PSC 508

Jim Battista

Univ. at Buffalo, SUNY

Multiple regression

æ

- "Easy" to find simple regression line y = a + bx
- yield = a + b(fertilizer)
 - But what about sun? Rain?
- attitude = a + b(income)
 - But what about party? Ideology? Race? Sex?
- These other variables are "confounding variables"
- A simple regression might give wrong results because it fails to take them into account

Say we're looking at determinants of car mileage (in 1978) and find the following:

Source	SS	df	MS		Number of obs =	74
+					F(1, 72) =	20.26
Model	536.541807	1 536.	541807		Prob > F =	0.0000
Residual	1906.91765	72 26.48	349674		R-squared =	0.2196
+					Adj R-squared =	0.2087
Total	2443.45946	73 33.4	720474		Root MSE =	5.1464
mpg	Coof	a , 1 b			F	
10.	COEL.	Sta. Err.	t	P> t	L95% Conf. I	ntervalj
+		Std. Err.	t 	P> t	[95% Conf. I	nterval]
+ price	0009192	.0002042	t 	P> t 0.000	L95% Conf. I 0013263 -	nterval] .0005121
+ price _cons	0009192 26.96417	.0002042 1.393952	-4.50 19.34	P> t 0.000 0.000	 0013263 - 24.18538	nterval] .0005121 29.74297

- What does this say about the effect of price on mileage?
- But is that the only thing that affects mileage? What else might?

- Lots of things affect mpg
 - Horsepower
 - WEIGHT!!!
- ... and heavy cars tend to cost more
- If we want to isolate the effect of price, we need to control for weight
- How? This is very simple
 - Add it as another independent variable to the regression

Okay, so we want to control for weight, and we find:

. reg mpg price weight

Source	1	SS	df		MS		Number of	obs	=	74
	+						F(2, '	71)	=	66.85
Model	1	595.93249	2	797	.966246		Prob > F		=	0.0000
Residual	8	47.526967	71	11.9	9369995		R-squared		=	0.6531
	+						Adj R-squa	red	=	0.6434
Total	2	443.45946	73	33.4	1720474		Root MSE		=	3.455
mpg	 I	Coef.	Std.	Err.	t	P> t	[95% Coi	 nf.	 Int	erval]
mpg	 +	Coef.	Std.	Err.	t	P> t	[95% Co	nf.	Int	erval]
mpg price	 + -	Coef.	Std.	Err. 01627	t -0.57	P> t 0.567	[95% Con 00041	nf. 8	Int 	erval]
mpg price weight	 + - -	Coef. .0000935 .0058175	Std. .000	Err. 1627 0175	t -0.57 -9.42	P> t 0.567 0.000	[95% Con 000418 007048	nf. 8 9	Int .(cerval] 0002309 0045862
mpg price weight _cons	 + - -	Coef. .0000935 .0058175 39.43966	Std. .000 .000 1.62	Err. 01627 06175 21563	t -0.57 -9.42 24.32	P> t 0.567 0.000 0.000	[95% Con 000411 007048 36.2063	 nf. 8 9 5	Int 42	cerval] 0002309 0045862 2.67296

• What does this say about the effect of price on mileage now?

If we'd done it in R

```
> newdata<-read.table('c:/temp/loadme.csv',sep=",",header=T)</pre>
> attach(newdata)
> example<-lm(mpg~price+weight)</pre>
> summary(example)
Call:
lm(formula = mpg ~ price + weight)
Residuals:
   Min
            10 Median
                            30
                                   Max
-6.8678 -1.8560 -0.5006 0.8847 13.9328
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.944e+01 1.622e+00 24.322 < 2e-16 ***
           -9.351e-05 1.627e-04 -0.575 0.567
price
weight
           -5.818e-03 6.175e-04 -9.421 3.94e-14 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 3.455 on 71 degrees of freedom
Multiple R-squared: 0.6531, Adjusted R-squared: 0.6434
F-statistic: 66.85 on 2 and 71 DF, p-value: < 2.2e-16
```

(日)

3

- Any competent package will give you
 - "Coef" or "Coefficients"
 - Standard errors
 - Hypothesis testing w/ coefficients
 - For any b, t = b/SE
 - Degrees of freedom = n k 1 where k is number of IVs NOT INCLUDING constant/intercept

- Any competent package will give you
 - R²
 - Cheap, sloppy interpretation: percentage of variation in Y that you've explained
 - What's really low or high depends on topic
 - F statistic, p > F
 - Tests hypothesis that all coefficients are zero
 - H₀ : All coefficients are zero
 - *H_A* : Not all coefficients are zero
 - Can also use on subsets of variables

- Datasets will typically have many variables available
- Which should you include?
- First: variables implied by your theory
- Second: variables "required" by existing literature on the topic
- That's it
- Don't include extraneous crap to increase R^2
- BUT including irrelevant variable better than excluding relevant one (inefficiency versus bias)

Working with data

- Important things to remember about data
 - Always keep an unaltered copy of a downloaded or original dataset
 - Ideally as a csv or similar plaintext format
 - If recoding a variable, recode to a new variable, not on top of itself
 - gen incomeK=income/1000
 - Not replace income=income/1000
 - Save versions of dataset frequently as new files with descriptive filenames
 - Best practice: work with scripts and logfiles
 - Second best practice: work with command line and copy/paste sessions
 - Bad practice: point and click UNLESS it saves command stream into output

- I don't care what you use
- I can offer some help in Stata, less help with R, no help at all in other packages
- Stata: costs money, extensible, good community, relatively simple command line operation, decent with data
- R: free, extensible, better community, more complex operation for simple tasks, more of a pain for working with data

• Getting data in

- Stata .dta file: just double click file or click "open" button
- CSV: insheet filename, comma
- Alternate CSV:
 - Load CSV into spreadsheet (double click)
 - 2 ctrl-a ctrl-c to copy all
 - Open "Data editor (edit)" in Stata
 - Paste data

Basic regression

• regress dv iv1 iv2 iv3

- Getting data in
 - CSV
 - 1
- dataobject<-read.table(filename, sep=",",header=T/F)</pre>
- 2 attach(dataobject)
- attach() not required but simplifies things unless using multiple datasets simultaneously
- Other formats
 - Typically use library(foreign) and then appropriate commands
 - read.dta, read.spss, etc (see help files)
- Basic regression
 - outputobject<-lm(dv~iv1+iv2+iv3)</p>
 - 2 summary(outputobject)