
AI/ML algorithms mentioned in Section 1.

3.2. Software-defined forwarding infrastructure: RoboNet

The design objective of RoboNet is to support experiments in wire-
less networks with mobile robots, such as mobile hotspots [30] and
wireless UAVs [31]. The testbed is located in 238 Davis Hall on the
University at Buffalo’s North Campus. Fig. 3 shows a snapshot of
RoboNet and the corresponding topology. At the center of RoboNet is a
netted enclosure of dimension 6 × 4× 2.1 m3, providing a safe space for
robot navigation. For mobile nodes, three wireless robots have been
designed based on SuperDroid vehicles and universal software radio
peripheral (USRP) SDRs. An indoor navigation system is also designed
based on Marvelmind beacons to provide indoor localization for the
robots. For static nodes, a set of USRP SDRs have been deployed over
the shelves on the left and right sides of the netted enclosure. All
the static software radios are controlled by a server rack of four Dell
workstations. The mobile software radios are controlled by the robots’
onboard computing hosts.

Static Nodes. The static nodes consist of 19 USRP N210, 5 USRP
B210 SDRs and 1 wAP 60G (AP). Each USRP N210 operates at fre-
quencies from DC to 6 GHz and can process up to 50 mega samples
per second (MS/s). Each USRP N210 is equipped with a CBX daughter-
board and two VERT900/VERT2450 antennas. These USRP SDRs are

Computer Communications 210 (2023) 342–355J. Hu et al.
Fig. 3. (a) Snapshot of the RoboNet testbed; (b) RoboNet network topology.
Fig. 4. (a) Snapshot of PDU setup; (b) PDU remote management interface.

connected via two switches to a server rack, comprising four Dell EMC
R340 PowerEdge workstations for baseband signal processing. Each
USRP B210 is designed for low-cost experimentation with continuous
frequency coverage from 70 MHz to 6 GHz. Each USRP B210 is also
equipped with two VERT2450 antennas. The five USRP B210s pro-
vide flexibility because they can be deployed to any place depending
on the requirements. The wAP 60G (AP) router is a product from
MikroTik [32] and can be used either as a point-to-point primary or
a point-to-multi-point primary.

The USRP SDRs are powered via three remotely accessible Cyber-
Power Power-Distribution-Units (PDUs), as shown in Fig. 4(a). These
PDUs are assigned with Ethernet LAN IP addresses 192.168.10.175,
192.168.10.176 and 192.168.10.177 and connected to edge servers via
switches. By getting access to the three default IP addresses, experi-
menters can power on, shut down and make a schedule with all static
USRP N210s remotely. Fig. 4(b) shows the PDU remote management
interface, via which experimenters can power on/off USRPs in real time
or at scheduled times.

Mobile Nodes. Three software-defined robot vehicles have been
designed for RoboNet based on a combination of SuperDroid robots and
USRP SDRs. Snapshots of the robot vehicles are shown in Fig. 5. The
SuperDroid robot serves as the mobile carrier of the software radios. A
programmable Mecanum wheel vectoring robot has been used in the
current design of the mobile nodes. Each robot comprises 4 Mecanum
wheels, 4 IG32 gear motors, 2 Sabertooth dual 5 A motor drivers, 1
Quadruple LS7366R Encoder and 1 Arduino UNO controller. Each robot
is powered by two 18 V/2.4 A PB (lead–acid) batteries. This allows each
robot vehicle to carry up to 50 lbs of payload, including the USRP SDRs
and their controlling host. Each robot is equipped with USRP SDRs for
programmable wireless communications. Currently, both USRP N210
and B210 can be supported by mobile nodes. Each robot can also carry
a wAP 60G to enable mmWave communications.

A Dell Latitude 5491 laptop with Intel Core™i7-8850H CPU@2.6
GHz*12 is used for robot control, USRP SDR control and baseband
signal processing. The connection between the controlling laptop and
the robot vehicle is established by an Arduino via USB port ‘‘/dev/tty-
ACM0’’. The mobile beacon is connected to the laptop via USB port
345
‘‘/dev/ttyACM1’’. The two default serial ports provide more flexibility
of our testbed. For example, by accessing the USB serial port, exper-
imenters can access the raw beacon location information and design
their own position algorithms, rather than using algorithms that we
provide. Finally, the movement of the robot is controlled and navigated
by the Arduino and the beacon via serial communications.

Indoor Positioning System. Because of the poor reception of GPS
signals in indoor environments, an indoor positioning system has been
deployed, as shown in Fig. 6. The system consists of a controller modem
(Fig. 6(a)) and 7 precise (with accuracy of ±2 cm) Marvelmind Super-
Beacons (Fig. 6(b)). Based on this system, the location of the mobile
beacon can be calculated using trilateration based on the propagation
delay of ultrasonic signals to a set of stationary beacons.

The 7 super beacons are divided into two groups: 4 static and 3
mobile beacons. As shown in Fig. 3(b), the 4 static beacons, 𝑏1, 𝑏2, 𝑏3
and 𝑏4, are attached to the four sides of the protective net. For example,
Fig. 6(b) shows the deployment of 𝑏1, which can communicate with
the controller modem, its neighbor beacons and the mobile beacon
using the selected frequency (19/25/31/37 kHz). According to the
exchanged information among the static beacons, the mobile beacon
and the modem, the robot locations will be updated in real time. We
adopt a Non-Inverse Architecture to set up the navigation system and
31 kHz is used as the communication frequency.

Finally, the controller modem is connected to the edge server via a
USB port. Through the control dashboard at the server, experimenters
can define a network map by assigning the origin point of the 3D
network, configuring beacon parameters (e.g., beacon address and
mode), and monitoring the movements of the mobile beacons mounted
on the robots.

Robot Self-Adjustment Scheme. Since we focus on investigating
the wireless communication network, we always hope that the robot
will move as prescribed and arrive at its target location. However, with
inaccurate readings from the encoder and different speeds of the four
Mecanum wheels (shown in Fig. 5(c)), the robot may fail to arrive at
the expected position and collisions may happen when multiple robots
exist. In order to focus on the wireless network study itself without
worrying about the negative impacts induced by the robot, we propose
a beacon-based robot self-adjustment scheme to allow the robot to
automatically adjust its position and posture during experiments. The
overall robot self-adjustment scheme is summarized in Algorithm 1.

There are two phases of the self-adjustment scheme: (i) beacon-
based robot posture adjustment and (ii) beacon-based robot position
adjustment. Due to the different speeds of the Mecanum wheels, there
is a divergence angle 𝜃 between the movement direction of the robot
and the network’s 𝑥-axis, as shown in Fig. 7, especially when the robot
moves left or right. At the beginning of the adjustment, the robot
records its beacon-based position (𝑥1, 𝑦1). Since movement errors are
negligible when moving short distances forward or backward, we have
the robot move forward for 𝜏 seconds (𝜏 = 3 by default), record its new
beacon-based position (𝑥 , 𝑦), and then move backwards for 𝜏 seconds
2 2

Computer Communications 210 (2023) 342–355J. Hu et al.
Table 1
Robot movement operation.

Parameter Movement option Movement distance Parameter Movement option Movement distance

𝜃 > 0 Rotate Left |𝜃|∕360 ∗ 𝑑1 𝜃 < 0 Rotate Right |𝜃|∕360 ∗ 𝑑1
𝑥3 < 𝑥 Move Forward 𝑑𝑥 = (𝑥 − 𝑥3) ∗ 𝑑2 𝑥3 > 𝑥 Move Backward 𝑑𝑥 = (𝑥3 − 𝑥) ∗ 𝑑2
𝑦3 < 𝑦 Move Left 𝑑𝑦 = (𝑦 − 𝑦3) ∗ 𝑑3 𝑦3 > 𝑦 Move Right 𝑑𝑦 = (𝑦3 − 𝑦) ∗ 𝑑3
Otherwise Stop 0
Fig. 5. Snapshots of mobile node. (a) USRP software radio, control host, laptop, and mobile beacon; (b) Power unit and Arduino controller; and (c) Bottom view: motors, motor
drivers and encoder.
Fig. 6. (a) Controller modem; (b) Super beacon.

back to its original position (𝑥1, 𝑦1). With the recorded two positions,
the divergence angle 𝜃 can be calculated based on

𝜃 =

⎧

⎪

⎨

⎪

⎩

90◦, if 𝑥1 = 𝑥2 and 𝑦1 < 𝑦2
−90◦, if 𝑥1 = 𝑥2 and 𝑦1 > 𝑦2
arctan(𝑦2−𝑦1𝑥2−𝑥1

), otherwise.
(1)

With the divergence angle 𝜃, the movement option and the movement
distance can be obtained by referring to Table 1, in which 𝑑1 is the
measured reference distance, which is obtained as follows: When a
robot turns left or right, one of its four wheels (left-back wheel by
default) does not move and the other three wheels do. By reading the
encoder value of one of the non-static wheels (the left-front wheel by
default) when the robot rotates 360◦, the value of 𝑑1 can be obtained.
The two adjustment parameters (𝜃 and 𝑑1) will then be packed in a
message and sent to the onboard Arduino controller. With the received
message, the Arduino will control the robot to finish the beacon-based
robot posture adjustment.

In the second phase, the robot first measures its new position (𝑥3, 𝑦3)
and compares it with the measurement-based beacon state information
(𝑥, 𝑦) which can be obtained via a one-time beacon-based measurement.
The obtained distance divergence 𝑑𝑥 and 𝑑𝑦 for the 𝑥 and 𝑦 axis will be
calculated and transformed to the corresponding movement direction
and distance as shown in Table 1, in which 𝑑2 and 𝑑3 are the measured
reference distance when the robot moves forward and backward for
1 meter, respectively. Similarly, the obtained adjustment parameters
will be packed and sent to the Arduino. Once the Arduino receives the
346
Fig. 7. Mecanum wheel robot with angular deviation.

movement command, the robot will adjust its position and then finish
the second-phase adjustment.

Algorithm 1: Robot Self-Adjustment Scheme
1 Beacon-based Robot Posture Adjustment:
2 Measure current position (𝑥1, 𝑦1) via beacon
3 Robot moves forward for 𝜏 seconds
4 Measure new position (𝑥2, 𝑦2)
5 Robot moves back to (𝑥1, 𝑦1)
6 Calculate the angle deviation based on (1)
7 Determine the rotation direction and calculate rotation

distance based on 2
8 Arduino movement control
9 Beacon-based Robot Position Adjustment:
10 Measure current position (𝑥3, 𝑦3) via beacon
11 Look up state position table and obtain target state position

(𝑥, 𝑦)
12 Determine the movement direction and calculate movement

distance based on 2
13 Arduino movement control

4. Control plane design

The control plane supports both traditional model-based control,
enabled by WNOS, and emerging data-driven control, enabled by the

Computer Communications 210 (2023) 342–355J. Hu et al.
Table 2
Example APIs of WNOS.

API Description

attach(⋅) Add elements to the network
connect(⋅) Link one or more network elements
install_model(⋅) Install an expression model for a network element attribute
get_expr(⋅) Get the expression of a network element
mkexpr(⋅) Construct the new expression
record_expr(⋅) Store the expression in the database
set_para(⋅) Designate a specific expression as a utility function, constraint, or optimization variable
set_soln(⋅) Select the solution method to optimize the designated variables
record_expr(⋅) Store the expression in the database
RL repository. A set of APIs are developed for WNOS to enable auto-
matic generation of distributed cross-layer control algorithms. While
the RL repository is combined with a set of experiment management
APIs and multiple communication protocols to ease the use of NeXT
testbed and enable broadband wireless communication. The control
plane is deployed over the edge servers which are placed in the shelf
labeled as ‘‘UB NeXT’’ in Fig. 3(a).

4.1. Network modeling and optimization support

It is typically tedious and error-prone to manually model and op-
timize forwarding infrastructure in the data plane. To address this
challenge, we deployed our previously designed WNOS [11] over NeXT.
The primary benefits of WNOS are that it abstracts the data plan
forwarding infrastructure, allows experimenters to define control ob-
jectives in a centralized manner using high-level APIs, and then auto-
matically generates distributed cross-layer control algorithms that can
be deployed on NeXT’s data plane, e.g., UBSim and RoboNet. At a high
level, WNOS comprises two key components: network abstraction and
network control problem decomposition and control program genera-
tion. The network abstraction provides a set of APIs, based on which
experimenters can characterize in a centralized manner the desired
network behaviors before actual deployment. The network control
problem decomposition and control program generation is enabled
by disciplined instantiation (DI) [11], based on which user-defined ab-
stract centralized network control problems can be decomposed into
a set of distributed subproblems. WNOS is designed based on a three-
level hierarchical architecture to enable scalable network deployment.
Specifically, at the first-level, the WNOS control host is connected
to all second-level SDR control hosts via wireless interfaces (Wi-Fi
in our current prototype). The generated distributed algorithms are
automatically pushed over the wireless interfaces and installed at each
of the SDR control hosts which form the third-level. Hence, one only
needs to create a single piece of code to control all the SDR devices.

WNOS supports a wide set of network control problems in both
static and mobile networks. These include, but are not limited to,
rate maximization, power minimization, end-to-end delay minimization, and
movement optimization. WNOS also provides a rich set of APIs, based on
which experimenters are allowed to define more sophisticated control
problems in next-generation broadband networks spanning across mul-
tiple frequency bands, e.g., microwave, mmWave as well as THz bands.
Some examples of the APIs are given in Table 2.

4.2. Data-driven network control repository

The second part of the control plane is the data-driven network
control repository which enables data-driven control on RoboNet and
makes it easy to modify advanced AI/ML algorithms to be compatible
with our testbed. This repository consists of two classes of APIs for
data-driven control, i.e., Basic Class and Advanced Class. The basic class
is responsible for network initialization. Examples include the Envi-
ronment Initialization API, Variable Initialization API and Feedback List
Initialization API. The Advanced Class APIs are designed based on Basic
Class and are used for policy training, including updating states, actions
347
and a value table. Given the number of states and actions specified
using the Configuration API, the environment can be initialized using
the Environment Initialization API. Key variables involved in learning
algorithms, such as the current state and next state, can be initialized
via the Variable Initialization API. One is also allowed to choose the
Reward Type and Calculator Mode through the Configuration API. Based
on these APIs, four classes of RL algorithms have been implemented in
the advanced class and can be called via the RL Algorithm API. These are
epsilon-greedy search, upper confidence bound (UCB) action selection,
Q-learning and State–action–reward–state–action (SARSA). Different
reward types and calculator modes have been defined in advance, while
experimenters can define custom reward types and calculator modes for
their own experiments.

4.3. NeXT experiment management APIs

Extensive experiments can be conducted over the NeXT testbed,
especially on RoboNet discussed in Section 3.2. To help experimenters
use our testbed efficiently, we design a set of experiment management
APIs, by which elements deployed on RoboNet can be coordinated. As
shown in Fig. 8, there are three classes of APIs, as discussed next.

Network Configuration APIs. APIs in this class are used to define
various network environments. We provide three different APIs, Net-
work Configuration API, Host Configuration API and USRP Configuration
API. Parameters that can be configured via network configuration
APIs include network area, center frequency, bandwidth, transmission
power, modulation type, slot duration, the number of robots, etc.
Through host and USRP configuration APIs, experimenters can manage
Ethernet addresses, wireless network addresses, and port numbers for
the SDRs and their controlling hosts.

Nodes Synchronization APIs. To easily coordinate the server and
mobile hotspot controllers, Nodes Synchronization APIs are provided.
With these APIs, for example, experimenters can start the experiments
with just one command executed on the edge server.

These APIs are based on a Transmission Control Protocol (TCP)
connection established over WiFi to provide communications among
different nodes. The WiFi wireless local area network is enabled by
TP-Link Archer A7 AC1750 Wireless Dual Band Gigabit Router, which
follows wireless LAN 802.11a/b/g/n/ac standards. The 2.4 GHz and
5 GHz bands are dedicated for node synchronization and we avoid
using the two bands for conducting experiments. Thus, the WiFi will
not cause any interference to our target experiments. The other poten-
tial external interferes are mainly from wireless devices like phones.
However, since most wireless devices get access to the internet via
University at Buffalo’s WiFi network, which also works in the 2.4 GHz
and 5 GHz bands, the interference to measurements is limited. In Fig. 9,
we show the spectrum comparison without and with ongoing exper-
iments, respectively. The results show that the possible interference
(−92 dBFS) to our experiments is much smaller than our signal strength
(−68 dBFS). Thus we can neglect the possible interference.

Network Element APIs. After the experiment profile has been con-
figured, one can further control various network components via a set
of system control APIs deployed at the edge server and mobile hotspot
controller. These include the Transmission Control API, which can be

Computer Communications 210 (2023) 342–355J. Hu et al.
Fig. 8. Network element control interface and experiment management APIs.
Fig. 9. Screenshot of 2.56 GHz spectrum monitor of network (a) in idle mode with −92 dBFS peak interference; (b) during experiments with −68 dBFS peak signal.
used to control the transmissions of the USRP N210 carried by the
robot vehicle; the Receiver Control API for controlling data receiving;
the Robot Movement Control API for controlling robot movement; and
finally the Beacon Positioning API, based on which experimenters can
obtain the robots’ real-time positions.

In these network element APIs, logging features are enabled to
record system status like transmission process startup, beacon posi-
tioning updates, robot movements and so on. Data that will be used
for analyzing and processing, like throughput for each time slot, are
stored and updated in dictionaries/tables during the tests and saved
automatically once an experiment finishes.

1 import Reinforcement_Learning_API as rli
2 import Robot_Movement_Control_API as rmi
3 import Beacon_Positioning_API as bpi
4

5 while experiment_running:
6 curt_state = bpi.operation()
7 next_state = rli.operation()
8 updt_rbt_movement_ctrl(curt_state ,

next_state)
9 updt_usrp_commn_ctrl()

10 updt_fdbk_request()
11 reward = rli.fdbk_processing(fdbk,

fdbk_type , rwd_calc)
12 rli.updt_value_table(reward)
13 if rbt_adjustment_status:
14 rmi.rbt_adjustment(next_state)

Listing 1: Example of Experiment Management APIs

In Listing 1, we show an example of using the aforementioned APIs
to conduct experiments on the NeXT testbed. While an experiment is
running (line 5), the user calls Beacon Positioning API to get the current
state information (line 6) and calls Reinforcement Learning API to get the
348
next state information (line 7). The robot updates its location by calling
Robot Movement Control API (line 8). After the robot arrives at the
target location, the communication begins (line 9). After a pre-defined
communication time in Network Configuration API, the robot requests
feedback (line 10) and obtains the current reward (line 11), and the
value table is then updated (line 12). Before conducting the next
time-slot experiment, the robot adjustment status parameter defined in
Network Configuration API will be checked (line 13). If the status is True,
the robot will adjust its posture and position based on Algorithm 1 (line
14).

4.4. Communication protocols management

We consider three different communication protocols in our testbed:
GNU Radio Benchmark, srsRAN and mmWave communication proto-
cols.

GNU Radio Benchmark Protocol. This is developed based on
GNU Radio narrow-band benchmark library [33]. Specifically, we ex-
tend the original benchmark narrow-band library by designing three
additional APIs. These are Benchmark Interaction API, Benchmark Trans-
mission Control API and Benchmark Receiving Monitor API. For example,
the Benchmark Transmission Control API is used to control when and
what data is transmitted. The transmission duration and transmission
information can be configured in Network Configuration API in Sec-
tion 4.3 and can then be transmitted to the basic benchmark module via
Benchmark Interaction API. Benchmark Receiving Monitor API is used to
monitor the status of the receiver. If the receiver detects disconnected
links, it will restart the transmitter by sending a request to the edge
server via Benchmark Interaction API.

1 import Network_Configuration_API as ncfg
2 import Host_Configuration_API as hcfg
3 import Benchmark_Interaction_API as bmia
4

Computer Communications 210 (2023) 342–355J. Hu et al.

L

(
t
e
8
d
(
(
M

s
S
s
A

5 def Benchmark_Transmission_Control_API():
6

7 if bmia.tmr1 == 0:
8 data = ncfg.cxn_data
9 elif bmia.tmr2 <= ncfg.ts_len:

10 data = ncfg.comm_data
11 else:
12 data = ncfg.cxn_data
13 bmia.socket.sendto(ncfg.cmd_done , (

hcfg.wl_host, hcfg.port))
14

15 return data

isting 2: Example of Benchmark Transmission API

Listing 2 shows an example of how Benchmark Transmission Control
API is used to control the transmission of data at run time. There are
two types of data that can be transmitted: regular transmission data,
which is the actual data that we want to deliver over the network, and
dummy connection data, which we use to keep the network connection
alive. The connection data is needed because GNU Radio does not
provide an auto re-connection scheme if a connection is lost. In Listing
2, the experimenter first calls the Benchmark Transmission Control API
line 5) to determine the data to be transmitted based on the two
imers received from Benchmark Interaction API. If timer 1 (bmia.tmr1)
quals 0 (line 7), the data is set as connection data (ncfg.cxn_data, line
); if timer 2 (bmia.tmr2) is smaller than a predefined transmission
uration (ncfg.ts_len, line 9), the data is set as communication data
ncfg.comm_data, line 10); otherwise, the data is set to ncfg.cxn_data
line 12) and the one-time-slot-finished information will be sent to Local
ain Controller API via Benchmark Interaction API (line 13).
Software-Defined RAN Protocol. This is developed based on

rsRAN, an open-source 4G and 5G software radio suite developed by
oftware Radio Systems (SRS) [34]. It contains three different modules,
rsEPC, srsENB and srsUE. We design a set of srsRAN Configuration
PIs to manage the three modules based on the parameters in Network
Configuration API. For example, the user dataset information can be
generated automatically and stored in ‘‘user_db.csv’’ via srsEPC con-
figuration API, and srsENB operation parameters like communication
frequency can be generated automatically via srsENB configuration API.
The srsUE configuration API is used to generate ‘‘ue.conf’’ file which
contains srsUE operation information, such as IMSI information.

1 import os
2 import srsEPC_configuration_API as epca
3 import srsENB_configuration_API as enba
4 import srsUE_configuration_API as suea
5

6 epca.srsepc_operation()
7 os.system(" gnome-terminal -- bash -c \" sudo

srsepc; exec bash \" ")
8 enba.srsenb_operation()
9 os.system(" gnome-terminal -- bash -c \" sudo

srsenb; exec bash \" ")
10 suea.srsue_operation()
11 os.system(" gnome-terminal -- bash -c \" sudo

srsue; exec bash \" ")

Listing 3: Example of srsRAN Configuration APIs

Listing 3 shows an example of how to generate srsRAN configure
files and run the corresponding programs. Users call srsEPC_operation
(line 6) to generate ‘‘user_db.csv’’ and start up srsEPC program in
line 7. Similarly, ‘‘enb.conf’’ and ‘‘ue.conf’’ are generated by calling
srsENB_operation (line 8) and srsUE_operation (line 11), respectively.

Millimeter Wave Communication Protocol. The mmWave com-
munication protocol is supported by MikroTik mmWave routers [32].
These mmWave routers can be configured to form a point-to-point
349
network or point-to-multi-point network based on requirements. When
integrating the mmWave communication protocol with srsRAN to en-
able large scale wireless network communication, we connect both
the USRP B210 (running srsEPC and srsENB) and the mmWave router
(primary) to a single laptop and design a Gateway Setting API to
navigate data traffic between srsUE and mmWave subordinate.

1 import os
2 import Network_Configuration_API as ncfg
3 import Host_Configuration_API as hcfg
4

5 def Gateway_Setting_API():
6

7 subnet = hcfg.srsRANsubnet
8 eth_addr = getattr(hcfg, ncfg.laptop_name

).get(" eth_host ")
9 gw_setting_cmd = " gnome-terminal -- bash

-c \" sudo ip route add " + str(subnet
) + " via " + str(eth_addr) + " ;
exec bash \" "

10 os.system(gw_setting_cmd)

Listing 4: Example of Gateway Setting API

Listing 4 shows an example of how to set the gateway to enable
communication between srsUE and mmWave subordinate. The key is
to get the subnet address of srsRAN (line 8) and Ethernet address of
the current laptop (line 9). The command is generated based on the
above two information (line 10) and the gateway is set by executing
the command (line 11).

Since the three communication protocols have their own logic stacks
and the interactions with controllers are processed in different ways,
we implement three different profiles for each communication protocol.
These three profiles are stored in laptop controllers and edge servers.
Each profile is independently stored in different folders but they share
the same components except communication protocol. Experimenters
can choose the profile to load, i.e., select the communication protocol
they want to use, before conducting experiments. By providing different
profiles for different communication protocols, we can easily integrate
more communication protocols, like direct sequence spread-spectrum
(DSSS) [35], to our testbed in the future.

The three communication protocols that we have implemented all
rely on self-synchronization schemes. For example, srsRAN implements
the Precision Time Protocol (PTP), which is a standard protocol used
for time synchronization in packet-based networks, so no clock/time
synchronization features are needed. However, protocols that rely on
clock/time synchronization can be implemented with support of ad-
ditional hardware, such as an Octoclock or GPS module, as shown in
Fig. 10. The accuracy of Octoclock is within a few 100 ns and GPS
module is within 50 ns.

5. Example experiments over NeXT

We now test NeXT and showcase its capabilities of optimization,
simulation and experimentation considering different network control
problems. These include user scheduling in a cellular network, trajec-
tory optimization for a mobile hotspot, and joint rate and power control
in multi-hop networks. A comprehensive overview of these experiments
is summarized in Table 3.

5.1. Experiment 1: User scheduling

In the first experiment, we consider a wireless network with a
hotspot serving a set of users. The transmission time is divided into a set
of consecutive time slots. In each time slot, we consider that the hotspot
can serve at most one user. The objective of the hotspot is to maximize

the aggregate throughput by selecting a user to serve in each time slot.

Computer Communications 210 (2023) 342–355J. Hu et al.
Fig. 10. (a) Snapshot of the Octocolock; (b) GPS module.
Fig. 11. User scheduling scenario: (a) Average capacity obtained over UBSim; and (b) average throughput using RoboNet.
Table 3
Experiments overview.

Experiment No. Name Type

1 User Scheduling simulation & experimentation
2 Overflow Control experimentation
3 Mobile Hotspot Navigation experimentation
4 Multi-Mobile Hotspots Navigation experimentation
5 Mobile Hotspot Navigation with srsRAN experimentation
6 Mobile Hotspot Navigation in IAB experimentation
7 Multi-hop Network Optimization optimization & simulation & experimentation
We design control algorithms for the hotspot based on the data-driven
network control repository as discussed in Section 4.2. Specifically, we
consider the upper confidence bound (UCB) action selection algorithm
and test it over both UBSim and RoboNet developed in Section 3. First,
we test the effectiveness of the UCB algorithm in UBSim. Fig. 11(a)
plots the achievable capacity averaged over 20 episodes each with 100
time slots. It can be seen that the average capacity improves over time,
and this validates the effectiveness of the data-driven network control
repository.

Then we further test the data-driven network control repository over
RoboNet considering SDRs and real-world wireless channels. USRP20
is selected as the transmitter and five USRPs (USRP2, USRP5, USRP9,
USRP11 and USRP19) are selected as receivers (see Fig. 3). The time
slot duration is set to 3 s. The exploration parameter 𝜖 and UCB control
parameter 𝑐 are set to 0.15 and 2, respectively. We run 10 episodes
of robot navigation, with each episode consisting of 100 time slots.
We calculate the average number of received packets in each time
slot and the results are shown in Fig. 11(b). It can be seen that the
highest throughput can be achieved in around 20 time slots. This
further validates the effectiveness of the data-driven network control
repository. Comparing Figs. 11(a) and (b), we found the average capac-
ity in UBSim is much larger than the average throughput on RoboNet.
This is because we use different protocols in each system. In UBSim, the
network capacity is calculated based on the Shannon capacity formula
while on RoboNet, the throughput is obtained based on GNU Radio’s
350
narrowband communication protocol. Besides, the transmission power,
bandwidth and so on are different in UBSim and RoboNet. For these
reasons, the gap between UBSim and RoboNet is large. Since we focus
on the verification of algorithms effectiveness, we neglect the gap
between the simulator and reality. However, it would be interesting to
investigate how to mitigate the reality gap, which is also a potential
function provided by the NeXT system. We discuss this further in
Section 6. Recall that the primary objective of NeXT is to provide an
integrated environment for optimization, simulation, and experimenta-
tion in software-defined wireless networks. This experiment illustrates
the benefits of using the NeXT testbed. Conducting experiments in the
real-world is time consuming while simulation-based experiments can
be done much quicker. With the NeXT testbed, users can test their
algorithm in UBSim first and check the performance of the proposed
algorithm. If the results show that the algorithm needs improvement,
they do not need to do the tests in the real-world, which saves time.
By conducting experiments on our testbed, users also avoid directly
collecting data in the real-world, which can sometimes be unsafe.

1 usrp_rx_list = [" usrp2 " , " usrp5 " , " usrp9 " , "
usrp11 " , " usrp19 "]

2 ts_len = 3 # time slot length; unit: second
3 ts_num = 100 # time slot number
4 UCB_e = 0.15 # exploration parameter

Computer Communications 210 (2023) 342–355J. Hu et al.

L

L

Fig. 12. Overflow control scenario: Transmitted packet number vs. time slot.

5 UCB_c = 2 # control parameter

isting 5: User scheduling configuration parameters in Network
Configuration API

Listing 5 shows user scheduling configure parameters in Network
Configuration API, which can be used to configure the parameters
involved in this experiment. Experimenters can specify the USRPs they
want to use as the receiver in line 1. The time-slot length and time-slot
number for each episode can be set via line 2 and line 3, respec-
tively. The parameters used for the UCB action selection algorithm
configuration can be configured via line 4 and line 5.

5.2. Experiment 2: Overflow control

In this scenario, Robot1 is adopted as the transmitter and three
USRPs (USRP1, USRP9 and USRP11) are adopted as receivers. Each
time slot is set to 5 s and the transmitter transmits data every 0.15 s.
Assume that the arrival rate follows a Poisson distribution and the
average arrival rate is set to 1 packet per time slot. The maximum
data buffer length is set to 8 packets for each receiver. Q-learning is
adopted in this case to control data buffer overflows. As shown in
Fig. 12, we run one episode with 500 time slots and calculate the
number of transmitted packets and the corresponding running average
for each time slot. It can be seen that, in some time slots the number
of transmitted packets is 0. This happens when there are no packets
available in the buffer to transmit or when the channel conditions are
bad. For Poisson distributed packet arrivals with average arrival rate 1,
the expected number of packets arriving at each user in each time slot
is 1. Thus, the total expected arrivals for three users in each time slot
is 3. From Fig. 12, the running average is around 3 packets per time
slot which matches the above mathematical analysis. The cumulative
overflows are shown in Fig. 13, in which the slope converges gradually
over time towards the optimal achievable packet overflow rate.

1 pkts_arrival_rate = 1 # unit: packet/slot
2 queue_max_pkts_num = 8 # maximum buffer size
3 queue_overflow_reward = -20

isting 6: Overflow control configuration parameters in Network
Configuration API

As shown in Listing 6 experimenters can modify the parameters
in Network Configuration API to meet their needs. Experimenters can
modify the packet arrival rate and maximum buffer length for each user
via line 1 and line 2, respectively. Line 3 can be configured to set an
overflow reward (such that a negative value corresponds to a penalty).
351
Fig. 13. Overflow control scenario: Cumulative overflows vs. time slot.

Fig. 14. Single mobile hotspot scenario: instantaneous and running average of
throughput.

5.3. Experiment 3: Mobile hotspot navigation.

In the third experiment, we consider a wireless network where
a robot carrying a mobile hotspot moves around to serve a set of
users. The objective is to maximize the users’ aggregate throughput
by controlling the robot’s trajectory. The network is divided into a
set of grid cells, each corresponding to a state of the environment. In
each grid cell, the robot has five action options, i.e., move forward,
move backward, move left, move right and stay. The reward for each
state–action pair is defined as the sum throughput of users. Q-learning
is considered in this experiment with exploration probability 𝜖 set to
0.15, step size of 0.2 and discount factor 0.95. Each episode consists
of 500 time slots, corresponding to 3 h. We measure the number of
received packets and calculate the corresponding running average in
each time slot. The experimental results are reported in Fig. 14. It can
be seen that the running average converges to around 30 packets/slot.
The drop of instantaneous throughput around time slot 400 is caused
by the imperfection of the wireless link, which got disconnected as the
robot moved.

5.4. Experiment 4: Multi-mobile hotspots navigation.

In the fourth experiment, we consider the same wireless network
scenario as the third except that we adopt two mobile hotspots. To

avoid collisions, the network is divided into two regions and each

Computer Communications 210 (2023) 342–355J. Hu et al.

t

r
U
f
c
t
w
t
r
c

7
i

5

a
r
b
t
a
R
t

Fig. 15. Two mobile hotspots scenario: instantaneous and running average of
hroughput.

obot can only move within one region. Five USRPs (USRP0, USRP1,
SRP2, USRP3 and USRP19) are configured as users to receive service

rom the two robots. In each time slot, a user is only allowed to
onnect to the robot with the shortest distance to it. Q-learning with
he same parameters as in the second experiment is adopted. Similarly,
e measure the number of correctly received packets and calculate

he corresponding running average in each time slot. The experimental
esults are reported in Fig. 15. It can be seen that the running average
onverges to around 80 packets/slot.

1 import struct
2 import Network_Configuration_API as ncfg
3 import Beacon_Positioning_API as bpi
4 import Host_Configuration_API as hcfg
5

6 def update_rbt2_state():
7

8 curt_state = bpi.operation()
9 s_addr = hcfg.rbt2.get(" code ")

10 d_addr = hcfg.rbt1.get(" code ")
11

12 data = struct.pack(’!H’, s_addr & 0xffff)
+ struct.pack(’!H’, d_addr & 0xffff)
+ struct.pack(’!H’, curt_state & 0

xffff) + ncfg.rbt2_state_info
13 rb2_tcp_skt.sendto(data, ((hcfg.rbt1.get(

’host’), hcfg.rbt1.get(’port’))))

Listing 7: Example of multi-robots interaction

In Listing 7 we give an example showing how Robot2 sends its
state information to Robot1 during the experiments. Robot2 first gets
its current state information via interaction with Beacon Positioning API
(line 8). By calling Host Configuration API, the message source code (line
9) and message destination code (line 10) are obtained for message
routing. Then the data is constructed (line 12) and sent to Robot1 via
TCP Client API (line 13).

In the above four experiments, we adopt the GNU Radio Benchmark
communication protocol. In the following two experiments, we adopt
srsRAN (and mmWave) as the communication protocol.

5.5. Experiment 5: Mobile hotspot navigation with srsRAN

Similar to Mobile Hotspot Navigation, we want to maximize the users’
aggregate throughput by controlling a robot’s trajectory but with a
352

different communication protocol, namely, srsRAN. The robot carries r
Fig. 16. Single mobile hotspot scenario: instantaneous and running average of
throughput.

a USRP B210 which works as a base station to serve three users (each
being a USRP B210). The three USRP B210s are located at the position
of USRP0, USRP5 and USRP14 as shown in Fig. 3(b), respectively. In
each time slot, we use iperf3 to measure instantaneous throughput for
3 s and calculate the corresponding average throughput. The results
are shown in Fig. 16. It can be seen that the total running average
converges to around 28 Mbps. The drop of instantaneous throughput of
UE2 near the 200th time slot results from it losing its connection and
thus leads to increased throughputs of UE1 and UE3. We can also find
that the three UEs can achieve similar throughput if no connections
are lost. This is because we set the srsRAN MAC layer scheduling
mechanism to proportional fair (PF), which aims to balance system
throughput and fairness. Based on the PF scheduling mechanism, UE’s
with relatively better instantaneous channel quality indicator (CQI)
compared to their historic average rates will be allocated with more
resources. Experimenters can also choose a round-robin scheduling
method by specifying it in Network Configuration API at the MAC layer.

1 import os
2 import Host_Configuration_API as hcfg
3 import srsUE_configuration_API as suea
4

5 ue_name = suea.get_srsRANue_name()
6 ue_port = getattr(hcfg, ue_name).get(" port ")
7 iperf3_server_cmd = suea.cmd_gen(ue_port)
8 os.system(iperf3_server_cmd)

Listing 8: Example of starting iperf3 server

Listing 8 shows how to generate an iperf3 server on srsUE side.
Firstly, users need to obtain the UE name (line 5) and the predefined
port number (line 6). Then iperf3 server command is generated (line
) and executed (line 8) to run the iperf3 server, which is waiting for
perf3 client connection from the client side (i.e., the robot).

.6. Experiment 6: Mobile hotspot navigation in IAB

The sixth experiment is mobile hotspot navigation in an integrated
ccess and backhaul (IAB) network setting. As shown in Fig. 17(b), a
obot carries a USRP B210 and a mmWave router slave as a relay to
ridge three users and the base station (mmWave router primary). The
hree users are located at the positions of USRP0, USRP5 and USRP19
nd the mmWave primary is located at (7.1 m, 0 m, 1.5 m) in the
oboNet network. Q-learning is adopted to optimize the robot trajec-

ory. The results of the experiments are shown in Fig. 18. Similarly, the
unning average throughput converges to 22 Mbps.

Computer Communications 210 (2023) 342–355J. Hu et al.
Fig. 17. (a) Snapshot of srsRAN based-robot; and (b) Snapshot of IAB based-robot.
Fig. 18. Single mobile hotspot scenario in IAB setting: instantaneous and running
average of throughput.

In the above experiments, the RL algorithms are adopted to improve
network performance. However, we found that sometimes RL does
not work well in practice. Randomness (like the user disconnection,
time-varying channel, movement of robot and so on) could affect the
RL performance. For example, during the mobile hotspot navigation
in IAB experiments, the robot spends most time in a state (state 6)
after 200 time-slots but the running average throughput is lower as
shown in Fig. 18. This could be due to the laptop’s limited computation
capabilities, which can degrade the USRP B210s performance. In this
case, if we want to apply RL in a wireless network, we need to take
randomness into consideration and design a more sophisticated reward
(not simply taking throughput as the only one criteria).

5.7. Experiment 7: Multi-hop network optimization

In the seventh and final experiment, we consider a multi-session
multi-hop network with two sessions and eight nodes. Each session
consists of four nodes, namely one source node, two relay nodes
and one destination node. The objective is to maximize the network
throughput while minimizing the interference between the two sessions
by jointly optimizing the physical and transport layers. The optimiza-
tion algorithms are generated automatically by WNOS, which has been
deployed over the control plane of NeXT, as described in Section 4.
The resulting algorithms are deployed over the data plane. Similar
353
to the User Scheduling experiment discussed above, we conduct this
experiment over both UBSim and RoboNet. The results are reported
in Fig. 19. We can see that the control algorithms converge over
both UBSim and RoboNet. It is worth pointing out that different link
models have been considered in UBSim and RoboNet in their current
implementations. In future research, we will create a digital twin of
RoboNet based on UBSim and test the gap between simulated and
real-world performance.

6. New research topics enabled by NeXT

In this section we discuss the new research topics that NeXT can
enable, including sim-to-real transfer learning, robust wireless network
control, online digital twin construction and optimization, and multi-agent
reinforcement learning.

Sim-to-real transfer learning : Towards zero-touch wireless network
self-configuration, the proposed framework will connect accelerated
learning in the virtual domain with performance evaluation in the
real domain. With the proposed framework, novel machine learning
algorithms can be designed and tested rapidly in the virtual domain
in a variety of configurable networking scenarios, and the converged
algorithms can be deployed on SDR hardware for practical evaluation.
Making use of a digital twin for initial policy iteration can significantly
reduce the time required to generate an optimal control policy, es-
pecially in the case of deep learning or deep reinforcement learning.
These transfer learning experiments will be used to understand the
performance discrepancy between simulation and hardware evalua-
tion, which will be necessary for designing repeatable experiments
towards accelerated learning for wireless network self-configuration.
This investigation into efficient transfer learning will start with exper-
imental benchmarks to quantify the reality gap between UBSim and
RoboNet and then designing methods to minimize the impact of this
gap through an experimental campaign of domain adaptation and novel
twin-domain learning algorithms.

Robust wireless network control: The use of robust learning for domain
adaptation in the wireless domain has been introduced in [27]. By
introducing noise to the training data or training environment during
policy iteration, it has been shown that the resulting control policy will
provide improved performance when faced with unexpected observa-
tions or perturbations compared to a non-robust policy. In this line of
research, this uncertainty can be interpreted as the set of all physical
phenomena which contribute to the performance gap between simu-
lation and hardware scenarios, such as unpredictable RF interference
or hardware nonlinearities. The programmable SDR hardware provided
by the RoboNet testbed coupled with the virtualization of the RoboNet
environment in UBSim enables investigation into robust learning to

Computer Communications 210 (2023) 342–355J. Hu et al.

i
n
p
l
w
d

Fig. 19. Multi-hop network optimization scenario: Average end-to-end throughput with (a) UBSim simulator and (b) NeXT testbed.
mprove sim-to-real transfer learning performance in a wide variety of
etworking scenarios, with or without knowledge of the reality gap. We
lan to build on findings in [27] by applying the experimental robust
earning framework to the sim-to-real capabilities presented in this
ork, exploring robust learning as a method of mitigating performance
egradation due to sim-to-real policy transfer.
Online digital twin construction and optimization: Existing methods for

generating a virtual model for digital twin applications typically rely on
human expertise, and can be tedious and error-prone. This motivates
autonomous virtual environment construction based on mobile sensing
techniques such as simultaneous localization and mapping (SLAM).
Using SLAM with remote-control hardware such as the robots intro-
duced in Section 3, it is possible to record observations and generate
a 3D environment map with configurable fidelity in real time without
significant human intervention. This capability can significantly accel-
erate the digital twin construction process by automating the collection
and import of environmental data into the desired simulation environ-
ment, such as UBSim. With integrated simulation and experimentation
capabilities, the NeXT testbed can enable research of online digital
twin construction by providing configurable network simulation envi-
ronments in UBSim, and verifying the accuracy of the autonomously
generated digital twin with ground truth obtained through testbed
experiments.

Multi-agent Reinforcement Learning (MARL): The NeXT testbed can
support MARL research for development and evaluation of algorithms
such as REINFORCE policy gradient (PG) [36], gradient-based partially
observable MDP (G(PO)MDP) [37], actor–critic (A2C) [38], or asyn-
chronous actor–critic (A3C) [39]. In general, these algorithms require
significantly more time to converge to an optimal policy than their
single-agent counterparts. Additionally, debugging MARL algorithms
can be complicated due to the distributed nature of data collection
and processing. The architecture of UBSim and its supporting APIs
can significantly simplify the simulation design process by streamlining
user-configurable parameters such as the number of nodes, distributed
or centralized control algorithms, and reward function related to the
environment. This can save time, provide configurable online feedback
to display only target data points, and limit redundancy in coding for
large-scale MARL problems. Finally, the configurable SDR topology and
the hardware available in the RoboNet testbed can provide a framework
through which simulation results obtained in the virtual digital twin
environment can be verified through real-world experiments.

7. Conclusions and future work

In this work, we introduced the software-defined testbed NeXT,
which enables integrated simulation, experimentation and optimization
for wireless research. We designed the data plane with both the simu-
lator UBSim and the testing facility RoboNet. We designed the control
354
plane in which a software toolchain is developed to support both
traditional model-based and new data-driven control techniques. We
presented the communication protocols deployed on our testbed. We
verified the effectiveness and flexibility of NeXT considering both sim-
ulation and testbed experiments. We also discussed the new research
topics that can be enabled by NeXT. In future work, we will (i) enable
experiments in flying networks by integrating UAVs into NeXT; (ii) enable
digital twin for testing self-optimizing networks; and (iii) allow remote
access to the NeXT platform via CloudRAFT, a cloud-based framework for
remote access of experimentation platforms that has been developed at the
University at Buffalo [40].

Declaration of competing interest

N/A

Acknowledgments

(a) Contractor acknowledges Government’s support in the publica-
tion of this paper. This material is based upon work funded by AFRL,
United States, under AFRL Contract FA8750-20-C-1021 and FA8750-
21-F-1012, and in part by the National Science Foundation (NSF),
United States under Grant SWIFT-2229563. (b) Any opinions, findings
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of AFRL.

References

[1] A. Gosain, Platforms for advanced wireless research: Helping define a new edge
computing paradigm, in: Proc. of Technologies for the Wireless Edge Workshop,
New Delhi, India, 2018.

[2] J. Breen, A. Buffmire, J. Duerig, K. Dutt, E. Eide, M. Hibler, D. Johnson, S.K.
Kasera, E. Lewis, D. Maas, A. Orange, N. Patwari, D. Reading, R. Ricci, D.
Schurig, L.B. Stoller, J. Van der Merwe, K. Webb, G. Wong, POWDER: Platform
for open wireless data-driven experimental research, in: Proceedings of the 14th
International Workshop on Wireless Network Testbeds, Experimental Evaluation
& Characterization, London, United Kingdom, 2020.

[3] D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen, J.
Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Maheshwari,
P. Skrimponis, C. Gutterman, Challenge: COSMOS: A city-scale programmable
testbed for experimentation with advanced wireless, in: Proc. of the 26th Annual
International Conference on Mobile Computing and Networking, London, United
Kingdom, 2020.

[4] M.L. Sichitiu, I. Guvenc, R. Dutta, V. Marojevic, B. Floyd, AERPAW emulation
overview, in: Proc. of the 14th International Workshop on Wireless Network
Testbeds, Experimental Evaluation & Characterization, London, United Kingdom,
2020.

[5] L. Bonati, S. D’Oro, M. Polese, S. Basagni, T. Melodia, Intelligence and learning
in O-RAN for data-driven nextg cellular networks, IEEE Commun. Mag. 59 (10)
(2021) 21–27.

http://refhub.elsevier.com/S0140-3664(23)00302-X/sb1
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb1
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb1
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb1
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb1
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb2
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb3
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb4
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb4
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb4
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb4
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb4
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb4
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb4
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb5
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb5
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb5
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb5
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb5

Computer Communications 210 (2023) 342–355J. Hu et al.
[6] J. Hu, S.K. Moorthy, A. Harindranath, Z. Guan, N. Mastronarde, E.S. Bentley,
S. Pudlewski, SwarmShare: Mobility-resilient spectrum sharing for swarm UAV
networking in the 6 GHz band, in: Proc. of IEEE International Conference on
Sensing, Communication and Networking, SECON, Virtual Conference, 2021.

[7] Z. Shi, S. He, J. Sun, T. Chen, J. Chen, H. Dong, An efficient multi-task network
for pedestrian intrusion detection, IEEE Trans. Intell. Veh. 8 (1) (2023) 649–660.

[8] Y. Mi, D. Mohaisen, A. Wang, AutoDefense: Reinforcement learning based
autoreactive defense against network attacks, in: 2022 IEEE Conference on
Communications and Network Security, CNS, Austin, TX, USA, 2022.

[9] F. Wen, M. Qin, P. Gratz, N. Reddy, Software hint-driven data management for
hybrid memory in mobile systems, ACM Trans. Embed. Comput. Syst. 21 (1)
(2022) 1–18.

[10] F. Tian, Y. Zhang, W. Ye, C. Jin, Z. Wu, Z.-L. Zhang, Accelerating distributed
deep learning using multi-path RDMA in data center networks, in: Proceedings
of the ACM SIGCOMM Symposium on SDN Research, SOSR, Virtual Event, USA,
2021.

[11] Z. Guan, L. Bertizzolo, E. Demirors, T. Melodia, WNOS: Enabling principled
software-defined wireless networking, IEEE/ACM Trans. Netw. 29 (3) (2021)
1391–1407.

[12] A. Gosain, Platforms for advanced wireless research: Helping define a new
edge computing paradigm, in: Proceedings of the 2018 on Technologies for the
Wireless Edge Workshop, New Delhi, India, 2018, p. 33.

[13] L. Bonati, S. D’Oro, S. Basagni, T. Melodia, SCOPE: An open and softwarized
prototyping platform for nextg systems, in: Proceedings of the 19th Annual In-
ternational Conference on Mobile Systems, Applications, and Services, Wisconsin,
USA, 2021.

[14] R. Doost-Mohammady, O. Bejarano, L. Zhong, J.R. Cavallaro, E. Knightly, Z.M.
Mao, W.W. Li, X. Chen, A. Sabharwal, RENEW: Programmable and observable
massive MIMO networks, in: 2018 52nd Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, USA, 2018, pp. 1654–1658.

[15] I. Baldin, A. Nikolich, J. Griffioen, I.I.S. Monga, K.-C. Wang, T. Lehman, P. Ruth,
FABRIC: A national-scale programmable experimental network infrastructure,
IEEE Internet Comput. 23 (6) (2019) 38–47.

[16] J. Mirkovic, T. Benzel, Deterlab testbed for cybersecurity research and education,
J. Comput. Sci. Coll. 28 (4) (2013).

[17] R. Zhao, T. Woodford, T. Wei, K. Qian, X. Zhang, M-cube: A millimeter-wave
massive MIMO software radio, in: Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, London, United Kingdom,
2020, pp. 1–14.

[18] S. Wang, J. Huang, X. Zhang, Demystifying millimeter-wave V2X: Towards robust
and efficient directional connectivity under high mobility, in: Proceedings of the
26th Annual International Conference on Mobile Computing and Networking,
London, United Kingdom, 2020, pp. 677–690.

[19] A. Song, X. Hong, F. Zhang, Z. Peng, Z. Wang, Mu-net: Community-shared
infrastructure for mobile underwater acoustic networks, J. Acoust. Soc. Am. 150
(4) (2021) A197–A198.

[20] NSF Testbeds, https://nets-vo.org/resoures/nsf-testbeds/.
[21] CISE Community Research Infrastructure, https://www.ccrivo.org/projects/.
[22] L. Bertizzolo, L. Bonati, E. Demirors, T. Melodia, Arena: A 64-antenna SDR-based

ceiling grid testbed for sub-6 GHz radio spectrum research, in: Proceedings of
the 13th International Workshop on Wireless Network Testbeds, Experimental
Evaluation & Characterization, Association for Computing Machinery, Los Cabos,
Mexico, 2019, pp. 5–12.

[23] R.K. Sheshadri, E. Chai, K. Sundaresan, S. Rangarajan, SkyHaul: An autonomous
gigabit network fabric in the sky, 2020, arXiv abs/2006.11307.
355
[24] P. Sen, D.A. Pados, S.N. Batalama, E. Einarsson, J.P. Bird, J.M. Jornet,
The TeraNova platform: An integrated testbed for ultra-broadband wireless
communications at true terahertz frequencies, Comput. Netw. 179 (2020)
107370.

[25] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, J. Beutel, FlockLab: A
testbed for distributed, synchronized tracing and profiling of wireless embedded
systems, in: 2013 ACM/IEEE International Conference on Information Processing
in Sensor Networks, IPSN, Philadelphia, USA, 2013, pp. 153–165.

[26] R. Trüb, R.D. Forno, T. Gsell, J. Beutel, L. Thiele, A testbed for long-range
LoRa communication: Demo abstract, in: Proceedings of the 18th International
Conference on Information Processing in Sensor Networks, Montreal, Canada,
2019, pp. 342–343.

[27] M. McManus, Z. Guan, N. Mastronarde, S. Zou, On the source-to-target gap of
robust double deep Q-learning in digital twin-enabled wireless networks, in: Proc.
of SPIE Conference Big Data IV: Learning, Analytics, and Applications, Orlando,
Florida, 2022.

[28] SimPy, https://pypi.org/project/simpy/.
[29] Y. Jiang, T. Zhang, D. Ho, Y. Bai, C.K. Liu, S. Levine, J. Tan, SimGAN: Hybrid

simulator identification for domain adaptation via adversarial reinforcement
learning, in: Proceedings of the 2021 IEEE International Conference on Robotics
and Automation, Xi’an, China, 2021, pp. 2884–2890.

[30] S. Barrachina-Muñoz, B. Bellalta, E.W. Knightly, Wi-Fi channel bonding: An
all-channel system and experimental study from urban hotspots to a sold-out
stadium, IEEE/ACM Trans. Netw. 29 (5) (2021) 2101–2114.

[31] J. Buczek, L. Bertizzolo, S. Basagni, T. Melodia, What is a wireless UAV? A design
blueprint for 6G flying wireless nodes, in: Proc. of the 15th ACM Workshop
on Wireless Network Testbeds, Experimental Evaluation & CHaracterization,
WiNTECH’21, New Orleans, LA, USA, 2022.

[32] mmWave Router, https://mikrotik.com/product/wap_60g.
[33] GNURadio Benchmark, https://github.com/n4hy/gnuradio/tree/master/gr-

digital/examples/narrowband.
[34] srsRAN, https://www.srslte.com/.
[35] G. Sklivanitis, A. Gannon, K. Tountas, D.A. Pados, S.N. Batalama, S. Reichhart,

M. Medley, N. Thawdar, U. Lee, J.D. Matyjas, S. Pudlewski, A. Drozd, A.
Amanna, F. Latus, Z. Goldsmith, D. Diaz, Airborne cognitive networking: Design,
development, and deployment, IEEE Access 6 (2018) 47217–47239.

[36] T. Zhang, H. Wen, Y. Jiang, J. Tang, Deep reinforcement learning based IRS for
cooperative jamming networks under edge computing, IEEE Internet Things J.
(2023).

[37] R.-T. Ma, Y.-P. Hsu, K.-T. Feng, A POMDP-based spectrum handoff protocol
for partially observable cognitive radio networks, in: 2009 IEEE Wireless
Communications and Networking Conference, Budapest, Hungary, 2009.

[38] T. Niu, Y. Teng, Z. Han, P. Zou, An adaptive device-edge co-inference frame-
work based on soft actor-critic, in: 2022 IEEE Wireless Communications and
Networking Conference, WCNC, 2022.

[39] H. Zhou, Z. Wang, H. Zheng, S. He, M. Dong, Cost minimization-oriented
computation offloading and service caching in mobile cloud-edge computing:
An A3C-based approach, IEEE Trans. Netw. Sci. Eng. (2023).

[40] S.K. Moorthy, C. Lu, Z. Guan, N. Mastronarde, G. Sklivanitis, D. Pados,
E.S. Bentley, M. Medley, CloudRAFT: A cloud-based framework for remote
experimentation for mobile networks, in: Proc. of IEEE International Workshop
on Communication and Networking for Swarms Robotics, RoboCom, Virtual
Conference, 2022.

http://refhub.elsevier.com/S0140-3664(23)00302-X/sb6
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb6
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb6
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb6
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb6
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb6
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb6
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb7
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb7
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb7
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb8
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb8
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb8
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb8
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb8
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb9
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb9
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb9
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb9
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb9
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb10
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb10
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb10
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb10
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb10
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb10
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb10
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb11
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb11
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb11
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb11
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb11
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb12
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb12
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb12
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb12
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb12
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb13
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb13
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb13
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb13
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb13
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb13
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb13
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb14
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb14
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb14
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb14
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb14
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb14
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb14
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb15
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb15
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb15
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb15
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb15
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb16
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb16
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb16
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb17
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb17
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb17
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb17
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb17
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb17
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb17
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb18
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb18
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb18
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb18
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb18
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb18
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb18
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb19
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb19
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb19
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb19
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb19
https://nets-vo.org/resoures/nsf-testbeds/
https://www.ccrivo.org/projects/
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb22
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb22
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb22
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb22
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb22
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb22
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb22
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb22
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb22
http://arxiv.org/abs/2006.11307
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb24
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb24
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb24
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb24
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb24
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb24
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb24
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb25
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb25
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb25
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb25
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb25
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb25
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb25
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb26
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb26
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb26
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb26
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb26
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb26
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb26
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb27
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb27
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb27
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb27
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb27
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb27
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb27
https://pypi.org/project/simpy/
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb29
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb29
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb29
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb29
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb29
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb29
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb29
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb30
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb30
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb30
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb30
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb30
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb31
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb31
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb31
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb31
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb31
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb31
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb31
https://mikrotik.com/product/wap_60g
https://github.com/n4hy/gnuradio/tree/master/gr-digital/examples/narrowband
https://github.com/n4hy/gnuradio/tree/master/gr-digital/examples/narrowband
https://github.com/n4hy/gnuradio/tree/master/gr-digital/examples/narrowband
https://www.srslte.com/
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb35
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb35
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb35
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb35
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb35
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb35
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb35
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb36
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb36
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb36
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb36
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb36
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb37
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb37
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb37
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb37
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb37
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb38
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb38
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb38
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb38
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb38
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb39
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb39
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb39
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb39
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb39
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb40
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb40
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb40
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb40
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb40
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb40
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb40
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb40
http://refhub.elsevier.com/S0140-3664(23)00302-X/sb40

	NeXT: Architecture, prototyping and measurement of a software-defined testing framework for integrated RF network simulation, experimentation and optimization
	Introduction
	Related Work
	Data Plane Design
	Software Simulations Based on UBSim
	Software-Defined Forwarding Infrastructure: RoboNet

	Control Plane Design
	Network Modeling and Optimization Support
	Data-Driven Network Control Repository
	NeXT Experiment Management APIs
	Communication Protocols Management

	Example Experiments over NeXT
	Experiment 1: User Scheduling
	Experiment 2: Overflow Control
	Experiment 3: Mobile Hotspot Navigation.
	Experiment 4: Multi-Mobile Hotspots Navigation.
	Experiment 5: Mobile Hotspot Navigation with srsRAN
	Experiment 6: Mobile Hotspot Navigation in IAB
	Experiment 7: Multi-hop Network Optimization

	New Research Topics Enabled by NeXT
	Conclusions and Future Work
	Declaration of competing interest
	Acknowledgments
	References

