PSC 508

Jim Battista

Univ. at Buffalo, SUNY

Dummies

Jim Battista PSC 508

문 🛌 문

- Sometimes we want to include *categorical* variables in our models
- Numerical variables that don't necessarily have any inherent order and that just describe different categories
- Easy example: respondent sex in individual models

- A simple dummy variable is just a variable that takes only one of two possible values zero or one
- We can code even a simple dummy variable in more than one way
- Respondent sex for example
 - "Male" variable 1 if man, 0 if woman
 - "Female" variable if if woman, 0 if man
 - These will say the same thing and fulfill the same role in the regression

. reg bushft male

Source	SS	df	MS		Number of obs = 1181 F(1, 1179) = 2.24	
Model Residual +-	2505.56377 1320313.98	1 2505 1179 1119	.56377 .85918 		F(1, 11/9) = 2.24 Prob > F = 0.1350 R-squared = 0.0019 Adj R-squared = 0.0010 Root MSE = 33.464	
bushft	Coef.			P> t	[95% Conf. Interval]	
male _cons	2.919655 53.92063		1.50	0.135 0.000	9099563 6.749267 51.30483 56.53644	

- The coefficient on "male" means what a coefficient always does
- But because it can only go from zero to one, it says that men like Bush 2.9 points more than women

A more complex example

Source	SS	df	MS		Number of obs F(5, 890)	= 896 = 229.93
Model Residual	587060.669 454479.72		7412.134 0.651371		Prob > F	= 0.0000 = 0.5636
Total	1041540.39	895 11	.63.73228		Root MSE	= 22.598
bushft	Coef.	Std. Eri	:. t	P> t	[95% Conf.	Interval]
male	6810617	1.51743	-0.45	0.654	-3.65922	2.297097
lib_cons	4.380368	.6516295	6.72	0.000	3.101458	5.659278
partyid	9.791417	.4415604	22.17	0.000	8.924796	10.65804
age	.0996235	.045958	3 2.17	0.030	.0094248	.1898223
education	-1.937508	.4721056	-4.10	0.000	-2.864078	-1.010938
_cons	11.97742	3.772359	3.18	0.002	4.573665	19.38118

. reg bushft male lib_con partyid age education

• All else equal, men like Bush 0.68 points less than women do.

A more complex example

. reg bushft female lib_con partyid age education

Source	SS	df	MS		Number of obs	= 896
+-					F(5, 890)	= 229.93
Model	587060.669	5 1174	12.134		Prob > F	= 0.0000
Residual	454479.72	890 510.	651371		R-squared	= 0.5636
+-					Adj R-squared	= 0.5612
Total	1041540.39	895 1163	3.73228		Root MSE	= 22.598
bushft	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+-						
female	.6810617	1.51743	0.45	0.654	-2.297097	3.65922
lib_cons	4.380368	.6516295	6.72	0.000	3.101458	5.659278
partyid	9.791417	.4415604	22.17	0.000	8.924796	10.65804
age	.0996235	.045958	2.17	0.030	.0094248	.1898223
education	-1.937508	.4721056	-4.10	0.000	-2.864078	-1.010938
_cons	11.29636	3.824392	2.95	0.003	3.790482	18.80224

• All else equal, women like Bush 0.68 points more than men do.

- Sometimes a variable might be coded in ways that don't make sense for your use
- Say education in the NES, when you have a theory about college graduates
- Can turn that variable into a dummy variable taking 1 if the respondent finished college and 0 otherwise
- LET'S DO THAT!

Creating a simple dummy variable

• In Stata:

```
generate dummy=variable==value if variable!=0
```

- In R: dummy<-1*(variable==value)
- Both of these forms should preserve missing data as missing
- In either, you can substitute other expressions for variable==value
 - Stata:

```
generate college=education>5 if education !=.
```

- R: college<-1*(education>5)
- Stata:

```
gen dummy=variable>4 & variable<8 if variable!=.</pre>
```

• R: dummy<-1*(variable>4 & variable<8)

- Some variables have multiple categories in them
- Race and ethnicity for example respondent can be any of several races
- Region respondent or state can be from any of several regions
- Usual tactic:
 - $\bullet\,$ Convert categorical variable with N categories into N-1 dummies
 - Why N-1? OLS will explode if one IV is a perfect linear combination of other IVs
 - ... and including all the categories would make that happen

- We usually create all the dummies we just exclude one from the regression
- That way we can easily change the reference category later
- Let's generate a set of "race" dummies in the NES

- N-1 categories is the same thing that we did for single dummies
 - We didn't include one dummy for men and another for women
- Omitted category is the reference category
- Other categories are relative to it
- So if we omit the southeast region, the coefficient on the dummy variable for the Pacific northwest tells us the difference between the Pacific Northwest *and the southeast*
- If we omitted New England instead, the coefficient on PacNW would be the difference between the Pacific northwest and New England instead
- No one right way to organize these or choose a reference category
- Choose one that helps you tell your analytical story

- Changing the reference category is easy
 - Just add the reference category in, and remove another category
- Let's try this with race in the NES

Coding multiple categories in Stata

- Remember that the goal is to create a set of dummies that capture whatever we're interested in from the source categorical variable
- We need to preserve "missing-ness" in all the dummies that represent our source variable
- Say we want to code race as in the NES
 - gen black=race==10 if race!=.
 - gen asian=race==20 if race!=.
 - gen nativeamerican=race==30 if race!=.
 - gen latino=race==40 if race!=.
 - gen anglo=race==50 if race!=.

• Another example: coding education into dummies for

- Didn't finish high school
- Pinished high school, doesn't have BA
- Has BA or more

• Stata code:

- gen nohsdiploma=education<3 if education!=.</p>
- gen diploma_no_ba=education>2 & education<6 if education!=.</p>
- gen ba_or_more=education>5 if education!=.

Coding multiple categories in R

First example

- black<-1*(race==10)</pre>
- asian<-1*(race==20)</pre>
- nativeamerican<-1*(race==30)</pre>
- latino<-1*(race==40)</pre>
- anglo<-1*(race==50)
- Second example
 - no.hs.diploma<-1*(education<3)</pre>
 - diploma.no.ba<-1*(education>2 & education<6)</pre>
 - ba.or.more<-1*(education>5)

- Another way to code multiple-category variables in R is as a "factor"
 - If coding race in the NES, try:
 - o racefactor<-factor(race)</pre>
 - Automatically sets first category as reference/omitted category
- To choose whites as the reference category, change "contrasts"
 - o contrasts(racefactor)<-contr.treatment(5,base=5)</pre>
 - More generally:
 - ٩

contrasts(variable)<-contr.treatment(NumberOfCategories,base=DesiredCategory)</pre>

• Note that it wants the category number from 1 to N, not the value in the variable (5, not 50)

- Say we have a set of dummies for race and ethnicity and none are statistically significant
- Does that mean that race doesn't matter? That race isn't statistically significant?
 - Not necessarily remember that we have one theoretical variable spanning multiple dummies in the regression
 - Possible that we may have chosen a reference category that masks real differences

Joint F tests

- To perform hypothesis tests on a single theoretical variable with multiple dummies, use a joint F test item Say we want to test whether the three dummies dummy1, dummy2, dummy3 that code the source variable sourcevariable are jointly statistically significant
 - In Stata: run regression, then test dummy1 dummy2 dummy3
 - In R, it's more complex have to do with anova
 - Run model without the categorical variable
 - 2

model1<-lm(dv ~ iv1+iv2,subset=!is.na(sourcevariable))</pre>

- The rigamarole at the end ensures that we run the model for only those observations where our dummies aren't missing
- In the second second
- model2<-lm(dv1 ~ iv1+iv2+dummy1+dummy2+dummy3)
 </pre>
- anova(model1,model2)
- Let's try this!