PSC 508

Jim Battista

Univ. at Buffalo, SUNY

Dummies
Sometimes we want to include *categorical* variables in our models.

Numerical variables that don’t necessarily have any inherent order and that just describe different categories.

Easy example: respondent sex in individual models.
A simple dummy variable is just a variable that takes only one of two possible values – zero or one.

We can code even a simple dummy variable in more than one way.

Respondent sex for example:

- “Male” variable – 1 if man, 0 if woman
- “Female” variable – 1 if woman, 0 if man
- These will say the same thing and fulfill the same role in the regression.
The coefficient on “male” means what a coefficient always does

But because it can only go from zero to one, it says that men like Bush 2.9 points more than women
. reg bushft male lib_con partyid age education

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>587060.669</td>
<td>5</td>
<td>117412.134</td>
</tr>
<tr>
<td>Residual</td>
<td>454479.72</td>
<td>890</td>
<td>510.651371</td>
</tr>
<tr>
<td>Total</td>
<td>1041540.39</td>
<td>895</td>
<td>1163.73228</td>
</tr>
</tbody>
</table>

Number of obs = 896
F(5, 890) = 229.93
Prob > F = 0.0000
R-squared = 0.5636
Adj R-squared = 0.5612
Root MSE = 22.598

| bushft | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|--------|-----------|-------|-----|----------------------|
| male | -.6810617 | 1.51743 | -0.45 | 0.654 | -3.65922 2.297097 |
| lib_con | 4.380368 | .6516295 | 6.72 | 0.000 | 3.101458 5.659278 |
| partyid | 9.791417 | .4415604 | 22.17 | 0.000 | 8.924796 10.65804 |
| age | .0996235 | .045958 | 2.17 | 0.030 | .0094248 .1898223 |
| education | -1.937508 | .4721056 | -4.10 | 0.000 | -2.864078 -1.010938 |
| _cons | 11.97742 | 3.772359 | 3.18 | 0.002 | 4.573665 19.38118 |

All else equal, men like Bush 0.68 points less than women do.
. reg bushft female lib_con partyid age education

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 896</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>587060.669</td>
<td>5</td>
<td>117412.134</td>
<td>F(5, 890) = 229.93</td>
</tr>
<tr>
<td>Residual</td>
<td>454479.72</td>
<td>890</td>
<td>510.651371</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>1041540.39</td>
<td>895</td>
<td>1163.73228</td>
<td>R-squared = 0.5636</td>
</tr>
</tbody>
</table>

| bushft | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|-------|-----|-----------------------------|
| female | .6810617 | 1.51743 | 0.45 | 0.654 | -2.297097 - 3.65922 |
| lib_con | 4.380368 | .6516295 | 6.72 | 0.000 | 3.101458 - 5.659278 |
| partyid | 9.791417 | .4415604 | 22.17 | 0.000 | 8.924796 - 10.65804 |
| age | .0996235 | .045958 | 2.17 | 0.030 | .0094248 - .1898223 |
| education | -1.937508 | .4721056 | -4.10 | 0.000 | -2.864078 - -1.010938 |
| _cons | 11.29636 | 3.824392 | 2.95 | 0.003 | 3.790482 - 18.80224 |

All else equal, women like Bush 0.68 points more than men do.
Sometimes a variable might be coded in ways that don’t make sense for your use

Say education in the NES, when you have a theory about college graduates

Can turn that variable into a dummy variable taking 1 if the respondent finished college and 0 otherwise

LET’S DO THAT!
Creating a simple dummy variable

- In Stata:

 \[\text{generate \ dummy=variable==value if variable!=0} \]

- In R:
 \[\text{dummy<-1*(variable==value)} \]

Both of these forms should preserve missing data as missing.

In either, you can substitute other expressions for \(variable==value \):

- Stata:

 \[\text{generate \ college=education>5 if education !=.} \]

- R:
 \[\text{college<-1*(education>5)} \]

- Stata:

 \[\text{gen \ dummy=variable>4 \ & \ variable<8 if variable!=.} \]

- R:
 \[\text{dummy<-1*(variable>4 \ & \ variable<8)} \]
Some variables have multiple categories in them. Race and ethnicity for example – respondent can be any of several races. Region – respondent or state can be from any of several regions.

Usual tactic:
- Convert categorical variable with N categories into N-1 dummies.
- Why N-1? OLS will explode if one IV is a perfect linear combination of other IVs.
- ... and including all the categories would make that happen.
We usually create all the dummies – we just exclude one from the regression.
That way we can easily change the reference category later.
Let’s generate a set of “race” dummies in the NES.
Multiple categories

- N-1 categories is the same thing that we did for single dummies
 - We didn’t include one dummy for men and another for women
- Omitted category is the reference category
- Other categories are relative to it
- So if we omit the southeast region, the coefficient on the dummy variable for the Pacific northwest tells us the difference between the Pacific Northwest and the southeast
- If we omitted New England instead, the coefficient on PacNW would be the difference between the Pacific northwest and New England instead
- No one right way to organize these or choose a reference category
- Choose one that helps you tell your analytical story
Changing the reference category is easy
 - Just add the reference category in, and remove another category

Let’s try this with race in the NES
Remember that the goal is to create a set of dummies that capture whatever we’re interested in from the source categorical variable.

We need to preserve “missing-ness” in all the dummies that represent our source variable.

Say we want to code race as in the NES:

- `gen black=race==10 if race!=.`
- `gen asian=race==20 if race!=.`
- `gen nativeamerican=race==30 if race!=.`
- `gen latino=race==40 if race!=.`
- `gen anglo=race==50 if race!=.`
Another example: coding education into dummies for

1. Didn't finish high school
2. Finished high school, doesn't have BA
3. Has BA or more

Stata code:

- `gen nohsdiploma=education<3 if education!=.`
- `gen diploma_no_ba=education>2 & education<6 if education!=.`
- `gen ba_or_more=education>5 if education!=.`
Coding multiple categories in R

- First example
 - `black<-1*(race==10)`
 - `asian<-1*(race==20)`
 - `nativeamerican<-1*(race==30)`
 - `latino<-1*(race==40)`
 - `anglo<-1*(race==50)`

- Second example
 - `no.hs.diploma<-1*(education<3)`
 - `diploma.no.ba<-1*(education>2 & education<6)`
 - `ba.or.more<-1*(education>5)`
Another way to code multiple-category variables in R is as a “factor”

- If coding race in the NES, try:
 - `racefactor<-factor(race)`
 - Automatically sets first category as reference/omitted category

To choose whites as the reference category, change “contrasts”

- `contrasts(racefactor)<-contr.treatment(5,base=5)`
- More generally:
 - `contrasts(variable)<-contr.treatment(NumberOfCategories,base=DesiredCategory)`

- Note that it wants the category number from 1 to N, not the value in the variable (5, not 50)
A complication

Say we have a set of dummies for race and ethnicity and none are statistically significant.

Does that mean that race doesn’t matter? That race isn’t statistically significant?

- Not necessarily – remember that we have one theoretical variable spanning multiple dummies in the regression.
- Possible that we may have chosen a reference category that masks real differences.
Joint F tests

- To perform hypothesis tests on a single theoretical variable with multiple dummies, use a joint F test item. Say we want to test whether the three dummies dummy1, dummy2, dummy3 that code the source variable sourcevariable are jointly statistically significant.
 - In Stata: run regression, then test dummy1 dummy2 dummy3
 - In R, it's more complex – have to do with anova
 1. Run model without the categorical variable
 2. model1<-lm(dv ~ iv1+iv2,subset=!is.na(sourcevariable))
 3. The rigamarole at the end ensures that we run the model for only those observations where our dummies aren't missing
 4. Run again with the dummy variables –
 5. model2<-lm(dv1 ~ iv1+iv2+dummy1+dummy2+dummy3)
 6. anova(model1,model2)

- Let's try this!