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“Scientists investigate that which already is; engineers create that which has never been.”
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Abstract

Unmanned Aerial Vehicles (UAVs) are envisioned as pivotal technologies for the next

generation of wireless networks due to their rapid deployment, high mobility, and compact

size. To facilitate the widespread adoption of unmanned vehicles and unlock a diverse array

of applications, numerous challenges must be addressed, such as limited spectrum resources

and the inherent complexities of environments that are difficult to capture using traditional

mathematical models.

To mitigate the long-term spectrum crunch problem, the FCC recently opened up the 6

GHz frequency band for unlicensed use. However, the existing spectrum sharing strategies

cannot support the operation of UAVs. This is primarily because of the directionality-based

spectrum sharing among the incumbent systems in this band and the high mobility of the

moving vehicles, which together make it challenging to control the cross-system interference.

To circumvent the limitations of traditional mathematical modeling in designing algorithms

and ensure rigorous and repeatable experimental evaluations of wireless networked systems,

the community has made significant efforts to develop experimentation platforms. Yet,

these existing platforms have primarily focused on the data plane—that is, the forwarding

infrastructure—without adequately addressing the control plane.

To tackle these challenges, we propose SwarmShare, a mobility-resilient spectrum sharing

framework for swarm UAV networking in the 6 GHz band. In SwarmShare, we first present

a mathematical formulation of the SwarmShare problem, where the objective is to maximize

the spectral efficiency of the UAV network by jointly controlling the flight and transmis-
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sion power of the UAVs and their association with the ground users, under the interference

constraints of the incumbent system. We find that there are no closed-form mathematical

models that can be used to characterize the statistical behaviors of the aggregate interference

from the UAVs to the incumbent system. Then we propose a data-driven three-phase spec-

trum sharing approach, including Initial Power Enforcement, Offline-dataset Guided Online

Power Adaptation, and Reinforcement Learning-based UAV Optimization. We validate the

effectiveness of SwarmShare through an extensive simulation campaign. Results indicate

that, based on SwarmShare, the aggregate interference from the UAVs to the incumbent

system can be effectively kept below the target level without requiring the real-time cross-

system channel state information. The mobility resilience of SwarmShare is also validated

in coexisting networks with no precise UAV location information.

In the meantime, to bridge the gap between the control plane and data plane design,

and to facilitate AI/ML-driven control of wireless communication networks and thorough

testing the resulting algorithms in realistic settings, we develop NeXT, a software-defined

playground with integrated wireless network simulation, experimentation and optimization

capabilities. We first design the data plane, which integrates an event-driven broadband

wireless network simulator called UBSim and a software-defined wireless network testing

facility called RoboNet. We then design NeXT ’s control plane, where a software toolchain is

developed and deployed to support both traditional model-based optimization and new data-

driven control techniques. We showcase the experimentation capability of NeXT considering

a series of optimization and control problems in different wireless networks.
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Chapter 1

Introduction

Unmanned aerial vehicles (UAVs) have been envisioned as a key technology for next-

generation (i.e., B5G or 6G) wireless networks [1–8]. Because of their features of fast de-

ployment, high mobility and small size, UAVs have a great potential to enable a wide set

of new applications, including UAV-aided guidance [9, 10], small cells with flying base sta-

tions [11], emergency wireless networking in the aftermath of disasters [12], among others.

The foreseen wide adoption of UAV systems can pose a significant burden on the capacity of

the underlying wireless networks. In this dissertation, we aim to explore new approaches that

can enable UAV operations in the 6 GHz band to harvest the additional 1.2 GHz spectrum

bandwidth [13].

The primary challenge towards this goal is in the spectrum sharing approaches adopted

by the incumbent systems in this frequency band. The 6 GHz band consists of four sub-

bands, i.e., U-NII-5 (5.925-6.425 GHz), U-NII-6 (6.425-6.525 GHz), U-NII-7 (6.525-6.875

GHz), and U-NII-8 (6.875-7.125 GHz). These bands have been previously occupied by a

set of non-government services, including fixed point-to-point services, fixed-satellite service

(Earth-to-space), broadcast auxiliary services and cable television relay services [13]. These

incumbent systems coexist with each other by sharing the spectrum on a directional basis,

i.e., they use highly directional antennas to concentrate the signal energy in a particular
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direction such that the mutual interference can be effectively mitigated as long as their

antennas are not pointed toward each other. As a result, traditional carrier-sensing-based

spectrum sharing as in Wi-Fi networks is not applicable to extend those wireless systems

with omnidirectional antennas to this frequency band, because of the low detectability of

the incumbent systems [14–20]. For this reason, two operation modes have been proposed

by the FCC, i.e., standard-power and low-power modes. The former allows both indoor and

outdoor operations on the U-NII-5 and U-NII-7 bands with maximum transmission power

of 30 dBm. The latter focuses on indoor operations in the U-NII-6 and U-NII-8 bands with

maximum transmission power of 24 dBm.

However, neither of the above two modes supports UAV operations in the 6 GHz bands

[13, 21]. A major concern is that the high mobility of the UAV systems makes it difficult

to model and control their aggregate interference to the incumbent systems. The situation

gets even worse when considering the altitude-dependent interference range of UAVs and the

higher probability of line-of-sight signal propagation at higher altitudes. Additionally, it is

also challenging for the distributed UAVs to control their aggregate interference collabora-

tively by jointly considering their spectrum access strategies and association to the ground

users. This complexity in managing UAV interference underscores the pressing need for in-

novative approaches to wireless network research and development. Specifically, it highlights

the importance of creating robust experimental platforms that can simulate the real-world

conditions UAVs operate in, allowing for the testing and refinement of solutions to these

challenges.

In the past decades, the evolution of wireless network systems has significantly changed

and will continue to change the way we live and work, our commercial activities as well as

national security. However, as of today the wireless research community is still lacking a

mature ecosystem to support rigorous and repeatable experimental evaluation of wireless

networked systems. To fill this gap, significant efforts have been made by the community. A

recent milestone is the NSF Platforms for Advanced Wireless Research (PAWR) program,
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which attempts to develop four large-scale outdoor experimentation platforms for advanced

wireless research [22]. As of today, all of them have already been developed and are available

to the wireless community. These are POWDER-RENEW for experiments in the sub-6 GHz

frequency bands [23], COSMOS for experiments in both sub-6 GHz and mmWave frequency

bands as well as edge computing [24], AERPAW for experiments with wireless unmanned

aerial vehicles (UAVs) [25] and ARA for smart and connected rural communities [26].

While existing community shared facilities have significantly advanced experimental re-

search for new wireless systems, it is still challenging to fully meet the needs of experimental

wireless research in the era of data-driven networking. First, to simplify the modeling,

control and optimization of heterogeneous NextG networks, data-driven control based on

Artificial Intelligence (AI) and Machine Learning (ML) has attracted significant research

attention [27–30]. However, the effectiveness of AI/ML algorithms largely relies on sufficient

well-labeled data for policy training [31–34]. It is typically time consuming and sometimes

unsafe to collect training data in real-world environments [35–37]. Second, the design, pro-

totyping and verification of new network control algorithms require engineers to grapple

simultaneously with mathematical modeling, distributed control, protocol design across dif-

ferent layers of the protocol stack, as well as their implementation and deployment. This

process is typically complex, tedious and error-prone.

In this dissertation, we firstly focus on a new spectrum sharing scenario in the 6 GHz

band called SwarmShare, where a set of UAVs collaboratively provide data streaming ser-

vices to ground users, by sharing the spectrum with the incumbent systems on the 6 GHz

band under the cross-system interference constraints. Within this framework, we model and

analyze the aggregate interference from the UAVs to the incumbent users, and propose a

mobility-resilient stochastic spectrum sharing approach, based on which the interference can

be mitigated from the coexisting UAV networks to the incumbent users in the 6 GHz band,

while increasing the SINR of the UAV networks.

Secondly, to address the challenges outlined previously, a pivotal element of our disser-
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tation is the development of NeXT, a software-defined wireless Network X-Control Testbed,

where “X” refers to optimization, simulation and experimentation [38,39]. In a nutshell,NeXT

provides an integrated testing framework, in which researchers are allowed to generate in

an automated manner distributed cross-layer network optimization algorithms, simulate the

generated algorithms in software, and then validate the simulation results based on testbed

experiments. There are two planes in NeXT, Data Plane and Control Plane. The former

provides simulation and experimentation capabilities, and the latter implements network

optimization and control functionalities.

The key contributions of this dissertation are:

• We first present a mathematical formulation of the SwarmShare problem, where the

objective is to maximize the spectral efficiency of the wireless UAV network by jointly

controlling the UAVs’ transmission power and flight trajectory as well as their associ-

ation to the ground users, under the interference constraints of the incumbent system.

It is shown that the resulting problem is a mixed integer nonlinear non-convex pro-

gramming (MINLP) problem.

• We analyze the statistical behavior of the aggregate interference from the UAVs to

the incumbent system, and find that no existing models can be used to characterize

the statistical behavior of the interference. With this observation, we propose to solve

the above MINLP spectrum sharing problem following a data-driven three-phase ap-

proach: Initial Power Enforcement, Offline-dataset Guided Online Power Adaptation,

and Reinforcement Learning-based UAV Optimization.

• We validate the effectiveness of SwarmShare by conducting an extensive simulation

campaign over UBSim. It is found that, with SwarmShare, effective spectrum sharing

can be achieved without real-time cross-system channel state information and, which

is somewhat surprising, even with no precise location information of the UAVs.

• We design the data plane for theNeXT testbed. In this plane, we first integrate
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UBSim withNeXT for software-based network simulation. UBSim is a newly developed

Universal Broadband Simulator for broadband (microwave, mmWave and terahertz

bands) aerial and ground wireless networking. We also develop a testing facility for

mobile networks based on software defined radios (SDRs).

• We then design NeXT ’s control plane, which supports traditional model-based control

and new data-driven control techniques. For the former, Wireless Network Operating

System (WNOS) [40] has been deployed to enable automated generation of distributed

cross-layer control algorithms. For the latter, a reinforcement learning (RL) repository

is developed supporting various RL algorithms. A scheme to automatically adjust

robots’ posture and positions is proposed to mitigate the error introduced by the mobile

hotspots.

• We enhance the Software radio suite Radio Access Network (srsRAN) by proposing the

integration of Evolved Node B (srsENB) and Evolved Packet Core (srsEPC) through

wireless links. This approach enables the effortless inclusion of multiple potentially mo-

bile srsENBs into experimental setups. Two compelling demonstrations are conducted

to validate the effectiveness and scalability of this innovative srsRAN architecture.

• We showcase the optimization, simulation and experimentation capabilities of theNeXT

testbed considering a series of wireless network control problems. These include narrow-

band multi-hop communications, srsRAN-based cellular networks and millimeter wave

(mmWave)-band communications. A set of application programming interfaces (APIs)

have been designed to simplify access to NeXT ’s data and control planes.

The rest of the dissertation is organized as follows. In Chapter 2, we discuss the re-

lated works. The system model, problem formulation, the spectrum sharing framework of

SwarmShare and performance evaluation results are presented in Chapter 3. Chapter 4 elab-

orates on the design of the data plane and control plane of NeXT, the scalability of srsRAN,

5



example experimental results, and the new research opportunities enabled. Finally, the main

conclusions are drawn in Chapter 5.
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Chapter 2

Related Work

UAV-assisted Networks UAV systems have attracted significant research attention

in both academia and industry [1, 41–45]. For example, in [1] the authors optimize the

achievable rate of UAV-aided cognitive IoT networks. Wang et al. propose in [41] a dynamic

hyper-graph coloring approach for spectrum sharing in UAV-assisted networks. In [42],

the authors optimize mobile terminals’ throughput by jointly controlling UAV trajectory,

bandwidth allocation and user partitioning between the UAV and ground base stations.

In [43], a UAV is used as a relay to assist D2D communications. In [44], the authors studies

machine learning based spectrum sharing for UAV-assisted emergency communications. The

authors of [45] adopt UAVs to harvest the primary RF signal as an energy source of the

secondary users. Readers are referred to [46], [47] and references therein for a survey of the

main results in this area.

Spectrum sharing Spectrum sharing in cognitive radio networks has also been a hot

research topic for a long time with a sizable and increasing body of literature. In [48], the

authors aim to maximize the average secrecy rate of the secondary network by robustly

optimizing the UAV’s trajectory and transmit power. In [49], the authors maximize the

revenue of the newly joined systems in cognitive radio networks by controlling the channel

access of new users. The authors of [50] propose a cognitive backscatter network to maximize
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the data rate of the newly joined networks. By leveraging recent advances in MIMO, the

authors enable transparent spectrum sharing for a small cognitive radio network in [51]. A

deep reinforcement learning based power control scheme is designed in [52] to meet the QoS

requirements of both primary and secondary users. Based on a combination of model-free

and model-based reinforcement learning, the authors of [53] propose a dynamic spectrum

access scheme for secondary users with imperfect sensing.

Spectrum sharing between directional- and omnidirectional-antenna wireless systems has

also been studied in existing literature. For example, authors in [54] optimize the perfor-

mance of LTE-Unlicensed networks while guaranteeing the performance of the co-located

radar system. The authors of [55] propose RadChat, a distributed networking protocol

for mitigation of interference among frequency modulated continuous wave radars. A co-

operative spectrum sharing model is proposed in [56] to mitigate the mutual interference

among radar and communication systems. In [57], the authors propose a framework for

spectrum sharing between satellite and terrestrial networks and analyze the interference in

both downlink and uplink from terrestrial cellular systems and nongeostationary systems to

geostationary systems within the framework. Please refer to [58], [59] and references therein

for a good survey of the main results in this field.

Further comparison of the above discussed references in different aspects is summarized

in Table 2.1. From the table, it can be seen that no existing work considers spectrum sharing

in the 6 GHz band between directional and omnidirectional mobile wireless communication

systems.

Experimental Platforms A lot of testbeds have been proposed and established to meet

the needs of experimentation and verifying algorithms in the real world. For example, the

NSF PAWR program aims to enable experimental wireless communications research across

devices, communication techniques, networks, systems, and services conceived by the US

academic and industrial wireless research community and deployed in partnership with local

communities [22]. POWDER is a platform for testing future wireless communications and
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Table 2.1: Comparison of related work in different aspects

Reference Spectrum Band Mobility Support Antenna Type Performance Metric
[1] 2.4 GHz Yes Omnidirectional Throughput
[41] Unknown Yes Omnidirectional User Number
[42] Unknown Yes Omnidirectional Throughput
[43] Unknown Yes Omnidirectional Throughput
[44] 2 GHz Yes Omnidirectional Throughput
[45] 840.5 - 845.5 MHz No Omnidirectional Secrecy Outage Probability
[48] Unknown Yes Omnidirectional Throughput
[49] Unknown No Omnidirectional Throughput
[50] Unknown No Omnidirectional Throughput
[51] 2.48 GHz No Omnidirectional Interference
[52] Unknown No Omnidirectional Throughput
[53] Unknown No Omnidirectional Sample Efficiency
[54] 5 GHz No Directional Power
[55] Unknown No Directional Interference
[56] Below 100 MHz No Directional Throughput
[57] 18 GHz No Directional Interference

networking technologies in a city-scale “living laboratory” [23]. COSMOS aims at design,

development, and deployment of a city-scale advanced wireless testbed to support real-world

experimentation on next-generation wireless technologies and applications [24]. Colosseum

is the world’s largest network emulator providing researchers with testing at scale, offset-

ting the site specificity of a physical testbed [60]. AERPAW is the first aerial wireless

experimentation platform spanning 5G technologies and beyond and with the potential to

create transformative wireless advances for aerial systems [25]. In [61], the world’s first fully

programmable and open-source massive-multiple input multiple output (MIMO) platform

named RENEW is introduced. ARA enables the research and development of rural-focused

wireless technologies that provide affordable, high-capacity connectivity to rural communi-

ties and industries such as agriculture [26]. However, these platforms either do not consider

mobile nodes or do not provide data-driven tools that simplify the experimentation process.

A unique national research infrastructure called FABRIC is proposed in [62] to enable

cutting-edge and exploratory research at-scale in networking, cybersecurity, distributed com-

puting and storage systems, machine learning, and science applications. DeterLab is a shared

testbed providing a platform for research in cybersecurity and serving a broad user commu-
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nity [63]. An open-source platform called M3 is designed in [64, 65] to facilitate research in

5G vehicular networking and automotive sensing. In [66], a community-shared, open-source,

open-architecture infrastructure for mobile underwater wireless networks called mu-Net is

proposed. Readers are referred to [67, 68] for more information about the aforementioned

testbeds. Arena is an open-access wireless testing platform [69] that can be used to test

key wireless technologies, such as synchronized MIMO transmission schemes, multi-hop ad

hoc networking, multi-cell long term evolution (LTE) networks, and spectrum sensing for

cognitive radio. The authors in [70] propose the SkyHaul platform for channel modeling in

mobile scenarios. An integrated testbed TeraNova for ultra-broadband wireless communica-

tions is developed in [71], which supports the testing and validation of new terahertz (THz)

channel models and physical layer solutions. A testbed based on FlockLab [72] deployed in

a campus-scale is designed in [73] to better support testing of long-range communications.

However, these primarily focus on the physical platform’s development, while neglecting the

potential benefits of pairing the physical testbed with a simulator (e.g., using the simulator

to accelerate the training of AI/ML algorithms).

In this dissertation, firstly we aim to design a new, mobility-resilient spectrum sharing

framework between UAVs and incumbent wireless systems in the 6 GHz band to improve

spectral efficiency and maximize the throughput of the UAV network for elastic applications

such as data collection, file transfer, and messages. Secondly unlike the testing facilities

previously discussed that primarily concentrate on developing the forwarding infrastructure,

or the data plane, our focus extends to both data and control planes. To this end we develop

a software-defined testbed with integrated simulation, experimentation, and optimization ca-

pabilities for mobile wireless networks.
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Chapter 3

SwarmShare: Mobility-Resilient

Spectrum Coexistence in 6 GHz Band

In this chapter, we present SwarmShare, an innovative mobility-resilient stochastic spec-

trum sharing approach that empowers UAVs to operate within the 6 GHz band. To achieve

this objective, we begin by outlining the system model and problem formulation in Chap-

ter 3.1. Subsequently, we delve into the intricacies of designing a spectrum coexistence

framework aimed at addressing the SwarmShare control problem, elucidated in Chapter 3.2.

Finally, we evaluate the performance of the proposed framework within a simulated environ-

ment in Chapter 3.3.

3.1 System Model and Problem Formulation

As shown in Figure 3.1, we consider a wireless UAV network coexisting with an incumbent

communication pair (Tx and Rx) by sharing the same portion of spectrum B in the 6 GHz

band. The UAV network consists of a set K of UAVs collaborating with each other to serve a

setM of ground users. The transmission time is divided into a set T of consecutive time slots.

In each time slot t ∈ T , denotes the coordinate vector of UAV k ∈ K as codt
k = [xt

k, y
t
k, z

t
k]

T,

with T being the transpose operation and xt
k, y

t
k and ztk representing the x-, y- and z-axis
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Incumbent data link
UAV data link
Interference from UAVs
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z UAV
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AFC

Incumbent Tx

Incumbent Rx

Interference from Incumbent Tx

Figure 3.1: Spectrum sharing between coexisting UAV network and the incumbent network in the
6 GHz bands.

components, respectively. Similarly, denote respectively codTx = [xTx, yTx, zTx]
T, codRx =

[xRx, yRx, zRx]
T and codi = [xi, yi, zi]

T as the coordinate vectors of incumbent transmitter Tx,

incumbent receiver Rx and ground node i ∈ M∪{Tx,Rx}. Denote A = K∪M∪{Tx,Rx}

as the set of all the nodes in the heterogeneous network. The objective of the UAV network

is to maximize its own spectral efficiency under the interference constraints of the incumbent

system. Before presenting the formal formulation of the spectrum sharing problem, we first

describe the considered channel, antenna and throughput models.

3.1.1 Channel Model

We consider both large-scale path-loss and small-scale fading. For path-loss, we consider

line-of-sight (LoS) wireless channels between the incumbent transmitter Tx and its receiver

Rx. This is feasible because the incumbent systems are usually carefully deployed such

that their antennas are well-aligned without any obstructions in the link. We consider

non-line-of-sight (NLoS) links between the incumbent nodes and the ground users of the

coexisting networks. For UAV networks, we consider both LoS and NLoS links. Specifically,

we consider as in [74] a probabilistic path-loss model for the links between UAVs and ground

nodes. Then, the LoS and NLoS path-loss (in dB) between UAV k ∈ K and ground node

12



i ∈ M∪ {Tx,Rx} can be given as, in time slot t ∈ T ,

HLoS,t
ki = 20 log

(
4πdtkif

c

)
+ ηLoS, (3.1)

HNLoS,t
ki = 20 log

(
4πdtkif

c

)
+ ηNLoS, (3.2)

where the first term on the right-hand side of (3.1) and (3.2) represents the free space path-

loss with dtki = ||codt
k − codi||2 being the distance between UAV k and receiver i in time

slot t, f is the carrier frequency of UAV k, c is the speed of light, and ηLoS and ηNLoS are

the additional attenuation factors due to LoS and NLoS transmissions, respectively. Let

Pr(HLoS,t
ki ) represent the probability of LoS transmissions in time slot t, then Pr(HLoS,t

ki ) can

be expressed as [75],

Pr(HLoS,t
ki ) = (1 +X exp (−Y [ϕki −X]))−1, (3.3)

where X and Y are given environment-dependent constants and ϕki = sin−1(ztk/d
t
ki). Ac-

cordingly, the probability of NLoS transmissions between UAV k ∈ K and receiver i ∈

M∪ {Tx,Rx} can be given as Pr(HNLoS,t
ki ) = 1− Pr(HLoS,t

ki ).

Finally, for small-scale fading we consider Rician fading for LoS transmissions and Rayleigh

fading for NLoS. Denote Kij as the Rician factor for the wireless channel between nodes

i, j ∈ A, then Kij can be given as Kij = 13− 0.03dij for LoS transmissions and 0 for NLoS,

where dij is the distance between the two nodes. Denote the resulting small-scale fading

coefficient as ht
ij ≜ ht

ij(Kij) for nodes i, j ∈ A.

3.1.2 Antenna Model

As described in Chapter 1, in our research we consider directional transmissions for

the incumbent wireless systems and omnidirectional transmissions for the coexisting UAV

network. Specifically, we consider as in [76] a bi-sectorized antenna model to characterize
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the interference between directional and omnidirectional antennas. Denote θTx and θRx as

the signal beamwidth of the incumbent transmitter and receiver’s antennas, respectively.

Let θm ∈ [−π, π] denote the offset angle of the boresight direction of the Tx’s antenna with

respect to the reference direction for ground user m ∈ M. Here, the reference direction

refers to the direction along which the Tx’s antenna would be exactly pointed to user m.

Then the antenna gain of incumbent transmitter Tx with respect to ground user m ∈ M in

time slot t, denoted as wt
mTx, can be written as

wt
mTx =


wmax

Tx , if θm ≤ θTx

wmin
Tx , otherwise

, (3.4)

where wmax
Tx and wmin

Tx represent the maximum and minimum transmit gains of the incumbent

transmitter, respectively. Similarly, the receive gain of the incumbent receiver Rx with

respect to UAV k ∈ K, denoted as wt
kRx, can be given as

wt
kRx =


wmax

Rx , if θk ≤ θRx

wmin
Rx , otherwise

, (3.5)

with wmax
Rx and wmin

Rx being the maximum and minimum receive gains of the incumbent re-

ceiver, respectively. The transmit and receive gains are set to the maximum values for

incumbent transmissions, i.e., wmax
Tx and wmax

Rx , respectively.

3.1.3 Throughput Model

Based on the above channel and antenna models, the signal-to-interference-plus-noise

ratio (SINR) of the incumbent receiver Rx, denoted as γt
Rx for time slot t, can be written as

γt
Rx =

pTxw
max
Tx wmax

Rx · (ht
TxRx)

2/HLoS
TxRx∑

k∈K
ptkw

t
kRxwk · (ht

kRx)
2/H t

kRx + (σRx)2
(3.6)
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where pTx and ptk represent the transmission power of the incumbent transmitter Tx and

UAV k ∈ K in time slot t ∈ T , respectively; wk denotes the transmit gain of the UAV and is

considered to be constant for omnidirectional antennas; and (σRx)
2 is the power of Additive

White Gaussian Noise (AWGN) at the incumbent receiver.

The objective of SwarmShare is to guarantee satisfactory SINR for the incumbent system

(i.e., γt
Rx) by controlling the transmission power of the coexisting UAVs. To this end, we

consider a single-home association strategy for the ground users of the UAV network, i.e., in

each time slot t ∈ T each ground user can be served by at most one UAV. Denote αkm as

the association variable, with αkm = 1 if ground user m ∈ M is associated with UAV k ∈ K

and αkm = 0 otherwise. Then we have

∑
k∈K

αt
km ≤ 1,∀k ∈ K,m ∈ M, t ∈ T (3.7)

αt
km ∈ {0, 1},∀k ∈ K,m ∈ M, t ∈ T (3.8)

Denote Mt
k ≜ {m|m ∈ M, αt

km = 1} as the set of ground users served by UAV k in time

slot t.

We further consider FDMA-based spectrum access among the UAVs in K and TDMA

for the ground users served by the same UAV. Then, the SINR of ground user m ∈ M in

time slot t, denoted as γt
m = γt

m(H
t
mTx) can be expressed as

γt
m =

ptk(m) · (ht
k(m)m)

2/H t
k(m)m

(pTx/|K|) · wt
mTxŵm · (ht

mTx)
2/(H t

mTx) + σ2
m

, (3.9)

where k(m) and ŵm represent the serving UAV and receive gain of ground user m, respec-

tively; |K| denotes the number of UAVs in K; H t
k(m)m ∈ {HNLoS,t

k(m)m , HLoS,t
k(m)m} is the path-loss

from UAV k(m) to ground user m in time slot t with HNLoS,t
k(m)m and HLoS,t

k(m)m defined in Chap-

ter 3.1.1; and σ2
m is the power of the AWGN noise at ground user m. Notice in (3.9) that

only 1
|K| of the incumbent transmitter’s power (i.e., pTx/|K|) is considered for each UAV
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and its associated ground users because of the UAVs’ FDMA-based spectrum access. It is

worth pointing out that we consider FDMA- and TDMA-based spectrum access for the UAV

networks because we want to focus this work on the interference control between the UAV

and the incumbent systems. The resulting cross-system spectrum sharing scheme can also

be extended to other more advanced spectrum access schemes for UAVs [77,78].

Finally, the capacity achievable by user m in time slot t, denoted as Ct
k(m)m, can be

expressed as

Ct
k(m)m =

B

|K||Mt
k|
[
Pr
(
HNLoS,t

k(m)m

)
log2

(
1 + γt

m(H
NLoS
k(m)m)

)
+ Pr

(
HLoS,t

k(m)m

)
log2

(
1 + γt

m(H
LoS
k(m)m)

)]
, (3.10)

where Pr(·) is the probability of LoS and NLoS transmissions defined in Chapter 3.1.1 and

γt
m(·) is the SINR of ground user m defined in (3.9).

3.1.4 Problem Formulation

Define P = (ptk)
t∈T
k∈K as the transmission power vector of the UAVs, A = (αt

km)
t∈T
k∈K,m∈M

as the UAV-user association vector, and Q = (codt
k)

t∈T
k∈K as the UAV location vector. Then

the objective of the SwarmShare control problem is to maximize the aggregate capacity

of the UAV network by jointly controlling the transmission power of the UAVs and their

flight trajectory as well as association with the ground users, while meeting the cross-system
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interference constraints, as formulated as

Maximize
P,A,Q

1

|T |
∑
t∈T

∑
m∈M

Ct
k(m)m (3.11)

Subject to : 0 ≤ ptk ≤ pmax, ∀k ∈ K, t ∈ T , (3.12)

Association Constraints (3.7), (3.8) (3.13)

1

|T |
∑
t∈T

I(γt
Rx ≤ γth

Rx) ≤ Prmax
Rx︸ ︷︷ ︸

Cross−system Interference Constraint

(3.14)

where Ct
k(m)m is defined in (3.10), pmax is the maximum transmission power of each UAV,

I(·) is the indication function taking value of 1 if the condition holds and 0 otherwise, and

γth
Rx and Prmax

Rx denote respectively the threshold SINR and the maximum tolerable SINR

outage probability of the incumbent system.

3.2 Spectrum Coexistence Design

The SwarmShare problem formulated in (3.11)-(3.14) is a mixed integer nonlinear non-

convex programming (MINLP) problem, because of the binary UAV-user association vari-

ables αt
km and the underlying complicated mathematical expressions in (3.11) and (3.14).
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Figure 3.2: Diagram of the SwarmShare spectrum sharing framework.

17



Moreover, to solve the problem directly it requires knowing the real-time channel state infor-

mation (CSI) between the UAV network and the incumbent system, which is unavailable, as

discussed in Chapter 1, because of the low-detectability of the directional incumbent signals.

To address the above challenges, in this work we consider an AFC (Automated Frequency

Controller)-assisted spectrum sharing. AFC has been adopted for spectrum sharing in the

TV whitespace band as well as the 6 GHz band by determining certain exclusion zones

nearby the incumbent systems [13]. Our work differs from this with our objective to enable

exclusion-zone-free hence more flexible spectrum sharing, and study the statistical behavior

of the aggregate interference from the UAV networks to the incumbent system, while keep-

ing the cross-system signaling at a minimum level. The diagram of the proposed spectrum

coexistence framework is illustrated in Figure 3.2, where there are three major components,

i.e., Initial Power Enforcement, Offline-dataset Guided Online Power Adaptation, and Rein-

forcement Learning-based UAV Optimization.

3.2.1 Initial Power Enforcement

The objective of this phase is to determine, following a set of Power Control Principles,

a rough transmission power for each of the UAVs. In this work, we consider three basic

principles to accommodate the effects of the UAVs’ flight altitudes and their locations on

the interference to the incumbent system, while more sophisticated principles can be incor-

porated in the future. These principles are i) UAVs that are closer to the incumbent receiver

should transmit at lower power; (ii) with the same distance to the incumbent receiver, UAVs

flying higher should transmit at lower power; and (iii) with the same distance and altitude,

UAVs with smaller angles relative to the boresight axis of the incumbent receivers’ direc-

tional antenna should transmit at lower power. Particularly, the rationale of the second

principle is that, with the hybrid LoS/NLoS channel model described in Chapter 3.1.1, it

is more likely for a UAV to establish LoS links to the incumbent receiver when flying higher

and hence cause more interference. Similarly, for the third principle, based on the directional
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antenna model described in Chapter 3.1.2, a UAV will cause higher interference when it is

more aligned with the incumbent receiver’s antenna.

In SwarmShare, an initial power enforcement coefficient, Enf(codt
k, codRx, angInc), will

be calculated for each UAV k ∈ K in time slot t ∈ T based on the above three principles.

This is accomplished using three Sigmoid-family functions Sig1(·), Sig2(·) and Sig3(·), as

follows:

Enf(codt
k, codRx, angInc) =

Sig1

(
leuc(cod

t
k, codRx)

ltheuc

)
︸ ︷︷ ︸

Principle 1

·Sig2
(
h(codt

k) + h(codRx)

lthhgh

)
︸ ︷︷ ︸

Principle 2

·Sig3
(
lrad(cod

t
k, codRx, angInc)

)
︸ ︷︷ ︸

Principle 3

,

(3.15)

where leuc(·, ·) represents the Euclidean distance between UAV k and the incumbent receiver

given their coordinates; h(·) represents their height, and lrad(·, ·, ·) ∈ [0, π] is the angle (in

radians) of UAV k with respect to the boresight axis of the incumbent receiver antenna;

finally, ltheuc and lthhgh in equation (3.15) are respectively, the threshold distance and height

beyond which Sig1(·) and Sig2(·) become nearly constant. It is worth pointing out that,

since a standard sigmoid function is a differentiable, monotonically increasing, real function

taking values in [0, 1], we design Sig1(·), Sig2(·) and Sig3(·) by scaling, shifting and reversing

the standard sigmoid function to consider the effects of the UAV location, flight altitude and

relative angle to the incumbent receiver. For example, Sig1(x) = 1
1+e−3(x/70−2) has been

adopted for principle 1 in this work, while Sig2(·) and Sig3(·) can be defined similarly. With

the obtained power enforcement coefficient Enf(codt
k, codRx, angInc), each UAV’s power can

be initialized as, in time slot t ∈ T ,

pinik = pmaxEnf(codt
k, codRx, angInc), ∀k ∈ K, (3.16)

where pmax is the maximum transmission power of each UAV.
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3.2.2 Offline-dataset Guided Online Power Adaptation

Recall in Chapter 3.1 that our goal is to enable UAV operations in the 6 GHz band while

meeting the cross-system interference constraint (3.14). In SwarmShare, this is accomplished

by fine-tuning the above obtained initial transmission power for the UAVs according to a

three-step approach, as described as follows.

Model-based Feature Extraction

In this step, we first extract the network features that can be used later in Data-Driven

Calibration, rather than using directly, the raw network topology information such as UAV

location vector (codt
k)

t∈T
k∈K. It is important to mitigate the curse of dimensionality prob-

lem [79] especially with a large number of UAVs. In SwarmShare, we select the power

adaptation coefficient, denoted as ηt for time slot t, as the network feature. Then, given the

above obtained initial transmission power pinik for UAV k ∈ K, a new transmission power ptk

can be obtained as

ptk =


0, if αt

km = 0, ∀m ∈ M

pinik ηt, otherwise

. (3.17)

That is, the transmission power will be set to 0 if a UAV is not associated to any ground

users. Then the interference constraint (3.14) can be rewritten as

1

|T |
∑
t∈T

I(γt
Rx(η

t) ≤ γth
Rx) ≤ Prmax

Rx , (3.18)

where γt
Rx(η

t) is the SINR of the incumbent receiver defined in (3.6) by substituting (3.17)

into (3.6). Consider an ergodic stochastic process for the aggregate interference and denote

Prob
(
γt
Rx(η

t) ≤ γth
Rx

)
as the SINR outage probability in time slot t ∈ T , then the left-hand
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side of (3.18) can be equivalently represented as

Prob
(
γt
Rx(η

t) ≤ γth
Rx

)
(3.19)

= Prob

(
P sig
Rx

P itf
Rx

≤ γth
Rx

)
(3.20)

=

∫ +∞

0

∫ +∞

P
sig
Rx

γth
Rx

pdfP sig
Rx
(psig)︸ ︷︷ ︸

Noncentral
Chi−square

Distribution

· pdfP itf
Rx
(pitf)︸ ︷︷ ︸

Gamma
Distribution

dpitfdpsig, (3.21)

where P sig
Rx and P itf

Rx are the numerator and denominator of (3.6), respectively; a Rayleigh

distribution has been considered for the small-scale fading and hence noncentral chi-square

distribution [80] for the receive power of the incumbent signals; and finally as in [81, 82] a

Gamma distribution is considered for the aggregate interference power. It is worth pointing

out that, as shown later in Chapter 3.3, the aggregate interference of UAVs can’t be easily

characterized using any existing statistical distributions. In our research, we consider the

Gamma distribution in (3.21) because we want to obtain a rough estimation of the power

adaptation coefficient ηt, which will be further calibrated based on an offline dataset. Notice

that given the maximum tolerable SINR outage probability Prmax
Rx in (3.18), the maximum ηt

can be determined efficiently by bisection search, since the left-hand side of (3.18), which is

equivalent to (3.21), is a monotonically increasing function of the UAVs’ transmission power

hence ηt.

Offline-dataset Generation

Given the above obtained network feature ηt, each UAV’s transmission power ptk can be

updated according to (3.17). Since the power adaptation may be inaccurate because of the

inaccuracy of the Gamma distribution-based interference model in (3.21), we further calibrate

the power control for UAVs with the assistance of offline measurements. Specifically, given
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the transmission power vector (ptk)k∈K, the corresponding SINR outage probability of the

incumbent system can be obtained by offline simulations. By varying the number of UAVs,

their locations, as well as the maximum tolerable SINR outage probability in the simulations,

we are able to obtain an SINR outage probability vector. Denote Prmax
Rx = (Prmax

Rx ) as the

vector of the maximum tolerable outage probability, and accordingly denote the simulated

outage probability vector as Pr
max

Rx (η) = (Pr
max

Rx (ηt)) with Pr
max

Rx (ηt) being the SINR outage

probability given the network metric ηt, and η = (ηt) the network feature vector.

Data-Driven Calibration

Finally, a mapping between Prmax
Rx and Pr

max

Rx (η) can be established through function

approximation, e.g., based on linear regression [83], echo state learning [4] or deep neural

networks [84, 85]. In this work we find that it is enough to approximate the mapping based

on linear regression. Denote the mapping as Prmax
Rx = f(Pr

max

Rx (ηt). Then, given Pr
max

Rx , the

value of Prmax
Rx and the corresponding network feature ηt can be obtained at network run

time and further used for UAV power control based on (3.17).

3.2.3 Reinforcement Learning-based UAV Optimization

As illustrated in Figure 3.2, the above obtained ηt will be broadcast to the UAVs, which

will then calculate their transmission power based on (3.17). Meanwhile, the UAVs will up-

date their flight and association strategies to serve their users with higher spectral efficiency.

To this end, we consider as in [76] the shortest-distance-based association strategy. Then, in

each time slot t ∈ T the association variables αk,m defined in Chapter 3.1 can be determined

as

αk,m =


1, if k = argmink∥codt

k − codm∥2

0, otherwise

. (3.22)
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Finally, as in [86], reinforcement learning with the ϵ-greedy search is adopted to guide

the exploitation and exploration during the UAV’s flight control. To this end, we further

divide the whole network area into a set of three dimensional rectangles, each corresponding

to a state of the RL control problem. Denote S as the set of all possible states. In each

time slot, each UAV is allowed to either move to one of its adjacent rectangles or stay in

the current. For each of the candidate rectangles, the UAV will first calculate the achievable

capacity given the transmission power calculated in Chapter 3.2.1 and 3.2.2 and the set of

ground users it serves.

Let a ∈ A be the action of the considered UAV, where A = {F,B, U,D,R, L, S} is the

set of candidate actions, including moving forward, backward, upper, lower, right and left

and staying at the current location. Then the action At
k chosen by UAV k at time slot t can

be given by, for state s ∈ S,

At
k =


argmax

a∈A
Qt

k(a, s), with probability 1− ϵ

a′ ∈ A/a, with probability ϵ
|A/a|

, (3.23)

where Qt
k(a, s) is the estimated throughput value of UAV k if action a is chosen at state s in

time t, and | · | represents the cardinality of a set. For each state, the state-action value (i.e.,

Qt
k(a, s)) is estimated using a table-based approach with discount factor 0 [87]. Based on

the selected action At
k at time slot t, coordinate vector codt+1

k = (xt+1
k , yt+1

k , zt+1
k ) of UAV k

for time slot t+1 can then be updated accordingly. The overall spectrum sharing algorithm

is summarized in Algorithm 1.

3.2.4 Complexity Analysis

The most time-consuming operation of Algorithm 1 is offline-dataset guided online power

adaptation in Chapter 3.2.2. In Chapter 3.2.2, we need to determine the network feature

ηt given the UAV network’s topology and the maximum tolerable SINR outage probability.
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Algorithm 1: SwarmShare Algorithm

Data: Node coordinates codi = (xi, yi, zi);∀i ∈ A, incumbent Tx transmission power pTx,
tolerable SINR outage probability Prmax

Rx , total duration of simulation T
Result: For each UAV k ∈ K, the transmission power ptk for time slot t ∈ T and the

coordinates codt+1
k for time slot t+ 1 ∈ T

1 while t ∈ T do
2 Initial Power Enforcement
3 for each UAV k ∈ K do
4 Calculate initial power enforcement coefficient Enf(·) based on (3.15); Calculate

initial power pinik based on (3.16);

5 end
6 Offline-dataset Guided Online Power Adaptation
7 Determine the network feature ηt based on (3.18)-(3.21);
8 for each UAV k ∈ K do
9 Determine the transmission power ptk based on (3.17);

10 end
11 Reinforcement Learning-based UAV Optimization
12 for each UAV k ∈ K do
13 Determine the association variables αk,m based on (3.22);

14 Determine At
k based on (3.23) and update codt+1

k for next time slot.

15 end

16 end

Since the SINR outage probability is a monotonically increasing function of ηt, the value

of ηt can be obtained efficiently based on bisection search with a constant computational

complexity for fixed range of ηt (i.e., [0, 1]) and the margin of error (1% in this work). It is

worth pointing out that, for each iteration of bisection search, the AFC needs to calculate the

mean and variance of the aggregate interference of UAVs given their current locations and

their assigned transmission power based on (3.17). However, the resulting computational

complexity is only negligible since it can be done by simple linear operations.

Finally, the dataset generation and regression in Chapter 3.2.2 can be conducted offline,

and in Chapter 3.2.2 Prmax
Rx can be determined online by solving a linear problem.

Regarding communication overhead, as illustrated in Figure 3.2, in Chapter 3.2.1 the

AFC needs to collect one-time location and orientation information of the incumbent system

and broadcast the collected information to the UAVs. If the incumbent system does not move

frequently (which is usually the case, e.g., fixed point-to-point applications), the resulting
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communication overhead can be neglected. The AFC also needs to collect periodically the

UAVs’ locations and broadcast the updated power adaptation coefficient ηt to the UAVs.

Since it is enough to represent this information in 16 bytes (three float numbers for location

and one for the power adaptation coefficient, and each float number takes 4 bytes), the

resulting broadcast overhead is low as well. Moreover, we will show later in Chapter 3.3 that

the UAVs do not need to report their locations to the AFC in real-time, without obviously

increasing the SINR outage probability of the incumbent system. This will further reduce

the communication overhead.

3.3 Performance Evaluation

In this chapter we validate the effectiveness of the SwarmShare framework described in

Chapters 3.1 and 3.2. We consider a network area of 500 × 500 × 50 m3, with 50 ground

users randomly located in the network and the number of UAVs varying from 3 to 24. The

incumbent transmitter and receiver are deployed with coordinates of (200, 200, 10) and (250,

250, 10), respectively. The center frequency of the shared spectrum is set to 6 GHz with a

total bandwidth of 10 MHz. The maximum transmission power of the incumbent transmitter

and the UAVs are set to 1 W and 0.25 W, respectively. For the bisectorized antenna model

desribed in Chapter 3.1.2, the maximum and minimum gains are set to 1 and 0.5, respectively.

The power density of the AWGN is set to -174 dBm/Hz. The probability of LoS and NLoS

links are set to 0.7 and 0.3, respectively. The threshold parameters ltheuc and lthhgh in (3.15)

are set to 70 m and 30 m, respectively. Next, before discussing the interference control

results, we first determine the threshold angle for the directional antenna model described in

Chapter 3.1.2 and validate the effectiveness of the data-driven calibration scheme proposed

in Chapter 3.2.2.
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Figure 3.3: (a) Snapshot of the testbed setup for threshold angle measurement; (b) Examples of
the measurement results.

3.3.1 Threshold Angle Measurement

We first determine the threshold angle for the directional antenna model described in

Chapter 3.1.2 by conducting a set of experimental measurements. A snapshot of the testbed

is shown in Figure 3.3(a), where the transmitter is a USRP B210 software radio with an

omnidirectional antenna, the receiver is another USRP B210 with a Tupavco TP542 antenna,

and the baseband signal processing is conducted based on GNU Radio on a Dell Latitude

7400 laptop. Tupavco TP542 is a directional Wi-Fi antenna operating in a frequency range

up to 5.8 GHz (very close to the 6 GHz band) with an antenna gain of 13 dBi. We measure the

received power by varying the relative angle of the transmitter with respect to the boresight

direction of the directional antenna (as illustrated in Figure 3.3(a)) and the transmission

distance from 1 to 3 meters. Examples of the measurement results are given in Figure 3.3(b)

with a transmission range of 1 meter and relative angles varying from 0 to 120 degrees at step

of 30 degrees. The mapping between the received power and relative angle is established

based on the logarithmic regression method [88]. Based on the regression results, we set

30 degree as the threshold angle for the bisectorized antenna model Chapter 3.1.2, which

corresponds to the 3 dB angle of the Tupavco TP542 antenna.
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Figure 3.4: Diagram of UBSim-based SwarmShare Simulator.

3.3.2 Data-driven Interference Prediction

Given the above obtained threshold angle, we further characterize the statistical behavior

of the aggregate interference from the coexisting UAVs to the incumbent receiver. To this

end, we conduct a set of simulations over UBSim1. As shown in Figure 3.4, the simulator

consists of four major modules: SwarmShare Control Problem Specification Module, AFC

Module, Network Element Module and Discrete Event Driver. The SwarmShare Control

Problem Specification Module provides a set of APIs, based on which experimenters can

define various network parameters such as the size of network area, the number of incumbent

users, UAVs and ground users, antenna gain, probability channel coefficient, interference

threshold, spectrum bandwidth, among others. Then, an object will be created for each of

the incumbent users, UAV base stations and ground users in the Network Element Module.

The classes of these network elements are defined in a hierarchical manner based on the basic

network element class net elmt, which defines the most basic network element attributes and

operations. The AFC Module is the place where the spectrum coordination algorithms

designed in Chapter 4.2 are deployed and executed. Finally, the Discrete Event Driver is

1In this work, the performance evaluation is conducted primarily over UBSim. We measure the threshold
angle based on testbed experiments because in future work we want to further test the proposed spectrum
coexistence framework in real world considering the directional antenna, Tupavco TP542, for incumbent
users.
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Figure 3.5: Aggregate interference pdf with (a) 10 and (b) 20 UAVs; (c) Validation of data-driven
prediction of the SINR outage probability for the incumbent system.

developed based on the open-source library SimPy [89] for discrete event-driven simulations.

The results are reported in Figures 3.5(a) and (b) with 10 and 20 UAVs, respectively. We

fit as in [90,91] the collected interference values using four distributions, including Gaussian,

Inverse Gaussian, Gamma and Inverse Gamma, and find that the power of the aggregate

interference does not follow any of these distributions. This is actually our motivation to

design SwarmShare based on a data-driven approach. Figure 3.5(c) reports the results of the

data-driven prediction of the SINR outage probability. The offline dataset is generated based

on simulations. We consider 6, 12 and 18 UAVs with multiple possible violation probabilities

ranging from 0.05 to 0.25 with interval of 0.025. For each combination of UAV number and

violation probability, we conduct 2000 episodes simulations with 2000 time slots in each

episode. We can find that the predicted SINR outage probability matches the simulated

results well.

3.3.3 Case Study

Figure 3.6 shows an example of the power control results based on SwarmShare. To

visualize the effects of the power control principles described in Chapter 3.2.1, in this example

all the 24 UAVs are deployed uniformally along 4 circles with different altitudes and radii.

From the figure, it can be seen that lower transmission powers have been allocated to UAVs
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Figure 3.6: Case study of power control based on SwarmShare. D#1[#2]: #1 is the UAV index,
and #2 denotes the transmission power of the UAV in mW.

along the lower circles. Also, because of the shorter distances from the incumbent receiver,

lower transmission power has been allocated to the UAVs of the first circle from the bottom,

e.g., 1.0102 mW for UAV 1 (i.e., D1[1.0102] in Figure 3.6) against 16.7896 mW for UAV 7 and

39.6234 mW for UAV 13 along the second and third circles, respectively. Moreover, along

the same circle, UAVs more aligned with the incumbent receiver have been allocated lower

transmission powers, e.g., 8.3948 mW for UAV 10 vs 39.6234 mW for UAV 9 along the second

circle. Finally, we notice in this example that all the UAVs along the fourth (i.e., the highest)

circle have been allocated zero transmission power because no users are associated with them

based on the shortest-distance association strategy described in Chapter 3.2.3. This also

conforms to the third power control principle, i.e., with the same distance and relative angle,

higher altitudes result in lower transmission powers because of higher probability of LoS

transmissions. It is worth pointing out that the power allocation results are determined by

jointly considering the three basic principles described in Chapter 3.2.1. In the following

experiments, we will further evaluate the effectiveness of SwarmShare on the cross-system

interference control.
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Figure 3.7: Instantaneous capacity of the incumbent system and the UAV network with hov-
ering UAVs. The violation probabilities are (a) 0.032, (b) 0.029 and (c) 0.021, respectively.
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Figure 3.8: Instantaneous capacity of the incumbent system and the UAV network with moving
UAVs. The violation probabilities are (a) 0.025, (b) 0.018 and (c) 0.022, respectively.

In Figures 3.7 and 3.8, we plot the instantaneous capacity achievable by the incumbent

system and the UAV networks with different numbers of UAVs. In Figure 3.7(a), we consider

6 hovering UAVs, and the maximum tolerable SINR outage probability is set to 0.05 for the

incumbent system. The achievable capacity is plotted for 1000 time slots. Results indicate

that the interference constraint of the incumbent system can be very well fulfilled, with SINR

outage probability of 0.032. Similar results can be obtained with 12 and 18 hovering UAVs

in Figures 3.7(b) and (c), with the SINR outage probability of 0.029 and 0.021, respectively.

Figure 3.8 shows the corresponding results with moving UAVs. In this experiment, the

network area is divided into a set of three-dimension rectangles each of 50×50×10 m3. The

trajectory of the UAVs are controlled as described in Chapter 3.2.3, with exploitation proba-
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bility of 0.98. The same as in Figure 3.7, the incumbent system’s interference constraints can

be satisfied in all the tested cases, with SINR outage probabilities of 0.025, 0.018 and 0.022

for 6, 12 and 18 UAVs, respectively, all below the maximum tolerable outage probability

0.05. This verifies the effectiveness of SwarmShare in cross-system interference control. It

can also be seen that the incumbent network’s capacity does not decrease obviously as the

number of UAVs increases (e.g., from 12 to 18). This is because, as more UAVs are deployed

in a network with fixed number of ground users, some UAVs will not serve any ground users

and hence become inactive and cause no interference to the incumbent system.

3.3.4 Average Results
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Figure 3.9: Average capacity of the incumbent system and UAV networks with moving UAVs.

In Figure 3.9 we report the average capacity achievable by the incumbent system and

the UAV network with the number of UAVs varying from 3 to 15 at step of 3. Three UAV

mobility patterns are considered: i) random movement; ii) reinforcement learning controlled

movement with exploitation probability of 0.98; and iii) hovering UAVs. The results are

obtained by averaging over 50000 time slots for each mobility pattern. It can be seen that,

as expected, obvious capacity gain can be achieved by the UAV network with all the above

three mobility patterns by deploying more UAVs. For example, for hovering UAVs, the
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average capacity increases from around 60 Mbps with 3 UAVs to 80 Mbps with 15 UAVs.

The capacity is further increased to around 100 Mbps with RL-controlled UAV movement.

Particularly, we find that there is no obvious degradation in the capacity of the incumbent

system when there are 6 or more coexisting UAVs. The average capacity of the incumbent

system can be further increased with less UAVs, e.g., 3, because of the reduced cross-system

interference.
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Figure 3.10: Average capacity of the incumbent system and UAV networks with different violation
probability (VP) threshold.

In Figure 3.10, we report the average capacity achievable by the incumbent system and

the UAVsunder different violation probability constraints. Two UAV mobility patterns are

considered: i) hovering UAVs and ii) moving UAVs guided by reinforcement learning. The

exploitation probability is set to 0.98 for the latter case. Similar to Figure 3.9, the aggregate

capacity of the UAV networks can be increased significantly by deploying more UAVs. For

example, 70 Mbps can be achieved with 9 hovering UAVs and violation probability threshold

0.02, which goes up to 76 Mbps with 15 UAVs. The corresponding incumbent user capacity

are 55 Mbps and 54 Mbps. It can also be seen that significant capacity gain can be achieved

by RL-guided UAV control. For example, 84 Mbps and 94 Mbps can be achieved with 9

and 15 UAVs, which are 1.52 and 1.74 times higher than that with hovering UAVs. Similar

results can also be observed with a violation probability threshold 0.05.

32



10 20 30 40 50 60
UAV Location Reporting Period (Time Slot)

0

0.05

0.1

0.15

0.2

0.25

S
IN

R
 O

ut
ag

e 
P

ro
ba

bi
lit

y

6 UAVs, RL(Exploitation Probability 0.98)
12 UAVs, RL(Exploitation Probability 0.98)
18 UAVs, RL(Exploitation Probability 0.98)
6 UAVs, Random Movement
12 UAVs, Random Movement
18 UAVs, Random Movement

10 20 30 40 50 60

0.014

0.016

0.018

0.02

0.022

Figure 3.11: SINR outage probability vs UAV location reporting period.
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Figure 3.12: Example of UAV trajectory with location reporting period of 60 time slots. (a) RL-
guided movement; (b) random movement.

In previous experiments (in Figure 3.7) the UAVs report their locations to the AFC in

every time slot. In this experiment, we investigate the mobility resilience of SwarmShare for

spectrum sharing in the presence of inaccurate UAV locations. The SINR outage probability

results are reported in Figure 3.11, where two mobility patterns are considered for the UAVs,

i.e., random movement and RL-guided movement, and the maximum tolerable SINR outage

probability is set to 0.05 for the incumbent system. The location reporting period is varied

from 10 time slots to 60. It can be seen that the SINR outage probability of the incumbent

system increases monotonically with the location reporting period if the UAVs move in
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an uncontrolled manner, i.e., completely randomly. For example, the outage probability is

around 0.07 when the reporting period is 10 time slots and can be up to 0.2 for 60 time slots.

In the case of controlled UAV movement, the SINR outage probability is barely affected by

the location reporting period and always below the maximum tolerable. This is because, as

illustrated by the example trajectories in Figure 3.12, the UAVs will stick with their current

best locations at a high probability (0.98 in this experiment) while exploring new locations

at a low probability (0.02). As a result, the topology of the UAV network and hence the

statistical behavior of their aggregate interference to the incumbent system changes only

slowly. Therefore, with controlled UAV movement, effective interference control can be

achieved with SwarmShare in mobile scenarios even with inaccurate UAV locations, e.g.,

because of the temporary loss of the connections to the AFC.

3.3.5 Effects of UAV Moving Speed
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Figure 3.13: Average UAV network capacity vs. UAV moving speed.

In this experiment, we study the effects of the UAV moving speed on the throughput

achievable by the UAV network. Consider 12, 15 and 18 UAVs in the network and the

maximum moving speed of UAVs is set to 25 m/s. The duration of each time slot is set to 30

seconds. The results are reported in Figure 3.13. It can be seen that, as expected, a larger
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average throughput can be achieved by the UAV network with higher moving speed. This is

because we consider in each time slot that each UAV first moves to the new position before

providing service to ground users, and hence with higher moving speed each UAV can arrive

at the target position faster and start to serve the ground users sooner.

3.3.6 Computational Complexity
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Figure 3.14: (a) Snapshot of octocopter UAV, (b) onboard computing device Intel NUC, and
(c) computation time.

We further study the computational time of the UAVs. In this experiment, each UAV

needs to finish two tasks in each time slot: transmission power initialization and RL-guided

trajectory optimization. For the first task, each UAV calculates its initial power based on

three Sigmoid functions defined in (3.15). In the second task, each UAV determines its

next-step movement based on the RL algorithm described in Chapter 3.2.3.We conduct the

experiments on Next Unit of Computing (NUC) with Intel® Core TM i5-10210U CPU @ 1.60

GHz ×8, memory of 16 GB, and Ubuntu 20.04 Operating System. The dimension of NUC is

117 × 112 × 37 mm3 and with weight of 504 g. As shown in Figures 3.14(a) and (b), NUC

has been integrated with the octocopter UAV custom-designed in our lab as the onboard

computing device. The results are reported in Figure 3.14(c). It can be seen that it takes

less than 1 ms for each UAV to finish the two tasks in each step. Since the UAV movement

usually operates at a much larger time scale, this verifies the low computational complexity
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of spectrum sharing algorithm.

3.3.7 Extension to Multiple Incumbent Users

In previous Chapters, we consider the spectrum coexistence framework between a UAV

network and a single incumbent user pair. The framework can also be extended to the

scenarios with multiple incumbent user pairs. To this end, we need to further consider the

interference among the unpaired incumbent transmitters and receivers, and consider the

cross-system interference constraint for each of the incumbent user pairs.

Denote L as the set of the incumbent user pairs and further denote γt
Rxl

as the SINR of

incumbent receiver Rxl in time slot t. Then the SINR expression in (3.6) can be rewritten

as in (3.24) at the top of this page. The SINR for UAV k ∈ K can be recalculated similarly.

For each incumbent Rx l ∈ L, a power adaptation coefficient ηt will be calculated following

the same procedure as in Chapter 4.2. In the case that the UAV network is deployed nearby

the overlapping area of multiple incumbent user pairs, the smallest ηt will be used for power

adaptation for the UAV networks so that the cross-system interference constraints can be

satisfied for all the incumbent user pairs. Recall in Chapter 3.2.4 that the power adaptation

coefficient ηt can be calculated for each incumbent user pair based on bisection search with

almost constant computational complexity. The overall computational complexity in the

case of multiple incumbent user pairs is hence O(|L|), with |L| representing the number of

incumbent user pairs in L.

We further verify the effectiveness of the spectrum coexistence framework considering

two and three incumbent user pairs. Consider 6 UAVs moving according to the ϵ-greedy
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Figure 3.15: Spectrum sharing between two incumbent user pairs and 6 UAVs. (a) Instan-
taneous capacity of the incumbent system and the UAV network; (b) zoomed in plot of time
slots 200-300; and (c) average capacity and violation probability.

RL algorithm with exploration probability 0.02. The results are reported in Figure 3.15

for two incumbent user pairs. Incumbent transmitters (Tx0 and Tx1) and receivers (Rx0

and Rx1) are deployed with coordinates (120, 250, 10), (380, 250, 10), (50, 250, 10) and

(450, 250, 10), respectively. The threshold of violation probability is set to 5% for each

incumbent receiver. It can be seen that the violation probability is lower than the threshold

for both incumbent user pairs, which are 0.6% and 0.7% for incumbent receiver Rx0 and

Rx1, respectively. Similar results can also be obtained for three incumbent user pairs.

37



Chapter 4

NeXT: Integrated Network

Simulation, Experimentation and

Optimization

In Chapter 3, we meticulously designed a spectrum sharing framework to foster har-

monious coexistence among UAVs within the 6 GHz band, and we verified its effectiveness

through simulation. However, to validate its real-world effectiveness, we now require a func-

tional testbed. In this chapter, we present NeXT, an innovative software-defined testing

framework designed for integrated RF network simulation, experimentation, and optimiza-

tion. We delve into the data plane design in Chapter 4.1, followed by a comprehensive

discussion on the control plane design in Chapter 4.2. To facilitate the seamless integration

of multiple potentially mobile srsENBs in experimental research, we introduce a scheme en-

abling srsENBs to interface with srsEPC through wireless links, detailed in Chapter 4.3.In

Chapter 4.4, we rigorously test NeXT and highlight its capabilities in optimization, simula-

tion, and experimentation across various network control scenarios. Concluding our explo-

ration, Chapter 4.5 delves into the novel avenues that NeXT can enable.
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Figure 4.1: NeXT testbed architecture and paper organization.

4.1 Data Plane Design

The data plane provides the forwarding infrastructure for the NeXT testbed. As illus-

trated in Figure 4.1, two forwarding infrastructures have been designed: UBSim for software-

based network simulations and RoboNet for experiments based on SDRs.

4.1.1 Software Simulations Based on UBSim

UBSim, evolved from simulators in [28,92,93], is a new wireless network simulator written

in Python and based on the SimPy discrete-event simulation framework [89]. The simulator

provides a configurable network-layer simulation supported by analytical models for various

PHY- and MAC-layer protocols. This lightweight computational design enables faster-than-

real-time iteration as well as on-the-fly adjustments to the protocol stack of each simulated

node, which sets UBSim apart as a highly effective simulator for experiments focusing on

protocol stack and topology self-configuration. The various node mobility types supported

by UBSim enables investigation into aerial networking, including both UAV swarm and

hybrid aerial-ground network control problems. UBSim supports general AI/ML algorithm

deployments, and has been demonstrated for reinforcement learning (RL), deep RL, and

multi-agent RL experiments.

As depicted in Figure 4.2, UBSim comprises three primary modules to handle the be-

havior definition of various network elements, as well as three APIs to support a wide range

of custom networking scenarios. Specifically, the network element module (NEM) defines
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Figure 4.2: Architectural overview of UBSim network simulator.

the behaviors of all types of communication nodes, environmental blockages, channels, and

the network as a whole. The network controller module (NCM) organizes the information

from the NEM and each user API to define the network topology, environment, and control

objective. The discrete event module (DEM) then takes the resulting full scenario definition

and starts the discrete event-driven simulation process.

The simulator APIs offer full configuration over network behaviors, environment specifi-

cation, and control specification. Specifically, the network configuration API provides control

over parameters such as frequency, bandwidth, mobility, and location of nodes, as well as

networking area and propagation characteristics. The environmental definition API provides

control over the locations and sizes of blockages as well as their RF absorption coefficients

over different frequency bands. In general, all physical environmental features, including lab

benches, server rack, and UAV enclosure as shown in Figure 4.5(a), are modeled as block-
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ages within the networking area. Finally, the custom algorithm API provides access to the

run time behavior of all the nodes, such as mobility, transmission patterns, band associa-

tion, among others. Particularly, this API module provides direct support for experimental

applications of AI/ML for tasks such as network automation and self-configuration.

The parallel deployment of UBSim alongside the NeXT testbed provides several ad-

vantages. The highly configurable nature of UBSim provides a virtual sandbox in which

experiments can be designed and evaluated for deployment on the NeXT testbed much

faster than using SDR hardware alone. Additionally, the speed of simulation design and

execution in UBSim enables pre-training or parallel training of AI models prior to deploy-

ment on hardware. This is particularly important for models in which significant amounts

of environmental data must be available to generate an optimal solution, such as those used

for deep learning and reinforcement learning. Furthermore, over-the-air data collected from

the NeXT testbed can be used to improve the accuracy of data generated by UBSim by

means of system identification [94], addressing challenges associated with high-quality data

collection for AI/ML algorithms mentioned in Chapter 1.

4.1.2 Software-Defined Forwarding Infrastructure: RoboNet

The design objective of RoboNet is to support experiments in wireless networks with

mobile robots, such as mobile hotspots [95] and wireless UAVs [96]. The testbed is located

in 238 Davis Hall on the University at Buffalo’s North Campus. Figure 4.5 shows a snapshot

of RoboNet and the corresponding topology. At the center of RoboNet is a netted enclosure of

dimension 6×4×2.1 m3, providing a safe space for robot navigation. For mobile nodes, three

wireless robots have been designed based on SuperDroid vehicles and universal software radio

peripheral (USRP) SDRs. An indoor navigation system is also designed based on Marvelmind

beacons to provide indoor localization for the robots. For static nodes, a set of USRP SDRs

have been deployed over the shelves on the left and right sides of the netted enclosure. All

the static software radios are controlled by a server rack of five Dell workstations. The mobile
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Figure 4.5: (a) Snapshot of the RoboNet testbed; (b) RoboNet network topology.
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Figure 4.6: (a) Snapshot of PDU setup; (b) PDU remote management interface.

software radios are controlled by the robots’ onboard computing hosts.

Static Nodes. The static nodes consist of 19 USRP N210, 5 USRP B210 SDRs and

1 wAP 60G (AP). Each USRP N210 operates at frequencies from DC to 6 GHz and can

process up to 50 mega samples per second (MS/s). Each USRP N210 is equipped with a CBX

daughterboard and two VERT900/VERT2450 antennas. These USRP SDRs are connected

via two switches to a server rack, comprising four Dell EMC R340 PowerEdge workstations

for baseband signal processing. Each USRP B210 is designed for low-cost experimentation

with continuous frequency coverage from 70 MHz to 6 GHz. Each USRP B210 is also

equipped with two VERT2450 antennas. The five USRP B210s provide flexibility because

they can be deployed to any place depending on the requirements. The wAP 60G (AP)

router is a product from MikroTik [97] and can be used either as a point-to-point primary

or a point-to-multi-point primary.

The USRP SDRs are powered via three remotely accessible CyberPower Power-Distribution-

Units (PDUs), as shown in Figure 4.6(a). These PDUs are assigned with Ethernet LAN IP

addresses 192.168.10.175, 192.168.10.176 and 192.168.10.177 and connected to edge servers

via switches. By getting access to the three default IP addresses, experimenters can power

on, shut down and make a schedule with all static USRPs remotely. Figure 4.6(b) shows
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the PDU remote management interface, via which experimenters can power on/off USRPs

in real time or at scheduled times.

Mobile Beacon

USRP

Dell Latitude 

5491

SDR Antenna
Interstate 12 Volt 8 Ah 

Sealed Lead Acid 

Battery (SLA)

Arduino UNO Sabertooth dual 5A 

motor drivers

Quadruple 

LS7366R Encoder

IG32 gear motor

Mecanum wheel

(a) (b) (c)

Figure 4.7: Snapshots of mobile node. (a) USRP software radio, control host, laptop, and mobile
beacon; (b) Power unit and Arduino controller; and (c) Bottom view: motors, motor drivers and
encoder.

Mobile Nodes. Three software-defined robot vehicles have been designed for RoboNet

based on a combination of SuperDroid robots and USRP SDRs. Snapshots of the robot

vehicles are shown in Figure 4.7. The SuperDroid robot serves as the mobile carrier of the

software radios. A programmable Mecanum wheel vectoring robot has been used in the

current design of the mobile nodes. Each robot comprises 4 Mecanum wheels, 4 IG32 gear

motors, 2 Sabertooth dual 5A motor drivers, 1 Quadruple LS7366R Encoder and 1 Arduino

UNO controller. Each robot is powered by two 18V/2.4A PB (lead-acid) batteries. This

allows each robot vehicle to carry up to 50 lbs of payload, including the USRP SDRs and

their controlling host. Each robot is equipped with USRP SDRs for programmable wireless

communications. Currently, both USRP N210 and B210 can be supported by mobile nodes.

Each robot can also carry a wAP 60G to enable mmWave communications.

A Dell Latitude 5491 laptop with Intel CoreTM i7-8850H CPU@2.6GHz*12 is used for

robot control, USRP SDR control and baseband signal processing. The connection between

the controlling laptop and the robot vehicle is established by an Arduino via USB port “/de-

v/ttyACM0”. The mobile beacon is connected to the laptop via USB port “/dev/ttyACM1”.

The two default serial ports provide more flexibility of our testbed. For example, by access-
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ing the USB serial port, experimenters can access the raw beacon location information and

design their own position algorithms, rather than using algorithms that we provide. Finally,

the movement of the robot is controlled and navigated by the Arduino and the beacon via

serial communications.

(a) (b)

Figure 4.8: (a) Controller modem; (b) Super beacon.

Indoor Positioning System. Because of the poor reception of GPS signals in indoor

environments, an indoor positioning system has been deployed, as shown in Figure 4.8. The

system consists of a controller modem (Figure 4.8(a)) and 7 precise (with accuracy of ±2 cm)

Marvelmind Super-Beacons (Figure 4.8(b)). Based on this system, the location of the mobile

beacon can be calculated using trilateration based on the propagation delay of ultrasonic

signals to a set of stationary beacons.

The 7 super beacons are divided into two groups: 4 static and 3 mobile beacons. As

shown in Figure 4.5(b), the 4 static beacons, b1, b2, b3 and b4, are attached to the four sides

of the protective net. For example, Figure 4.8(b) shows the deployment of b1, which can

communicate with the controller modem, its neighbour beacons and the mobile beacon using

the selected frequency (19/25/31/37 kHz). According to the exchanged information among

the static beacons, the mobile beacon and the modem, the robot locations will be updated

in real time. We adopt a Non-Inverse Architecture to set up the navigation system and 31

kHz is used as the communication frequency.

Finally, the controller modem is connected to the edge server via a USB port. Through
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the control dashboard at the server, experimenters can define a network map by assigning

the origin point of the 3D network, configuring beacon parameters (e.g., beacon address and

mode), and monitoring the movements of the mobile beacons mounted on the robots.

𝜃

𝑥

𝑦

𝑦!

𝑥!

Figure 4.9: Mecanum wheel robot with angular deviation.

Robot Self-Adjustment Scheme. Since we focus on investigating the wireless com-

munication network, we always hope that the robot will move as prescribed and arrive at

its target location. However, with inaccurate readings from the encoder and different speeds

of the four Mecanum wheels (shown in Figure 4.7(c)), the robot may fail to arrive at the

expected position and collisions may happen when multiple robots exist. In order to focus

on the wireless network study itself without worrying about the negative impacts induced

by the robot, we propose a beacon-based robot self-adjustment scheme to allow the robot

to automatically adjust its position and posture during experiments. The overall robot

self-adjustment scheme is summarized in Algorithm 2.

There are two phases of the self-adjustment scheme: i) beacon-based robot posture ad-

justment and ii) beacon-based robot position adjustment. Due to the different speeds of

the Mecanum wheels, there is a divergence angle θ between the movement direction of the

robot and the network’s x-axis, as shown in Figure 4.9, especially when the robot moves

left or right. At the beginning of the adjustment, the robot records its beacon-based posi-

tion (x1, y1). Since movement errors are negligible when moving short distances forward or
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Algorithm 2: Robot Self-Adjustment Scheme

1 Beacon-based Robot Posture Adjustment:
2 Measure current position (x1, y1) via beacon
3 Robot moves forward for τ seconds
4 Measure new position (x2, y2)
5 Robot moves back to (x1, y1)
6 Calculate the angle deviation based on (4.1)
7 Determine the rotation direction and calculate rotation distance based on

Table 4.2
8 Arduino movement control

9 Beacon-based Robot Position Adjustment:
10 Measure current position (x3, y3) via beacon
11 Look up state position table and obtain target state position (x, y)
12 Determine the movement direction and calculate movement distance based on

Table 4.2
13 Arduino movement control

14 return

backward, we have the robot move forward for τ seconds (τ = 3 by default), record its new

beacon-based position (x2, y2), and then move backwards for τ seconds back to its original

position (x1, y1). With the recorded two positions, the divergence angle θ can be calculated

based on

θ =


90◦, if x1 = x2 and y1 < y2

−90◦, if x1 = x2 and y1 > y2

arctan( y2−y1
x2−x1

), otherwise.

(4.1)

With the divergence angle θ, the movement option and the movement distance can be ob-

tained by referring to Table 4.1, in which d1 is the measured reference distance, which is

obtained as follows: When a robot turns left or right, one of its four wheels (left-back wheel

by default) does not move and the other three wheels do. By reading the encoder value of

one of the non-static wheels (the left-front wheel by default) when the robot rotates 360◦,

the value of d1 can be obtained. The two adjustment parameters (θ and d1) will then be

packed in a message and sent to the onboard Arduino controller. With the received message,

47



the Arduino will control the robot to finish the beacon-based robot posture adjustment.

In the second phase, the robot first measures its new position (x3, y3) and compares it

with the measurement-based beacon state information (x, y) which can be obtained via a

one-time beacon-based measurement. The obtained distance divergence dx and dy for the x

and y axis will be calculated and transformed to the corresponding movement direction and

distance as shown in Table 4.1, in which d2 and d3 are the measured reference distance when

the robot moves forward and backward for 1 meter, respectively. Similarly, the obtained

adjustment parameters will be packed and sent to the Arduino. Once the Arduino receives

the movement command, the robot will adjust its position and then finish the second-phase

adjustment.

Table 4.1: Robot movement operation

Parameter Movement Option Movement Distance Parameter Movement Option Movement Distance
θ > 0 Rotate Left |θ|/360 ∗ d1 θ < 0 Rotate Right |θ|/360 ∗ d1
x3 < x Move Forward dx = (x− x3) ∗ d2 x3 > x Move Backward dx = (x3 − x) ∗ d2
y3 < y Move Left dy = (y − y3) ∗ d3 y3 > y Move Right dy = (y3 − y) ∗ d3

Otherwise Stop 0

4.2 Control Plane Design

The control plane supports both traditional model-based control, enabled by WNOS, and

emerging data-driven control, enabled by the RL repository. A set of APIs are developed for

WNOS to enable automatic generation of distributed cross-layer control algorithms. While

the RL repository is combined with a set of experiment management APIs and multiple

communication protocols to ease the use of NeXT testbed and enable broadband wireless

communication. The control plane is deployed over the edge servers which are placed in the

shelf labeled as “UB NeXT” in Figure 4.5(a).
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4.2.1 Network Modeling and Optimization Support

It is typically tedious and error-prone to manually model and optimize forwarding infras-

tructure in the data plane. To address this challenge, we deployed our previously designed

WNOS [40,98–100] over NeXT. The primary benefits of WNOS are that it abstracts the data

plan forwarding infrastructure, allows experimenters to define control objectives in a central-

ized manner using high-level APIs, and then automatically generates distributed cross-layer

control algorithms that can be deployed on NeXT ’s data plane, e.g., UBSim and RoboNet.

At a high level, WNOS comprises two key components: network abstraction and network

control problem decomposition and control program generation. The network abstraction

provides a set of APIs, based on which experimenters can characterize in a centralized

manner the desired network behaviors before actual deployment. The network control prob-

lem decomposition and control program generation is enabled by disciplined instantiation

(DI) [40], based on which user-defined abstract centralized network control problems can be

decomposed into a set of distributed subproblems. WNOS is designed based on a three-level

hierarchical architecture to enable scalable network deployment. Specifically, at the first-

level, the WNOS control host is connected to all second-level SDR control hosts via wireless

interfaces (Wi-Fi in our current prototype). The generated distributed algorithms are auto-

matically pushed over the wireless interfaces and installed at each of the SDR control hosts

which form the third-level. Hence, one only needs to create a single piece of code to control

all the SDR devices.

WNOS supports a wide set of network control problems in both static and mobile net-

works. These include, but are not limited to, rate maximization, power minimization, end-

to-end delay minimization, and movement optimization. WNOS also provides a rich set of

APIs, based on which experimenters are allowed to define more sophisticated control prob-

lems in next-generation broadband networks spanning across multiple frequency bands, e.g.,

microwave, mmWave as well as THz bands. Below are some examples of the APIs.
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Table 4.2: Example APIs of WNOS

API Description
attach(·) Add elements to the network
connect(·) Link one or more network elements
install model(·) Install an expression model for a network element attribute
get expr(·) Get the expression of a network element
mkexpr(·) Construct the new expression
record expr(·) Store the expression in the database
set para(·) Designate a specific expression as a utility function, constraint, or optimization variable
set soln(·) Select the solution method to optimize the designated variables
record expr(·) Store the expression in the database

4.2.2 Data-Driven Network Control Repository

The second part of the control plane is the data-driven network control repository which

enables data-driven control on RoboNet and makes it easy to modify advanced AI/ML algo-

rithms to be compatible with our testbed. This repository consists of two classes of APIs for

data-driven control, i.e., Basic Class and Advanced Class. The basic class is responsible for

network initialization. Examples include the Environment Initialization API, Variable Ini-

tialization API and Feedback List Initialization API. The Advanced Class APIs are designed

based on Basic Class and are used for policy training, including updating states, actions

and a value table. Given the number of states and actions specified using the Configura-

tion API, the environment can be initialized using the Environment Initialization API. Key

variables involved in learning algorithms, such as the current state and next state, can be

initialized via the Variable Initialization API. One is also allowed to choose the Reward Type

and Calculator Mode through the Configuration API. Based on these APIs, four classes of

RL algorithms have been implemented in the advanced class and can be called via the RL

Algorithm API. These are epsilon-greedy search, upper confidence bound (UCB) action se-

lection, Q-learning and State–action–reward–state–action (SARSA). Different reward types

and calculator modes have been defined in advance, while experimenters can define custom

reward types and calculator modes for their own experiments.
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Figure 4.10: Network element control interface and experiment management APIs.

4.2.3 NeXT Experiment Management APIs

Extensive experiments can be conducted over the NeXT testbed, especially on RoboNet

discussed in Chapter 4.1.2. To help experimenters use our testbed efficiently, we design

a set of experiment management APIs, by which elements deployed on RoboNet can be

coordinated. As shown in Figure 4.10, there are three classes of APIs, as discussed next.

Network Configuration APIs. APIs in this class are used to define various network

environments. We provide three different APIs, Network Configuration API, Host Configu-

ration API and USRP Configuration API. Parameters that can be configured via network

configuration APIs include network area, center frequency, bandwidth, transmission power,

modulation type, slot duration, the number of robots, etc. Through host and USRP con-

figuration APIs, experimenters can manage Ethernet addresses, wireless network addresses,

and port numbers for the SDRs and their controlling hosts.

Nodes Synchronization APIs. To easily coordinate the server and mobile hotspot

controllers, Nodes Synchronization APIs are provided. With these APIs, for example, ex-

perimenters can start the experiments with just one command executed on the edge server.

These APIs are based on a Transmission Control Protocol (TCP) connection established

over WiFi to provide communications among different nodes. The WiFi wireless local area
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(a)

(b)

Figure 4.13: Screenshot of 2.56 GHz spectrum monitor of network (a) in idle mode with -92 dBFS
peak interference; (b) during experiments with -68 dBFS peak signal.
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network is enabled by TP-Link Archer A7 AC1750 Wireless Dual Band Gigabit Router,

which follows wireless LAN 802.11a/b/g/n/ac standards. The 2.4 GHz and 5 GHz bands

are dedicated for node synchronization and we avoid using the two bands for conducting

experiments. Thus, the WiFi will not cause any interference to our target experiments. The

other potential external interferes are mainly from wireless devices like phones. However,

since most wireless devices get access to the internet via University at Buffalo’s WiFi net-

work, which also works in the 2.4 GHz and 5 GHz bands, the interference to measurements

is limited. In Figure 4.13, we show the spectrum comparison without and with ongoing

experiments, respectively. The results show that the possible interference (-92 dBFS) to our

experiments is much smaller than our signal strength (-68 dBFS). Thus we can neglect the

possible interference.

Network Element APIs. After the experiment profile has been configured, one can

further control various network components via a set of system control APIs deployed at

the edge server and mobile hotspot controller. These include the Transmission Control API,

which can be used to control the transmissions of the USRP N210 carried by the robot vehicle;

the Receiver Control API for controlling data receiving; the Robot Movement Control API

for controlling robot movement; and finally the Beacon Positioning API, based on which

experimenters can obtain the robots’ real-time positions.

In these network element APIs, logging features are enabled to record system status

like transmission process startup, beacon positioning updates, robot movements and so on.

Data that will be used for analysing and processing, like throughput for each time slot, are

stored and updated in dictionaries/tables during the tests and saved automatically once an

experiment finishes.

1 import Reinforcement_Learning_API as rli

2 import Robot_Movement_Control_API as rmi

3 import Beacon_Positioning_API as bpi

4

5 while experiment_running:
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6 curt_state = bpi.operation ()

7 next_state = rli.operation ()

8 updt_rbt_movement_ctrl(curt_state , next_state)

9 updt_usrp_commn_ctrl ()

10 updt_fdbk_request ()

11 reward = rli.fdbk_processing(fdbk , fdbk_type , rwd_calc)

12 rli.updt_value_table(reward)

13 if rbt_adjustment_status:

14 rmi.rbt_adjustment(next_state)

Listing 4.1: Example of Experiment Management APIs

In Listing 4.1, we show an example of using the aforementioned APIs to conduct experi-

ments on the NeXT testbed. While an experiment is running (line 5), the user calls Beacon

Positioning API to get the current state information (line 6) and calls Reinforcement Learn-

ing API to get the next state information (line 7). The robot updates its location by calling

Robot Movement Control API (line 8). After the robot arrives at the target location, the

communication begins (line 9). After a pre-defined communication time in Network Con-

figuration API, the robot requests feedback (line 10) and obtains the current reward (line

11), and the value table is then updated (line 12). Before conducting the next time-slot

experiment, the robot adjustment status parameter defined in Network Configuration API

will be checked (line 13). If the status is True, the robot will adjust its posture and position

based on Algorithm 2 (line 14).

4.2.4 Communication Protocols Management

We consider three different communication protocols in our testbed: GNU Radio Bench-

mark, srsRAN and mmWave communication protocols.

GNU Radio Benchmark Protocol. This is developed based on GNU Radio narrow-

band benchmark library [101]. Specifically, we extend the original benchmark narrow-band
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library by designing three additional APIs. These are Benchmark Interaction API, Bench-

mark Transmission Control API and Benchmark Receiving Monitor API. For example, the

Benchmark Transmission Control API is used to control when and what data is transmit-

ted. The transmission duration and transmission information can be configured in Network

Configuration API in Chapter 4.2.3 and can then be transmitted to the basic benchmark

module via Benchmark Interaction API. Benchmark Receiving Monitor API is used to mon-

itor the status of the receiver. If the receiver detects disconnected links, it will restart the

transmitter by sending a request to the edge server via Benchmark Interaction API.

1 import Network Configuration API as nc fg

2 import Host Conf igurat ion API as hc fg

3 import Benchmark Interact ion API as bmia

4

5 de f Benchmark Transmission Control API ( ) :

6

7 i f bmia . tmr1 == 0 :

8 data = ncfg . cxn data

9 e l i f bmia . tmr2 <= ncfg . t s l e n :

10 data = ncfg . comm data

11 e l s e :

12 data = ncfg . cxn data

13 bmia . socket . sendto ( nc fg . cmd done , ( hc fg . wl host , hc fg . port ) )

14

15 re turn data

Listing 4.2: Example of Benchmark Transmission API

Listing 4.2 shows an example of how Benchmark Transmission Control API is used

to control the transmission of data at run time. There are two types of data that can be

transmitted: regular transmission data, which is the actual data that we want to deliver over

the network, and dummy connection data, which we use to keep the network connection alive.

The connection data is needed because GNU Radio does not provide an auto re-connection
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scheme if a connection is lost. In Listing 4.2, the experimenter first calls the Benchmark

Transmission Control API (line 5) to determine the data to be transmitted based on the

two timers received from Benchmark Interaction API. If timer 1 (bmia.tmr1 ) equals 0 (line

7), the data is set as connection data (ncfg.cxn data, line 8); if timer 2 is (bmia.tmr2 ) smaller

than a predefined transmission duration (ncfg.ts len, line 9), the data is set as communication

data (ncfg.comm data, line 10); otherwise, the data is set to ncfg.cxn data (line 12) and the

one-time-slot-finished information will be sent to Local Main Controller API via Benchmark

Interaction API (line 13).

Software-Defined RAN Protocol. This is developed based on srsRAN, an open-

source 4G and 5G software radio suite developed by Software Radio Systems (SRS) [102].

It contains three different modules, srsEPC, srsENB and srsUE. We design a set of srsRAN

Configuration APIs to manage the three modules based on the parameters in Network Con-

figuration API. For example, the user dataset information can be generated automatically

and stored in “user db.csv” via srsEPC configuration API, and srsENB operation parame-

ters like communication frequency can be generated automatically via srsENB configuration

API. The srsUE configuration API is used to generate “ue.conf” file which contains srsUE

operation information, such as IMSI information.

1 import os

2 import srsEPC conf igurat ion API as epca

3 import srsENB conf igurat ion API as enba

4 import s r sUE conf igurat ion API as suea

5

6 epca . s r s e p c op e r a t i on ( )

7 os . system ( ”gnome−t e rmina l −− bash −c \” sudo s r s epc ; exec bash\”” )

8 enba . s r s enb ope ra t i on ( )

9 os . system ( ”gnome−t e rmina l −− bash −c \” sudo sr senb ; exec bash\”” )

10 suea . s r s u e op e r a t i on ( )

11 os . system ( ”gnome−t e rmina l −− bash −c \” sudo s r sue ; exec bash\”” )

Listing 4.3: Example of srsRAN Configuration APIs
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Listing 4.3 shows an example of how to generate srsRAN configure files and run the

corresponding programs. Users call srsEPC operation (line 6) to generate “user db.csv” and

start up srsEPC program in line 7. Similarly, “enb.conf” and “ue.conf” are generated by

calling srsENB operation (line 8) and srsUE operation (line 11), respectively.

Millimeter-Wave Communication Protocol. The mmWave communication protocol

is supported by MikroTik mmWave routers [97]. These mmWave routers can be configured

to form a point-to-point network or point-to-multi-point network based on requirements.

When integrating the mmWave communication protocol with srsRAN to enable large scale

wireless network communication, we connect both the USRP B210 (running srsEPC and

srsENB) and the mmWave router (primary) to a single laptop and design a Gateway Setting

API to navigate data traffic between srsUE and mmWave subordinate.

1 import os

2 import Network Configuration API as nc fg

3 import Host Conf igurat ion API as hc fg

4

5 de f Gateway Setting API ( ) :

6

7 subnet = hcfg . srsRANsubnet

8 eth addr = ge t a t t r ( hcfg , nc fg . laptop name ) . get ( ” e th hos t ” )

9 gw sett ing cmd = ”gnome−t e rmina l −− bash −c \” sudo ip route add ” + s t r (

subnet ) + ” v ia ” + s t r ( eth addr ) + ” ; exec bash\””

10 os . system ( gw sett ing cmd )

Listing 4.4: Example of Gateway Setting API

Listing 4.4 shows an example of how to set the gateway to enable communication between

srsUE and mmWave subordinate. The key is to get the subnet address of srsRAN (line 8)

and Ethernet address of the current laptop (line 9). The command is generated based on

the above two information (line 10) and the gateway is set by executing the command (line

11).

Since the three communication protocols have their own logic stacks and the interactions
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with controllers are processed in different ways, we implement three different profiles for

each communication protocol. These three profiles are stored in laptop controllers and edge

servers. Each profile is independently stored in different folders but they share the same

components except communication protocol. Experimenters can choose the profile to load,

i.e., select the communication protocol they want to use, before conducting experiments.

By providing different profiles for different communication protocols, we can easily integrate

more communication protocols, like direct sequence spread-spectrum (DSSS) [103], to our

testbed in the future.

(a) (b)

Figure 4.14: (a) Snapshot of the Octocolock; (b) GPS module

The three communication protocols that we have implemented all rely on self-synchronization

schemes. For example, srsRAN implements the Precision Time Protocol (PTP), which is a

standard protocol used for time synchronization in packet-based networks, so no clock/time

synchronization features are needed. However, protocols that rely on clock/time synchro-

nization can be implemented with support of additional hardware, such as an Octoclock or

GPS module, as shown in Figure 4.14. The accuracy of Octoclock is within a few 100 ns

and GPS module is within 50 ns.

4.3 Scaling Out srsRAN

srsRAN has been widely used in experimental research for 5G, 6G and their evolutions.

However, in the current implementation of srsRAN, the srsENB and srsEPC are interfaced
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through wired connections, which makes it challenging to conduct experiments with mobile

srsENBs and dynamic association between User Equipment (srsUE) and srsENB in future

wireless networks. To address this challenge, we propose to interface srsENB and srsEPC

by allowing srsENB to interface with srsEPC through wireless links and hence enabling easy

integration of multiple possibly mobile srsENBs in experimental research [104]. We show

the effectiveness and scalability of the new srsRAN architecture through two demonstrations:

(i) srsUE-srsENB connection establishment; (ii) srsUE handover between two srsENBs wire-

lessly interfaced with the same srsEPC.

In this research, we focus on enhancing the scalability of srsRAN, which is an open-source

4G LTE/5G NR commercial-grade software radio suite developed by Software Radio Systems

and has been widely used in experimental research for 5G, 6G and their future evolutions.

4.3.1 srsRAN: A Primer and Challenges.

srsUE srsENB srsEPC

Internet

MME

HSS

S-GW

P-GW

S11

S6a

SGi
S5/S8

Traditional Wired Interface Proposed Wireless Interface

Figure 4.15: Diagram of the traditional srsRAN architecture with wired interface (black solid
lines) between srsENB and srsEPC and the architecture with wireless interface (red dashed lines).

As illustrated in Figure 4.15, the srsRAN framework consists of three major components,

namely the User Equipment (srsUE), Evolved NodeB (srsENB) and Evolved Packet Core

(srsEPC). The srsUE is a software based 4G LTE and 5G NR UE modem capable of con-

necting to any LTE or 5G NR network and providing high-speed mobile connectivity. The

srsENB is the software based LTE eNodeB basestation that connects to srsEPC. The srsEPC

is a lightweight implementation of the LTE core network that consists of Home Subscriber
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Service (HSS), Mobility Management Entity (MME), Service Gateway (S-GW) and Packet

Data Network Gateway (P-GW) modules. The HSS module is the user database that stores

user information such as user id, key and usage limits. It is also responsible for authorizing

the user to connect to the network. The MME module is the main control element in the

network that handles mobility. The S-GW module is responsible for setting up sessions be-

tween the srsENB and P-GW. Finally, the P-GW module acts as the point of contact with

external networks.

In the current deployment of srsRAN, the srsENB and srsEPC are interfaced with each

other through wired connections. As a result, it is hard to support experiments for wireless

networks with mobile hotspots, where base stations can be carried on ground or flying

vehicles [6,28]. A natural question to ask is: Can we interface srsENB with srsEPS through

wireless links and hence enhance the scalability of srsRAN in experimental research for NextG

networks with mobile hotspots?

4.3.2 Interface Analysis and Adaptation

We first identify the modules and functionalities of srsRAN that will be affected by the

adoption of a wireless interface between srsENB and srsEPC. In srsENB there are two layers

connected to srsEPC. The S1 Application Protocol Layer (S1-AP) in srsENB is connected to

MME in srsEPC to provide the control plane connection, and the GPRS Tunneling Protocol

User Plane Layer (GTP-U) in srsENB is connected to S-GW to provide the data plane

connection. The interface for these two connections are S1-AP and S1-U, respectively. To

enable connecting srsEPC and srsENB wirelessly, the interfaces for both S1-AP and S1-U in

srsEPC and srsENB need to be adapted properly. To this end, both hosts running srsEPC

and srsENB need to establish a wireless link. In our prototyping, we consider commercial

off-the-shelf Wi-Fi links as an example, while other wireless links can also be adopted, e.g.,

mmWave- and terahertz-band links.

Denote wl epc addr and wl enb add as the wireless IP address of hosts running srsEPC
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and srsENB, respectively. Then, we need to further modify the two interfaces based on

the allocated wireless IP addresses in srsEPC configuration file. Specifically, we need to

update MME Bind Address (mme addr) and GTP-U bind address (gtp bind addr). The

former specifies where the MME will listen for upcoming srsENB S1-AP connection and the

latter specifies the tunnel address of S-GW for transmitting and receiving information to and

from GTP-U at srsENB. Both of the two parameters need to be configured as wl epc addr.

Furthermore, three bind addresses need to be modified for the two interfaces, that is GTP-

U bind address (gtp bind addr), S1-C Bind Address (s1c bind addr) and MME Address

(mme addr), where s1c bind addr is used to for S1-AP connection. Both gtp bind addr and

s1c bind addr need to be assigned with wl enb add, and mme addr needs to be assigned with

wl epc addr.

After establishing the wireless link between srsEPC and srsENB, the parameters stored

in UE’s USIM card should be added in the user db.csv. This is a separate configuration file

used by srsEPC to store the details of the users in HSS. The following parameters need to be

updated in the user db.csv file for each UE: ue name (Human readable name to help dis-

tinguish UE’s), algo (Authentication algorithm used by the UE like XOR and MILENAGE),

imsi (UE’s IMSI value), K (UE’s key stored in hexadecimal), OP type (Operator’s code type,

either OP or OPc), OP value (Operator Code/Cyphered Operator Code), AMF (Authenti-

cation management field), SQN (UE’s Sequence number for freshness of the authentication),

QCI (QoS Class Identifier for the UE’s default bearer), IP alloc (IP allocation strategy for

the SPGW). When IP alloc parameter is set as “dynamic”, SPGW automatically allocates

IP address to UE. When IP alloc parameter is set to a valid IPv4 (IP address must be in

the same subnet as that of srsENB and srsEPC), SPGW statically assigns an IP address to

UE.
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4.4 Example Experiments Over NeXT

We now test NeXT and showcase its capabilities of optimization, simulation and experi-

mentation considering different network control problems. These include user scheduling in a

cellular network, trajectory optimization for a mobile hotspot, and joint rate and power con-

trol in multi-hop networks. A comprehensive overview of these experiments is summarized

in Table 4.3.

Table 4.3: Experiments Overview

Experiment No. Name Type
1 User Scheduling simulation & experimentation
2 Overflow Control experimentation
3 Mobile Hotspot Navigation experimentation
4 Multi-Mobile Hotspots Navigation experimentation
5 Mobile Hotspot Navigation with srsRAN experimentation
6 Mobile Hotspot Navigation in IAB experimentation
7 Multi-hop Network Optimization optimization & simulation & experimentation

4.4.1 Experiment 1: User Scheduling

In the first experiment, we consider a wireless network with a hotspot serving a set

of users. The transmission time is divided into a set of consecutive time slots. In each

time slot, we consider that the hotspot can serve at most one user. The objective of the

hotspot is to maximize the aggregate throughput by selecting a user to serve in each time

slot. We design control algorithms for the hotspot based on the data-driven network control

repository as discussed in Chapter 4.2.2. Specifically, we consider the upper confidence bound

(UCB) action selection algorithm and test it over both UBSim and RoboNet developed in

Chapter 4.1. First, we test the effectiveness of the UCB algorithm in UBSim. Figure 4.16(a)

plots the achievable capacity averaged over 20 episodes each with 100 time slots. It can be

seen that the average capacity improves over time, and this validates the effectiveness of the

data-driven network control repository.

Then we further test the data-driven network control repository over RoboNet considering

SDRs and real-world wireless channels. USRP20 is selected as the transmitter and five
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Figure 4.16: User scheduling scenario: (a) Average capacity obtained over UBSim; and (b) average
throughput using RoboNet.

USRPs (USRP2, USRP5, USRP9, USRP11 and USRP19) are selected as receivers (see

Figure 4.5). The time slot duration is set to 3 seconds. The exploration parameter ϵ and

UCB control parameter c are set to 0.15 and 2, respectively. We run 10 episodes of robot

navigation, with each episode consisting of 100 time slots. We calculate the average number

of received packets in each time slot and the results are shown in Figure 4.16(b). It can

be seen that the highest throughput can be achieved in around 20 time slots. This further

validates the effectiveness of the data-driven network control repository. Comparing Figures.

4.16(a) and (b), we found the average capacity in UBSim is much larger than the average

throughput on RoboNet. This is because we use different protocols in each system. In

UBSim, the network capacity is calculated based on the Shannon capacity formula while on

RoboNet, the throughput is obtained based on GNU Radio’s narrowband communication

protocol. Besides, the transmission power, bandwidth and so on are different in UBSim and

RoboNet. For these reasons, the gap between UBSim and RoboNet is large. Since we focus

on the verification of algorithms effectiveness, we neglect the gap between the simulator

and reality. However, it would be interesting to investigate how to mitigate the reality gap,

which is also a potential function provided by the NeXT system. We discuss this further
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in Chapter 4.5. Recall that the primary objective of NeXT is to provide an integrated

environment for optimization, simulation, and experimentation in software-defined wireless

networks. This experiment illustrates the benefits of using the NeXT testbed. Conducting

experiments in the real-world is time consuming while simulation-based experiments can be

done much quicker. With the NeXT testbed, users can test their algorithm in UBSim first

and check the performance of the proposed algorithm. If the results show that the algorithm

needs improvement, they do not need to do the tests in the real-world, which saves time.

By conducting experiments on our testbed, users also avoid directly collecting data in the

real-world, which can sometimes be unsafe.

1 u s r p r x l i s t = [ ”usrp2 ” , ” usrp5 ” , ” usrp9 ” , ” usrp11 ” , ” usrp19 ” ]

2 t s l e n = 3 # time s l o t l ength ; un i t : second

3 ts n im = 100 # time s l o t number

4

5 Q Epsi lon = 0.15

6 Q StepSize = 0 .2

7 Q DiscountRate = 0.95

Listing 4.5: User scheduling configuration parameters in Network Configuration API

Listing 4.5 shows user scheduling configure parameters in Network Configuration API,

which can be used to configure the parameters involved in this experiment. Experimenters

can specify the USRPs they want to use as the receiver in line 1. The time-slot length

and time-slot number for each episode can be set via line 2 and line 3, respectively. The

parameters used for the UCB action selection algorithm configuration can be configured from

line 5 to line 7.

4.4.2 Experiment 2: Overflow Control

In this scenario, Robot1 is adopted as the transmitter and three USRPs (USRP1, USRP9

and USRP11) are adopted as receivers. Each time slot is set to 5 seconds and the transmitter

transmits data every 0.15 seconds. Assume that the arrival rate follows a Poisson distribution
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Figure 4.17: Overflow control scenario: Transmitted packet number vs. time slot
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Figure 4.18: Overflow control scenario: Cumulative overflows vs. time slot

and the average arrival rate is set to 1 packet per time slot. The maximum data buffer length

is set to 8 packets for each receiver. Q-learning is adopted in this case to control data buffer

overflows. As shown in Figure 4.17, we run one episode with 500 time slots and calculate

the number of transmitted packets and the corresponding running average for each time

slot. It can be seen that, in some time slots the number of transmitted packets is 0. This

happens when there are no packets available in the buffer to transmit or when the channel

conditions are bad. For Poisson distributed packet arrivals with average arrival rate 1, the

expected number of packets arriving at each user in each time slot is 1. Thus, the total

65



expected arrivals for three users in each time slot is 3. From Figure 4.17, the running

average is around 3 packets per time slot which matches the above mathematical analysis.

The cumulative overflows are shown in Figure 4.18, in which the slope converges gradually

over time towards the optimal achievable packet overflow rate.

1 p k t s a r r i v a l r a t e = 1 # uni t : packet / s l o t

2 queue max pkts num = 8 # maximum bu f f e r s i z e

3 queue over f low reward = −20

Listing 4.6: Overflow control configuration parameters in Network Configuration API

As shown in Listing 4.6 experimenters can modify the parameters in Network Config-

uration API to meet their needs. Experimenters can modify the packet arrival rate and

maximum buffer length for each user via line 1 and line 2, respectively. Line 3 can be

configured to set an overflow reward (such that a negative value corresponds to a penalty).

4.4.3 Experiment 3: Mobile Hotspot Navigation.
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Figure 4.19: Single mobile hotspot scenario: instantaneous and running average of throughput.

In the third experiment, we consider a wireless network where a robot carrying a mobile

hotspot moves around to serve a set of users. The objective is to maximize the users’

aggregate throughput by controlling the robot’s trajectory. The network is divided into a
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set of grid cells, each corresponding to a state of the environment. In each grid cell, the robot

has five action options, i.e., move forward, move backward, move left, move right and stay.

The reward for each state-action pair is defined as the sum throughput of users. Q-learning

is considered in this experiment with exploration probability ϵ set to 0.15, step size of 0.2 and

discount factor 0.95. Each episode consists of 500 time slots, corresponding to 3 hours. We

measure the number of received packets and calculate the corresponding running average

in each time slot. The experimental results are reported in Figure 4.19. It can be seen

that the running average converges to around 30 packets/slot. The drop of instantaneous

throughput around time slot 400 is caused by the imperfection of the wireless link, which

got disconnected as the robot moved.

4.4.4 Experiment 4: Multi-Mobile Hotspots Navigation.
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Figure 4.20: Two mobile hotspots scenario: instantaneous and running average of throughput.

In the fourth experiment, we consider the same wireless network scenario as the third

except that we adopt two mobile hotspots. To avoid collisions, the network is divided into

two regions and each robot can only move within one region. Five USRPs (USRP0, USRP1,

USRP2, USRP3 and USRP19) are configured as users to receive service from the two robots.

In each time slot, a user is only allowed to connect to the robot with the shortest distance to
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it. Q-learning with the same parameters as in the second experiment is adopted. Similarly,

we measure the number of correctly received packets and calculate the corresponding running

average in each time slot. The experimental results are reported in Figure 4.20. It can be

seen that the running average converges to around 80 packets/slot.

1 import s t r u c t

2 import Network Configuration API as nc fg

3 import Beacon Pos it ioning API as bpi

4 import Host Conf igurat ion API as hc fg

5

6 de f upda t e rb t2 s t a t e ( ) :

7

8 c u r t s t a t e = bpi . operat i on ( )

9 s addr = hcfg . rbt2 . get ( ” code” )

10 d addr = hcfg . rbt1 . get ( ” code” )

11

12 data = s t r u c t . pack ( ’ !H ’ , s addr & 0 x f f f f ) + s t r u c t . pack ( ’ !H ’ , d addr & 0

x f f f f ) + s t r u c t . pack ( ’ !H ’ , c u r t s t a t e & 0 x f f f f ) + ncfg . r b t 2 s t a t e i n f o

13 r b2 t cp sk t . sendto ( data , ( ( hc fg . rbt1 . get ( ’ host ’ ) , hc fg . rbt1 . get ( ’ port ’ ) ) ) )

Listing 4.7: Example of multi-robot interaction

In Listing 4.7 we give an example showing how Robot2 sends its state information to

Robot1 during the experiments. Robot2 first gets its current state information via interaction

with Beacon Positioning API (line 8). By calling Host Configuration API, the message

source code (line 9) and message destination code (line 10) are obtained for message routing.

Then the data is constructed (line 12) and sent to Robot1 via TCP Client API (line 13).

In the above four experiments, we adopt the GNU Radio Benchmark communication

protocol. In the following two experiments, we adopt srsRAN (and mmWave) as the com-

munication protocol.
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Figure 4.21: Single mobile hotspot scenario: instantaneous and running average of throughput.

4.4.5 Experiment 5: Mobile Hotspot Navigation with srsRAN

Similar to Mobile Hotspot Navigation, we want to maximize the users’ aggregate through-

put by controlling a robot’s trajectory but with a different communication protocol, namely,

srsRAN. The robot carries a USRP B210 which works as a base station to serve three users

(each being a USRP B210). The three USRP B210s are located at the position of USRP0,

USRP5 and USRP14 as shown in Figure 4.5(b), respectively. In each time slot, we use iperf3

to measure instantaneous throughput for 3 seconds and calculate the corresponding average

throughput. The results are shown in Figure 4.21. It can be seen that the total running av-

erage converges to around 28 Mbps. The drop of instantaneous throughput of UE2 near the

200th time slot results from it losing its connection and thus leads to increased throughputs

of UE1 and UE3. We can also find that the three UEs can achieve similar throughput if no

connections are lost. This is because we set the srsRAN MAC layer scheduling mechanism

to proportional fair (PF), which aims to balance system throughput and fairness. Based on

the PF scheduling mechanism, UE’s with relatively better instantaneous channel quality in-

dicator (CQI) compared to their historic average rates will be allocated with more resources.

Experimenters can also choose a round-robin scheduling method by specifying it in Network

Configuration API at the MAC layer.
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1 import os

2 import Host Conf igurat ion API as hc fg

3 import s r sUE conf igurat ion API as suea

4

5 ue name = suea . get srsRANue name ( )

6 ue port = ge t a t t r ( hcfg , ue name ) . get ( ” port ” )

7 i p e r f 3 s e r v e r cmd = suea . cmd gen ( ue port )

8 os . system ( i p e r f 3 s e r v e r cmd )

Listing 4.8: Example of starting iperf3 server

Listing 4.8 shows how to generate an iperf3 server on srsUE side. Firstly, users need to

obtain the UE name (line 5) and the predefined port number (line 6). Then iperf3 server

command is generated (line 7) and executed (line 8) to run the iperf3 server, which is waiting

for iperf3 client connection from the client side (i.e., the robot).

Dell Latitude 3430

Mobile Beacon

USRP B210 Power Bank

mmWave Router Slave

Mobile Beacon

USRP B210

Power Bank

(a) (b)

Figure 4.22: (a) Snapshot of srsRAN based robot; and (b) snapshot of IAB based robot.

4.4.6 Experiment 6: Mobile Hotspot Navigation in IAB

The sixth experiment is mobile hotspot navigation in an integrated access and backhaul

(IAB) network setting. As shown in the Figure 4.22(b), a robot carries a USRP B210 and a
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mmWave router slave as a relay to bridge three users and the base station (mmWave router

primary). The three users are located at the positions of USRP0, USRP5 and USRP19 and

the mmWave primary is located at (7.1 m, 0 m, 1.5 m) in the RoboNet network. Q-learning

is adopted to optimize the robot trajectory. The results of the experiments are shown in

Figure 4.23. Similarly, the running average throughput converges to 22 Mbps.
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Figure 4.23: Single mobile hotspot scenario in IAB setting: instantaneous and running average of
throughput.

In the above experiments, the RL algorithms are adopted to improve network perfor-

mance. However, we found that sometimes RL does not work well in practice. Randomness

(like the user disconnection, time-varying channel, movement of robot and so on) could affect

the RL performance. For example, during the mobile hotspot navigation in IAB experiments,

the robot spends most time in a state (state 6) after 200 time-slots but the running average

throughput is lower as shown in Figure 4.23. This could be due to the laptop’s limited com-

putation capabilities, which can degrade the USRP B210s performance. In this case, if we

want to apply RL in a wireless network, we need to take randomness into consideration and

design a more sophisticated reward (not simply taking throughput as the only one criteria).
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Figure 4.24: Multi-hop network optimization scenario: Average end-to-end throughput with (a)
UBSim simulator and (b) NeXT testbed.

4.4.7 Experiment 7: Multi-hop Network Optimization

In the seventh and final experiment, we consider a multi-session multi-hop network with

two sessions and eight nodes. Each session consists of four nodes, namely one source node,

two relay nodes and one destination node. The objective is to maximize the network through-

put while minimizing the interference between the two sessions by jointly optimizing the

physical and transport layers. The optimization algorithms are generated automatically by

WNOS, which has been deployed over the control plane of NeXT, as described in Chap-

ter 4.2. The resulting algorithms are deployed over the data plane. Similar to the User

Scheduling experiment discussed above, we conduct this experiment over both UBSim and

RoboNet. The results are reported in Figure 4.24. We can see that the control algorithms

converge over both UBSim and RoboNet. It is worth pointing out that different link models

have been considered in UBSim and RoboNet in their current implementations. In future

research, we will create a digital twin of RoboNet based on UBSim and test the gap between

simulated and real-world performance.
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4.4.8 Scaling Out srsRAN

UE 1 
UE 1 User moves to a new location

ENB 2 ENB 1EPC
Wi-Fi Link

Figure 4.25: Snapshot of the testbed deployed in Salvador Lounge in Davis Hall at University at
Buffalo.

To verify the effectiveness of the wireless interface between srsENB and srsEPC, we

develop a software-defined radio based testbed. The testbed consists of three Universal

Software Radio Peripheral (USRP) B210 for 2 srsENBs and 1 srsUE. Each USRP B210 is

controlled by a dedicated Dell Latitude 3430 laptop. Another Dell laptop is used for srsEPC.

All the hosts run Ubuntu 20.04 LTS. The Downlink E-UTRA Absolute Radio Frequency

Channel Number (dl earfcn) is set to 3350, corresponding to 2680 MHz for downlink and

2560 MHz for uplink. A snapshot of the SDR testbed is shown in Figure 4.25. In the

demonstration we will show the effectiveness and scalability of the new srsRAN architecture

considering two scenarios: (i) srsUE-srsENB connection establishment; (ii) srsUE handover

between two srsENBs wirelessly interfaced with the same srsEPC.

Connection Establishment: We first demonstrate the establishment of the wireless

link between srsUE, srsENB and srsEPC. After the initial configuration, srsEPC and srsENB

are started first by executing sudo srsepc and sudo srsenb, respectively. Then, srsUE is

started with command sudo srsue. As shown in Figure 4.26(a), the srsUE can be success-

fully attached to the network, verifying the effectiveness of the wireless interface between

srsENB and srsEPC. It is worth noting that in this experiment the srsENB first establishes
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Figure 4.26: Terminal screenshots for (a) link establishment and (b) scalability and handover
testing with a wireless interface between srsENB and srsEPC.

a wireless link to the srsEPC (rather than wired connections in traditional srsRAN deploy-

ment).

srsUE Handover: We further demonstrate the scalability of the new srsRAN architec-

ture considering two srsENBs wirelessly connected to the same srsEPC. The second srsENB

is configured similarly to the first. Additionally, the two srsENBs are deployed sufficiently far

away from each other thereby creating no overlap in their coverage areas. In this scenario, we

first let the srsUE connect to the first srsENB, i.e., ENB 1 in Figure 4.5. The corresponding

terminal output is shown in Figure 4.26(b). We then move the srsUE from the coverage

area of ENB 1 to ENB 2, as shown in Figure 4.5 with a dashed red line. The corresponding

terminal output is also shown in Figure 4.26(b). It can be seen that the user with ID 0x46

is connected first to ENB 1. When it moves outside the coverage area of ENB 1, it first gets

disconnected from ENB 1 and then connects to srsENB 2 automatically. Notice again that

the two srsENBs are wirelessly interfaced with the srsEPC, which makes it easier to deploy

a large number of ENBs over possibly mobile hotspots.
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4.5 Enabled New Research

NeXT can enable a wide set of experiments, including sim-to-real transfer learning, robust

wireless network control, online digital twin construction and optimization, and multi-agent

reinforcement learning.

Sim-to-real transfer learning : Towards zero-touch wireless network self-configuration, the

proposed framework will connect accelerated learning in the virtual domain with performance

evaluation in the real domain. With the proposed framework, novel machine learning algo-

rithms can be designed and tested rapidly in the virtual domain in a variety of configurable

networking scenarios, and the converged algorithms can be deployed on SDR hardware for

practical evaluation. Making use of a digital twin for initial policy iteration can significantly

reduce the time required to generate an optimal control policy, especially in the case of deep

learning or deep reinforcement learning. These transfer learning experiments will be used to

understand the performance discrepancy between simulation and hardware evaluation, which

will be necessary for designing repeatable experiments towards accelerated learning for wire-

less network self-configuration. This investigation into efficient transfer learning will start

with experimental benchmarks to quantify the reality gap between UBSim and RoboNet

and then designing methods to minimize the impact of this gap through an experimental

campaign of domain adaptation and novel twin-domain learning algorithms.

Robust wireless network control : The use of robust learning for domain adaptation in the

wireless domain has been introduced in [93]. By introducing noise to the training data or

training environment during policy iteration, it has been shown that the resulting control

policy will provide improved performance when faced with unexpected observations or per-

turbations compared to a non-robust policy. In this line of research, this uncertainty can be

interpreted as the set of all physical phenomena which contribute to the performance gap

between simulation and hardware scenarios, such as unpredictable RF interference or hard-

ware nonlinearities. The programmable SDR hardware provided by the RoboNet testbed

coupled with the virtualization of the RoboNet environment in UBSim enables investigation
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into robust learning to improve sim-to-real transfer learning performance in a wide variety

of networking scenarios, with or without knowledge of the reality gap. We plan to build

on findings in [93] by applying the experimental robust learning framework to the sim-to-

real capabilities presented in this work, exploring robust learning as a method of mitigating

performance degradation due to sim-to-real policy transfer.

Online digital twin construction and optimization: Existing methods for generating a

virtual model for digital twin applications typically rely on human expertise, and can be

tedious and error-prone [105, 106]. This motivates autonomous virtual environment con-

struction based on mobile sensing techniques such as simultaneous localization and mapping

(SLAM). Using SLAM with remote-control hardware such as the robots introduced in Sec-

tion 4.1, it is possible to record observations and generate a 3D environment map with

configurable fidelity in real time without significant human intervention. This capability can

significantly accelerate the digital twin construction process by automating the collection

and import of environmental data into the desired simulation environment, such as UBSim.

With integrated simulation and experimentation capabilities, the NeXT testbed can enable

research of online digital twin construction by providing configurable network simulation

environments in UBSim, and verifying the accuracy of the autonomously generated digital

twin with ground truth obtained through testbed experiments.

Multi-agent Reinforcement Learning (MARL): The NeXT testbed can support MARL

research for development and evaluation of algorithms such as REINFORCE policy gradi-

ent (PG) [107], gradient-based partially observable MDP (G(PO)MDP) [108], actor-critic

(A2C) [109], or asynchronous actor-critic (A3C) [110]. In general, these algorithms require

significantly more time to converge to an optimal policy than their single-agent counterparts.

Additionally, debugging MARL algorithms can be complicated due to the distributed nature

of data collection and processing [111]. The architecture of UBSim and its supporting APIs

can significantly simplify the simulation design process by streamlining user-configurable

parameters such as the number of nodes, distributed or centralized control algorithms, and
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reward function related to the environment. This can save time, provide configurable online

feedback to display only target data points, and limit redundancy in coding for large-scale

MARL problems. Finally, the configurable SDR topology and the hardware available in the

RoboNet testbed can provide a framework through which simulation results obtained in the

virtual digital twin environment can be verified through real-world experiments.
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Chapter 5

Conclusions

In this dissertation, we explored the diverse applications of UAVs and examined spectrum

sharing technologies aiming at alleviating the strain on spectrum resources. We presented

a comprehensive review of existing experimental platforms designed for conducting experi-

ments in this field. Moreover, we delved into the specific challenges associated with spectrum

sharing in the 6 GHz band and the development of testing frameworks. A particular emphasis

was placed on enabling UAV operations within the 6 GHz band, alongside the development

of a robust testing framework to support these endeavors. To this end, we proposed a new

framework called SwarmShare to enable spectrum sharing between the incumbent systems

and the coexisting UAV networks in the 6 GHz band. We validated the effectiveness of the

framework through an extensive simulation campaign. SwarmShare is shown to be mobility-

resilient and hence is suitable for the operations of moving vehicles such as cars and UAVs

on this newly opened spectrum band without requiring pre-defined exclusion zones. It is also

found that the aggregate interference of the UAVs does not follow any existing distributions.

We also introduced the software-defined testbed NeXT, which enables integrated simulation,

experimentation and optimization for wireless research. We designed the data plane with

both the simulator UBSim and the testing facility RoboNet. We designed the control plane

in which a software toolchain is developed to support both traditional model-based and new
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data-driven control techniques. We presented the communication protocols deployed on our

testbed. We verified the effectiveness and flexibility of NeXT considering both simulation

and testbed experiments.
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