Meronymy and reference frames: Preliminary evidence

Randi Tucker
with contributions from the MesoSpace team of researchers

Meronomy Across Languages
September 28, 2013
Outline

• Introduction
 – Spatial frames of reference
 – MesoSpace: team, goals, tools

• Tasks for data collection
 – Reference Frames: Ball & Chair
 – Meronymy: Novel Objects I

• Findings

• Discussion
Spatial Frames of Reference

• two kinds of *place functions* (Jackendoff 1983) – i.e., functions from reference entities into regions
 • *topological* (Piaget & Inhelder): perspective- or frame-free
 – independent of the orientation of the ground, the observer, and the figure-ground array (the configuration)

Fig. 1. Some configurations that might be described in terms of topological place functions

(1.1) *The apple is on the skewer*
(1.2) *The band aid is on the shin*
(1.3) *The earring is in the ear (lobe)*
Spatial frames of reference (cont.)

- **projective** – framework-dependent
 - the place function returns a region defined in a coordinate system centered on the reference entity
 - the axes of the coordinate system are derived from an **anchor**
 - in **intrinsic** frames, the anchor is the reference entity/ground
 - in **relative** frames, it is the body of an observer
 - in **absolute** frames, it is some environmental entity/feature

Intrinsic

The ball is front of the chair.

Relative

The ball is to the right of the chair.

Absolute

The ball is east of the chair.

Fig. 2. The three types of spatial reference frames distinguished in Levinson 1996, 2003
Spatial frames of reference (cont.)

- Reference frames are used in the interpretation of spatial relators

<table>
<thead>
<tr>
<th>The ball is in front of the chair</th>
<th>true in a relative frame?</th>
<th>true in an intrinsic frame?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The ball is left of the chair</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Fig. 3. Truth conditions of intrinsic and relative descriptions of Ball & Chair 3.9
• No grammatical restrictions on what frames may be used

• However, a possible lexico-syntactic factor that may influence frame use
 – the productive use of shape-based meronyms in the representation of space
Research Questions

• How do preferences for reference frame types interact with systems of meronym assignment?
 – Is there a significant (i.e. predictable) correlation?
 – Is there a causal relationship?
Outline

• Introduction
 – Spatial frames of reference
 – MesoSpace: team, goals, tools

• Tasks for data collection
 – Reference Frames: Ball & Chair
 – Meronymy: Novel Objects I

• Findings

• Discussion
MesoSpace: team, goals, tools

- **Spatial language and cognition in Mesoamerica**
- **13 Mesoamerican (MA) languages** (Campbell, Kaufman, & Smith-Stark 1986)
 - **Mayan**
 - Chol (J.-J. Vázquez)
 - K’anjob’al (E. Mateo)
 - Tseltal (several variants; G. Polian)
 - Yucatec (PI: J. Bohnemeyer)
 - **Mixe-Zoquean**
 - Ayutla Mixe (R. Romero)
 - Soteapanec (S. Gutierrez)
 - Tecpatán Zoque (R. Zavala)
 - **Oto-Manguean**
 - Isthmus (Juchitán) Zapotec (G. Pérez)
 - Otomí (N. Hernández, S. Hernández, E. Palancar)
 - **Huave** (S. Herrera)
 - **Purépecha** (A. Capistrán)
 - **Totonac-Tepehuan**
 - Huehuetla Tepehua (S. Smythe)
 - **Uto-Aztecan**
 - Pajapan Nawat (V. Peralta)
• 6 non-MA “controls”
 – Seri (C. O’Meara)
 – Cora (Uto-Aztecan; V. Vázquez)
 – Mayangna (E. Benedicto, A. Eggleston in collaboration with the Mayangna Yulbarangyang Balna)
 – Mexican, Nicaraguan, and Barcelonan Spanish (R. Romero; E. Benedicto, A. Eggleston)

• 2 (interrelated) domains
 – frames of reference
 – meronyms

Fig. 7 The MesoSpace team

Fig. 8 Meronyms in Ayoquesco Zapotec (left) and Tenejapa Tseltal (adapted from MacLaury 1989 and Levinson 1994)
Some MesoSpace Goals

• Observed co-occurrence of
 – bias against relative (observer-projected) frames of reference
 – highly productive use of meronymic terminologies that are based primarily on object geometry across the languages of the Mesoamerican (MA) area.
Hypothesized correlation

- Speakers of languages with productive meronymy systems are habituated to object-geometry; a thinking-for-speaking effect then causes them to disfavor the relative
- Therefore, if a language has productive meronyms (measured by lexical meronyms in the Novel Objects task), their relative use should be low (measured by the percentage of pictures for which a relative frame was used).
Mesoamerican Confound

• The causal effect of productive meronymy on frame use is masked by the Mesoamerican area, since these properties may be shared via historical contact
• Evidence from outside Mesoamerica is needed
MesoSpace 1b

“Spatial language and cognition beyond Mesoamerica”
(NSF award #BCS 1053123)

• Meronym data from outside Mesoamerica
 – Jahai (Mon-Khmer, Malaysia; N. Burenhult)
 – Kujireray (Joola, Senegal; R. Watson)
 – Vietnamese (Mon-Khmer; J. Lovegren)
 – Wan (Mande, Côte d’Ivoire; T. Nikitina)
 – Bashkir (Turkic, Russia; T. Nikitina)
 – Yurakaré (isolate, Bolivia; R. van Gijn and V. Hirtzel)
Outline

• Introduction
 – Spatial frames of reference
 – MesoSpace: team, goals, tools

• Tasks for data collection
 – Reference Frames: Ball & Chair
 – Meronymy: Novel Objects I

• Findings

• Discussion
The Ball & Chair study

- Task for studying reference frame use in discourse
 - a referential communication task: Ball & Chair (B&C)
 - replacing Men & Tree (M&T) in Pederson et al (1998) etc.
 - B&C allows us to discover selection preferences for any of the reference frame types
 - 4 sets of 12 photos; ~5 pairs per population

Fig. 9. Design of the Men and Tree task (Pederson et al. 1998: 562)

Two sets of 12 photos, shuffled and placed randomly in front of each player. Within the set of photos are a target subset and some distractors.

Fig. 10. Two of the Ball & Chair photos, featuring an intrinsic contrast
The Ball & Chair study (cont.)

• the present study - B&C data from 12 varieties
 • 7 Mesoamerican languages
 – Yucatec Maya (J. Bohnemeyer)
 – Ayutla Mixe (R. Romero)
 – San Ildefonso Tultepec Otomí (N. Hernández, S. Hernández, E. Palancar)
 – Purépecha (or Tarascan; A. Capistrán)
 – Chacoma Tzeltal (G. Polian)
 – Juchitán (Isthmus) Zapotec (G. Pérez)
 – Tepehua (S. Smythe-Kung)
 • 2 non-Mesoamerican indigenous languages
 – Seri (C. O’Meara)
 – Sumu-Mayangna (E. Benedicto, A. Eggleston, Mayangna Yulbarangyang Balna)
 • 3 varieties of Spanish
 – from Barcelona (A. Eggleston), Mexico (R. Romero), and Nicaragua (A. Eggleston)
Outline

• Introduction
 – Spatial frames of reference
 – MesoSpace: team, goals, tools

• Tasks for data collection
 – Reference Frames: Ball & Chair
 – Meronymy: Novel Objects I

• Findings

• Discussion
Novel Objects

• Referential communication tasks
 – Part identification task (NO I)
 • Identify parts that are ‘landing sites’ for playdough
 – Placement task (NO II)
 • Use relators and meronyms to describe placement of playdough around the object
Meronymy Data

• Novel Objects I data from 12 languages:
 – 7 Mesoamerican languages
 • Yucatec Maya (J. Bohnemeyer)
 • Ayutla Mixe (R. Romero)
 • San Ildefonso Tultepec Otomí (N. Hernández, S. Hernández, E. Palancar)
 • Purépecha (or Tarascan; A. Capistrán)
 • Chacoma Tseltal (G. Polian)
 • Juchitán (Isthmus) Zapotec (G. Pérez)
 • Tepehua (S. Smythe-Kung)
 – 3 non-Mesoamerican indigenous languages
 • Seri (C. O’Meara)
 • Sumu-Mayangna (E. Benedicto, A. Eggleston, Mayangna Yulbarangyang Balna)
 • Yurakaré (R. van Gijn & V. Hirtzel)
 – 2 varieties of Spanish
 • from Barcelona and Nicaragua (A. Eggleston)
Outline

• Introduction
 – Spatial frames of reference
 – MesoSpace: team, goals, tools

• Tasks for data collection
 – Reference Frames: Ball & Chair
 – Meronymy: Novel Objects I

• Findings

• Discussion
Findings: Reference Frames

Fig. 12 Percentage of photos with relative use
Findings: Reference Frames

<table>
<thead>
<tr>
<th>Language</th>
<th>Relative %</th>
<th>Pictures w/ Relative Usage</th>
<th>Total Pictures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcelona Spanish</td>
<td>45%</td>
<td>131</td>
<td>288</td>
</tr>
<tr>
<td>Nicaraguan Spanish</td>
<td>35%</td>
<td>84</td>
<td>240</td>
</tr>
<tr>
<td>Mexican Spanish</td>
<td>34%</td>
<td>49</td>
<td>144</td>
</tr>
<tr>
<td>Yucatec Maya</td>
<td>18%</td>
<td>43</td>
<td>240</td>
</tr>
<tr>
<td>SIT Otomí</td>
<td>18%</td>
<td>43</td>
<td>240</td>
</tr>
<tr>
<td>Seri</td>
<td>16%</td>
<td>39</td>
<td>240</td>
</tr>
<tr>
<td>Sumu-Mayangna</td>
<td>14%</td>
<td>40</td>
<td>288</td>
</tr>
<tr>
<td>Ayutla Mixe</td>
<td>10%</td>
<td>25</td>
<td>240</td>
</tr>
<tr>
<td>Tepehua</td>
<td>6%</td>
<td>9</td>
<td>144</td>
</tr>
<tr>
<td>Isthmus Zapotec</td>
<td>5%</td>
<td>14</td>
<td>288</td>
</tr>
<tr>
<td>Tarascan</td>
<td>5%</td>
<td>11</td>
<td>240</td>
</tr>
<tr>
<td>Tselfal Maya</td>
<td>4%</td>
<td>10</td>
<td>240</td>
</tr>
</tbody>
</table>

Fig. 13 Percentage and raw frequencies of photos with relative use
Findings: Lexical Meronym Use

• ¿Qué porcentaje de las partes nombradas por los participantes se nombraron a través del uso de merónimos?

• Como merónimos solo consideramos expresiones léxicas (que sean simples o complejas) que describan un tipo de entidad como parte de otra entidad.
Findings: Lexical Meronym Use

Fig. 14 Percentage of meronym use
Fig. 15 Percentage of meronym use and relative use
Meronymy and relative use

• Correlation of meronym use to relative use
 -0.710129109

• Significant!
 P-value < 0.01**

• Suggests an effect
Outline

• Introduction
 – Spatial frames of reference
 – MesoSpace: team, goals, tools

• Tasks for data collection
 – Reference Frames: Ball & Chair
 – Meronymy: Novel Objects I

• Findings

• Discussion
Future Directions

- Perform analyses using finalized meronymy results
- Include data from more languages
- Compare meronymy use in NO I and frame use in NO II
- Further investigations of the relationship between meronymy and reference frame use
Thanks!
Acknowledgements

• National Science Foundation
 (Awards #BCS-0723694, BCS-1053123)
• All of our researchers
• All of our participants
• Semantic Typology lab members
• All of you!
References

