PSC 508

Jim Battista

Univ. at Buffalo, SUNY

Interactions

Jim Battista PSC 508

문 🛌 문

A model with two dummies

• Say we have a model predicting personal ideology with sex and college education

. reg lib women college

Source	1	SS	df	MS		Number of obs	s =	897	
	+-						F(2, 894)) =	4.36
Model	1	18.6866953	2	9.34	334767		Prob > F	=	0.0131
Residual	1	1916.94095	894	2.14	422925		R-squared	=	0.0097
	+-						Adj R-squared	i =	0.0074
Total	1	1935.62765	896	2.16	029871		Root MSE	=	1.4643
lib_cons	1	Coef.	Std.	Err.	t	P> t	[95% Conf	. In	terval]
	+-								
women	1	2342654	.0978	602	-2.39	0.017	4263278	-	.042203
college	1	1829796	.1020	319	-1.79	0.073	3832295		0172703
_cons	1	4.457896	.0797	195	55.92	0.000	4.301437	4	.614355

So?

- So this regression suggests that women and college graduates are more liberal than men and non-college-graduates
- It says that if you're a woman, and you graduated from college, we move you .23 points to the left for being a woman and than another .18 points for your graduation
- But what if sex and education don't work that way?
- What if the effect is concentrated in just college-educated women being particularly liberal?
- We can look for this with an interaction
- Interactions allow the effect of education to be different for men and women, and for the effect of sex to be different for grads and nongrads

Warning! DANGER WILL ROBINSON!

- Interactions can be hard to interpret
- Our discussion might make your brain melt a little; that's normal
- Interactions are fairly serious juju that should not be employed willy-nilly; you should have a good reason to mess with them
- We're going to talk about them primarily because it's relatively common for models you'll read to use them, so you should have a pretty good idea what they're saying

- To interact two variables, you just multiply them together
- In stata, just gen interaxn=variable1*variable2
- Even easier in R; don't need to actually generate anything
 - Just specify it in your lm() command (more later)

- So we interact sex and education
- The new variable looks like this:

	Men	Women
Non-Grads	0	0
Grads	0	1

- Then just run the model with the original two variables, and the interaction
- Stata
 - gen interaxn=iv1*iv2
 - reg dv iv1 iv2 interaxn
- R
- o model<-lm(dv~iv1*iv2)</pre>
- See? Just specify the interaction directly

- If interacting IV1 and IV2
- Coef. on IV1: effect of IV1 when IV2 is zero
- Coef. on IV2: effect of IV2 when IV1 is zero
- Coef. on interaction: change in coef on IV1 when IV2 is 1
 - -OR- change in coef on IV2 when IV1 is 1!
 - Kinda different ways to say same thing

A real example in Stata

. gen women%coll=women*college

. reg lib women college womenXcol

Source	1	SS	df MS		MS		Number of obs	=	897
	+-						F(3, 893)	=	4.59
Model	L	29.3798004	3	9.79	326679		Prob > F	=	0.0034
Residual	1	1906.24785	893	2.13	465604		R-squared	=	0.0152
	+-						Adj R-squared	=	0.0119
Total	1	1935.62765	896	2.16	029871		Root MSE	=	1.461
lib_cons	1	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lib_cons	 +-	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lib_cons women	 +- 	Coef. 0709383	Std. .121	Err. 898	t -0.58	P> t 0.561	[95% Conf. 3101781	In	terval]
lib_cons women college	 +- 	Coef. 0709383 .0474903	Std. .121 .1448	Err. 898 019	t -0.58 0.33	P> t 0.561 0.743	[95% Conf. 3101781 2367015	In	terval] 1683016 3316821
lib_cons women college womenXcoll	 +- 	Coef. 0709383 .0474903 4557331	Std. .121 .1448 .203	Err. 898 019 621	t -0.58 0.33 -2.24	P> t 0.561 0.743 0.025	[95% Conf. 3101781 2367015 8553645	In	terval] 1683016 3316821 0561016
lib_cons women college womenXcoll cons	 +- 	Coef. 0709383 .0474903 4557331 4.372263	Std. .121 .1448 .203 .088	Err. 898 019 621 265	t -0.58 0.33 -2.24 49.54	P> t 0.561 0.743 0.025 0.000	[95% Conf. 3101781 2367015 8553645 4.199032	In 4	terval] 1683016 3316821 0561016 .545494

What does all this mean?

Same example in R

```
> model2<-lm(lib_cons~women*college)
> summary(model2)
Call
lm(formula = lib cons ~ women * college)
Residuals:
   Min
            10 Median
                           30
                                  Max
-3.4198 -0.8931 -0.3013 1.5802 3.1069
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
            4.37226
                        0.08827 49.536 <2e-16 ***
(Intercept)
women
             -0.07094 0.12190 -0.582 0.5607
college
            0.04749 0.14480 0.328 0.7430
women:college -0.45573 0.20362 -2.238 0.0255 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.461 on 893 degrees of freedom
  (279 observations deleted due to missingness)
Multiple R-squared: 0.01518, Adjusted R-squared: 0.01187
F-statistic: 4.588 on 3 and 893 DF, p-value: 0.003397
```

- 4 同 6 4 日 6 4 日 6

э

Another way to think about this example

We can also just look directly at the average ideology for each category

. tab women coll, summ(lib_cons)

Means, Standard Deviations and Frequencies of lib_cons

	L	coll	ege		
women	1	0	1	1	Total
0	1	4.3722628 1.4064597 274	4.4197531 1.5024965 162		4.3899083 1.441356 436
1		4.3013245 1.3995484 302	3.8930818 1.6171204 159	 	4.1605206 1.4891794 461
Total		4.3350694 1.4020678 576	4.1588785 1.5800487 321		4.2720178 1.4697955 897

- You can also interact a dummy with a continuous variable
- Same way; just multiply them (or tell R you want them multiplied)
- Coefficient on continuous: effect of continuous when dummy=0
- Coefficient on interaction: change in coefficient on continuous when dummy=1

- BUT AT THE SAME TIME
- Coefficient on dummy: effect of dummy when continuous=0
- Coefficient on interaction: how much the effect of the dummy changes when you increase the continuous variable by 1

- Dummy variable change in intercept
- Interaction change in slope
- Try this with rejection rates as a function of public, tuition, interaction

- Can you interact a continuous variable with another continuous variable?
 - Yes
 - Coef on variable1: effect of variable1 when variable2=0
 - Coef on variable2: effect of variable2 when variable1=0
 - Interaction: how much the effect of variable1 (2) changes when you increase variable2 (1) by 1
- Can you interact more than two variables?
 - Yes "three way interaction"
 - Say race, sex, education, or race, sex, income
 - Real pain to interpret