

Overview

research questions

- Yucatec
- findings I: picture book
- findings II: Chunches I
- conclusions

Research questions

- meronyms object-part designators
- artifacts
 - Indo-European languages: labeling by function
 - Mesoamerican (MA) languages: labeling by form

Figure 1. Categorizing parts by function vs. form

Research questions (cont.)

- Indo-European languages likewise have a general-purpose meronymic system
 - the 'front'/'back'/'left'/'right'/'top'/'bottom' (FBLRTB) system
 - but these terms are generally assigned by function and/ or presuppose canonical vertical orientation
 - e.g., none of them is readily applicable to a knife

Figure 1. Categorizing parts by function vs. form

Research questions (cont.)

- meronyms in Mesoamerica: productivity
 - used across large heterogeneous classes of objects
 - labeling any arbitrary geometrically defined part of any arbitrary object
 - cf. MacLaury 1989 for Ayoquesco Zapotec and Levinson 1994 for Tenejapa Tseltal (Mayan)

Figure 2. Productivity of MA meronyms: some uses of s=pat 'its back' in Tseltal (Levinson 1994: 811)

Research questions (cont.)

- what makes this productivity possible?
 - two proposals
 - global analogies (MacLaury)
 - shape-analytical algorithms (Levinson)

6

Research questions (cont.)

- MacLaury: Ayoquesco Zapotec meronymy operates on global analogical mapping
 - a set of seven body part terms are freely extended to non-human bodies and inanimates

Research questions (cont.)

- · Levinson's alternative
 - meronymy operates on shape-analytical algorithms
 - starting point: visual analysis of the object's outline
 - segmenting it into volumes based on curvature discontinuities
 - and assigning axes to these volumes
 - following Marr's (1982) theory of shape recognition

11

Research questions (cont.)

- Levinson's algorithm and body part terms
 - the algorithm governs applications of body part terms to animate as much as to inanimate entities
 - hence, there is no semantic transfer involved
 - even the 'buttocks' of a person are just the less convex end of the generating axis of the torso

Research questions (cont.)

- Levinson: the case against global analogy in Tseltal
 - all parts may be named non-uniquely
 - so any object can have an arbitrary number
 - of 'legs', 'noses', 'heads', 'backs', etc.
 - parts are named on the basis of shape
 - regardless of place in the structure of the object
 - so 'arms' can be assigned growing out of 'heads'
 - 'noses' out of 'buttocks', etc
 - the place of the labeled part in the structure of the object varies across classes of objects

: 811,

Research questions (cont.)

- the parts on the ends of the axes of each volume are then labeled on the basis of their shape

e.g., s=pat 'its back' really designates - the flatter and less featured end on an axis orthogonal to the one that generates the main volume

Figure 6. Generating the uses of s=pat 'its back'

Meronymy in Mesoamerica (cont.)

- meronymy in spatial reference
 - in many Mesoamerican languages, meronyms are one of two major resources for reference to spatial regions
 - the other being geocentric terms such as 'uphill' and 'south'
 - the following examples from Juchiteco Zapotec and Yucatec Maya illustrate the first possibility
 - (1.1) Dxi!'ba za **ike** raised.over cloud head house 'The cloud is over the house' (Pérez-Báez 2012: 128)
 - (1.2)u=balak' **y=óok'ol** le=pak'=o' PRV-come(B3SG) A3=roll A3=top DET=brickwork=D2

'...it came rolling on the wall'

Research questions (cont.)

- questions
 - to what extent is it really possible across MA languages to label arbitrary parts generatively?
 - what is the distribution of global analogical mapping and shape-analytical algorithms across MA?
 - do these really exclude one another, as Levinson claims, or can they co-exist in one meronymy?
 - are the shape-based algorithms really nonmetaphorical?

Overview

research questions

- Yucatec
- findings I: picture book
- · findings II: Chunches I
- conclusions

Yucatec

- the largest member of the Yucatecan branch of the Mayan language family
 - spoken by 759,000 people in the Mexican states of Campeche, Quintana Roo, and Yucatán
 - 2005 Census data show a decline by more than 40,000 speakers age five or older since 2000 (http://www.inegi.gob.mx/.../ept.asp?t=mlen10&c=3337)
 - and approximately 5,000 people in the Cayo District of Belize (Gordon Ed. 2005)
- polysynthetic, purely head-marking, VOS, split-intransitive
- the field site: Yaxley
 - a village of about 800 people in the municipal district of Felipe Carrillo Puerto in Quintana Roo

• the data

- picture book
 - pictures of humans, animals, and plants
 - · a set of artifacts
 - some customary in MA culture
 - some Western, with parts commonly identified functionally in Spanish

Yucatec (cont.)

- » especially where the Spanish labels for these deviate from the labels predicted by geometry
- elicitation of part segmentation, part descriptors, and locative descriptions
- ran with 7 Yucatec speakers
 - six men and one woman in their thirties through sixties

16

Yucatec (cont.)

– the Novel Objects aka "Chunches"

- referential communication tasks targeting reference to parts and placement descriptions wrt. parts
 - » in each trial, one participant has an object with bits of play dough attached to various parts in front of them
 - » and the other an identical copy of the object w/o the play dough
 - » the first speaker instructs the second speaker to put the play dough on the correct parts, identifying the parts in the process
 - » ran with five pairs of Yucatec speakers
 - » five men and five women in their teens through sixties

Overview

- · research questions
- Yucatec
- findings I: picture book
- findings II: Chunches I
- conclusions

1

Findings I: picture book

- Yucatec meronymy involves a critical distinction between three semi-autonomous subsystems
 - for the labeling of volumes, surfaces, and curvature extremes (edges, corners, tips, etc.)
 - volume meronyms, but not surface and 'extreme' meronyms can possess other meronyms

volumes	surfaces	extremes	
ho'l ≈ pòol 'head'	àanal 'underside'	pùunta 'tip'	Уuс
chùun 'trunk'	ichil 'inside'	tu'k' 'angle', 'corner'	Yucatec
it' 'anus'	óok'ol 'top surface'	xùul 'end'	C n
kàal 'neck'	pàach 'back'		le n
k'ab 'hand/arm'	táan 'front'		meronym
nak' 'belly'	tséel 'side'		
òok 'foot/leg'			dasses
xbak'et 'buttocks'			SSE
xikin 'ear'			

Findings I: picture book (cont.)

• volume meronyms as possessors – examples

Figure 9. Parts of parts of Pach-pach the dog

Findings I: picture book (cont.)

- · comparison to (Levinson's treatment of) Tseltal
 - volume terms semantically correspond to Tseltal body part terms
 - · which Levinson argues are algorithmically, non-metaphorically, and fully productively assigned in Tseltal
 - in contrast, surface and extreme terms correspond to what Levinson calls 'locative relational nouns'
 - in Tseltal, body part terms have a distinct morphological property
 - they produce derived alienable
 - in Yucatec, many body part
- Table 2. Tseltal 'locative relational nouns'

(Levinson 1994: 802)

terms are strictly inalienable, as are extreme and surface terms - see Lehmann (2003: 77-87)

Findings I: picture book (cont.)

- no surface/extreme meronyms as possessors except for pàach 'back'

Findings I: picture book (cont.)

- animate NP/DPs cannot be possessors of surface/ extreme meronyms at all
 - except for paach 'back' (cf. (5.7))

(5.4) *(1-in=bon-ah)	u=taan	le=peek'=o'
PRV-A1SG=paint-CMP(B3SG)	A3=front	DET=dog=D2
intended: '(I painted) th	e front of the	dog'
(5.5) *(T-in=bon-ah)	u=tséel	le=pèek'=o'
PRV-A1SG=paint-CMP(B3SG)	A3=side	DET=dog=D2
intended: '(I painted) th	a side of the r	log'

(5.6) (T-in=bon-ah) **y=óok'ol** PRV-A1SG=paint-CMP(B3SG) A3=top DET=dog=D2 'I painted above the dog'

but not: '(I painted) the top of the dog'

(5.7) (T-in=bon-ah) u=pàach
PRV-A1SG=paint-CMP(B3SG) A3=back '(I painted) the back of the dog'

- so except for pàach 'back', only volume meronyms can be body part terms

Findings I: picture book (cont.)

- only the subsystems for surface and curvature extreme naming are fully productive
 - volume naming shares many traits with the algorithm described by Levinson
 - yet, it is much more restricted with unfamiliar objects than surface and 'extreme' labeling
 - and often explicitly metaphorical

Table 2. Yucatec meronym classes and their properties

	volumes	surfaces	extremes
Possession of other meronyms?	yes	no	no
Set	not sharply defined,	closed	closed
	possibly open		
Productivity	limited	fully productive	fully productive
Orientation-dependence	no	yes	no
Possession by descriptors of multi-	unrestricted	restricted	unrestricted
volume entities			
Projected region	topological	oriented region	topological

Findings I: picture book (cont.)

- the above classification is not exhaustive
- some further highly productive meronyms which I haven't been able to place
 - hóol 'hole', 'aperture'
 - like a volume term, it can possess surface terms and projects a topological region
 - but it isn't a body part term, is fully productive, and does not trigger hedges when applied to the Novel Objects
 - ba'pàach 'surrounding envelope', 'environs'
 - largely a hyponym of $p\grave{a}ach$ 'back' the kind of $p\grave{a}ach$ that surrounds the entire object
 - but ba'pàach does not project an oriented region
 - yàam 'interstice'
 - a surface term in every other respect except it does not project an oriented spatial region

Findings I: picture book (cont.)

Overview

- · research questions
- Yucatec
- · findings I: picture book
- findings II: Chunches I
- conclusions

Findings II: Chunches (placement)

• the Chunches - single-volume objects

volume meronyms in blue; surface meronyms in red; extreme (= point/edge) meronyms in green; ad-hoc meronyms in orange

Findings II: Chunches (placement) (cont.)

• the Chunches - multi-volume objects

Findings II: Chunches (placement) (cont.)

- evidence for differences in productivity
 - between volume meronyms and other meronyms
 - assignment of volume meronyms

frequently involved similes and hedges

- there is no evidence whatever that the assignment of surface meronyms was considered metaphorical
 - I expect the use of similes and hedges with surface meronyms to be anomalous - but didn't test this

31

Findings II: Chunches (placement) (cont.)

- asked to name inanimate objects that have, e.g., 'heads' or 'bellies'
 - speakers quickly run out of examples
 - there is a great deal of variation in these judgments
 - contrasting with a striking uniformity in surface labeling
 - in contrast, surface and extreme meronyms are assigned to an indefinitely large set of entities

Findings II: Chunches (placement) (cont.)

- interpretation of the productivity data
 - volume meronyms designate body parts
 - their use outside the body domain is metaphorical and conventional
 - surface and edge/point meronyms designate geometric properties
 - they apply non-metaphorically to any arbitrary entity that has the relevant properties

Findings II: Chunches (placement) (cont.)

- · evidence for algorithmic assignment of Yucatec meronyms
 - surface and extreme meronyms are assigned independently of the object's overall structure
 - and they are assigned non-uniquely

Figure 18. Non-unique surface labeling

Figure 19. Non-unique surface labeling: cross-section of ar object with two 'backs'

Findings II: Chunches (placement) (cont.)

- volume meronyms, too, are assigned independently of the object's overall structure
 - and they are likewise assigned non-uniquely
 - · objects can have multiple 'heads'...

 - e.g., hills with multiple topsthe 'head' of a village is its entrance, or the first house one passes
 - when entering the village proper

 » and a village can have as many of those as it has roads leading into it
 - ...and certainly an arbitrary number of 'arms', 'legs', 'ears', etc.
 - in addition, volume terms, like surface terms, are assigned locally, not globally

Figure 20. Local assignment

Findings II: Chunches (placement) (cont.)

- use of lexical meronyms
 - i.e., terms that lexicalize part-whole relations

- overall, the Yucatec speakers used lexical meronyms in reference to 54.7% of the parts

Findings II: Chunches (placement)

- · an inventory of the types of strategies used
 - by the Yucatec participants to label the parts
 - geometrical lexical meronyms: inalienably possessed relational noun, can be possessed by a volume term
 - cannot be possessed by a person or animal (exception: pàach 'back')
 - examples: 'front', 'side', 'top surface', 'bottom surface', 'tip', 'edge', 'hole', 'interstice', etc.
 - human/animal body part term: inalienably possessed relational noun, can possess a surface term
 - can be possessed by a person or animal and does not occur with hedges in that case
 - but may occur with hedges when applied to inanimate objects
 - examples: 'leg/food', 'arm/hand', 'head', 'tooth', 'nose'

Findings II: Chunches (placement)

- plant body part term: inalienably possessed relational noun, can possess a surface term
 - can be possessed by a plant and does not occur with hedges in that case
 - but may occur with hedges when applied to inanimate objects
 - examples: 'trunk', 'bifurcation/crotch'
- function-based lexical meronyms: 'its entrance', 'its division' - mostly Spanish loans
- descriptors derived from shape terms
 - inalienably possessed relational noun derived from a noun or stative predicate describing shapes and/or surface textures
 - examples: 'its ridges', 'its grooved (part)', 'its crooked (part)', 'its smooth (part)', 'its rough side/thing', 'its smooth side/thing', 'its curved side/thing', 'its straight side/thing'

Findings II: Chunches (placement)

- descriptors derived from dimensional or size terms
 - inalienably possessed relational noun derived from a stative predicate describing extension (along some dimension)
 - examples: 'its long/short thing', 'its thick/thin thing', 'its large/ small thing', etc.
- descriptors derived from dispositionals via syntactic nominalization
 - examples: 'the standing one', 'the resting one', 'the one protruding'
- terms describing geometric figures: 'its triangle', 'its circle', 'its cross'
- artifact metaphors: 'the ball', 'the balloon', 'the marble', 'the rung/stepping stone'
- locative descriptions: e.g., 'where it's smooth'

Findings II: Chunches (placement)

· distribution of these strategies

- counting pàach 'back' as a surface = geo term

Findings II: Chunches (placement)

• distribution of these strategies

- counting pàach 'back' as a volume = body part term

Figure 23. Frequency of strategy use by dyad

(pàach as body part term)

• discussion Findings II: Chunches (placement) (cont.)

- meronym assignment is algorithmic and local
 - for surfaces, curvatures extremes, and volumes alike
- yet, while the labeling of surfaces and edges/points is fully productive and non-metaphorical
 - the labeling of volume parts is conventional and appears to be explicitly metaphorical
- Levinson's conjecture that algorithmic mapping is inherently non-metaphorical is thus invalid
- local algorithmic mappings and global analogical mappings may be parts of a single process
 - Pérez Báez 2012 reports additional evidence for this hypothesis from Juchitán Zapotec

Findings II: Chunches (placement) (cont.)

comparisons

- Yucatec vs. English
 - both surface/extreme and volume terms appear to be used more productively than in English
 - English has non-unique assignment of volume terms, but not of surface terms
 - Yucatec allows non-unique assignment of both
- Yucatec vs. Levinson's account of Tseltal
 - only geometric (surface/extreme) meronyms are assigned fully generatively in Yucatec
 - both body part terms and geometric meronyms appear to be assigned algorithmically in Yucatec
 - however, the assignment of body part terms to inanimate objects shows evidence of metaphoricity

Findings II: Chunches (placement) (cont.)

- Yucatec vs. MacLaury's account of Ayoquesco Zapotec
 - Ayoquesco and some other Zapotec varieties appear to differ radically from both Mayan and Indo-European
 - in that they appear to lack geometric meronyms altogether, relying instead fully on body part terms for reference to parts and regions
 - global analogical mapping clearly plays a lesser role in Yucatec and Tseltal than it does in Zapotec according to MacLaury
 - however, the precise role of analogical mapping calls for much more in-depth examination in all four languages

Conclusions

- Yucatec, like other Mesoamerican languages, has a highly productive shape-based meronymy
- unlike (Ayoquesco) Zapotecan meronyms, not all Yucatec meronyms are body part terms
 - terms for volume parts are body part terms
 - terms for surfaces and curvature extremes have abstract geometrical meanings
- the assignment of Yucatec meronyms is local and algorithmic
 - like that of Tseltal meronyms
 - and unlike that of Zapotecan meronyms according to MacLaury and Levinson

Conclusions (cont.)

- · local, algorithmic mapping is not necessarily non-metaphorical
 - surface and extreme meronyms appear to be assigned non-metaphorically
 - but the application of volume meronyms to objects appears to involve semantic transfer
- the meronymy of MA languages appears to operate on an object-centered view of geometry
 - that is alien to Indo-European languages
 - current research in the MesoSpace project investigates how this impacts spatial reference
 - in language and non-linguistic cognition

References

- Bohnemeyer, J. & Stolz, C. (2006). Spatial reference in Yukatek Maya: a survey. In S. C. Levinson & D. P. Wilkins (eds.), *Grammars of Space*. Cambridge: Cambridge University Press. 273-310.
 Campbell, L. 1979. Middle American languages in L. Campbell & I. 1979. Middle American languages in L. Campbell & I. 1979. Middle American languages in L. Campbell & I. 1979. Middle American Historical and comparative assessment. Austin, TX: University of Texas Press. 902-1000.
- Campbell, L., Kaufman, T., & T. C. Smith-Stark. 1986. Meso-America as a linguistic area. Language 62(3):
- Gentner, D. 1983. Structure-mapping: A theoretical framework for analogy. Cognitive Science 7: 155-170. Gordon, R. G. Jr. 2005. Ethnologue: Languages of the World, Fifteenth Edition. Dallas, TX: SIL International. Online version: http://www.ethnologue.com.
- Heine, B. 1997. Cognitive foundations of grammar. Oxford: Oxford University Press.
- Jackendoff, R. S. 1983. Semantics and cognition. Cambridge, MA: MIT Press.
- Asufman, T. 1973. Areal linguistics and Middle America. In T. A. Sebeok (ed.), Current trends in linguistics Vol. 11: Diachronic, areal, and typological linguistics (H. M. Hoenigswald and R. E. Longacre, associateds.). The House etc.: Mouton, 459-483.
- Landau, B. & R. S. Jackendoff. 1993. "What' and 'where' in spatial language and spatial cognition. Behavioral and Brain Sciences 16: 217-265. Lehmann, C. 2003, Possession in Yucatec Maya, Second, revised edition, Arbeitspapiere des Seminars für
- Eeminan, C. 2003. Tossession in Locate waya. Section, revise deuton: a metispapier des Seminans in Sprachwissenschaft der Universit\u00e4 Erfurt in Erfurt Erfurt University.
 Levinson, S. C. 1994. Vision, shape, and linguistic description: Tzeltal body-part terminology and object description. In S. C. Levinson & J. B. Haviland (eds.), Space in Moyan languages. Special issue of Linguistics 32 (4): 791-856.
- Levinson, S. C. 2003. Space in language and cognition. Cambridge: Cambridge University Press.

References (cont.)

Levy, P. 1992. Body-part prefixes in Papantla Totonac. In L. de León & S. C. Levinson (eds.), Spatial description in Mesoamerican languages. Special issue of Zeitschrift für Phonetik, Sprachwissens Kommunikationsforschung 45 (6): 530-542.

Li, P., & L. Gleitman. 2002. Turning the tables: Language and spatial reasoning. Cognition 83: 265-294.
MacLaury, R. E. 1989. Zapotec body-part locatives: prototypes and metaphoric extensions. International Journal of American Linguistics 55: 119-154.

Marr, D. 1982. Vision. New York: Freeman.

Pérez-Báez, Gabriela 2012. Semantics of Body Part Terms in Juchiteco Locative Descriptions. In: Danielle Lillehaugen, Brook and Huey, Aaron, *Expressing Location in Zapotec*. Munich: LINCOM. 117-134. Piaget, J. & B. Imhälder, 1956, The child's conception of space, London; Routledge and Kegan Paul,

Romero Méndez, R. 2008. A descriptive grammar of Ayutla Mixe (Tukyo'm Ayuujk). Doctoral dissertation, University at Buffalo – SUNY.

Sinha, C. and Jensen de López, K. 2000. Language, Culture and the Embodiment of Spatial Cognition. Cognitive Linguistics 11(1-2): 17-41.

Cognitive Linguistics 11(1-2): 17-41.
Slobin, D. I. 2002. Language and thought online. In D. Gentner & S. Goldin-Meadow (eds.), Language in mind. Cambridge, MA: MIT Press. 157-192.
Smith-Stark, T. C. 1994. Mesoamerican calques. In C. MacKay & V. Vázquez (eds.), Investigaciones lingüísticas en Mesoamérica. Mexico City: Instituto de Investigaciones Filológicas, Universidad Nacional Autónoma de México. 15-50.

Svorou, S. 1994. The grammar of space. Amsterdam; Philadelphia: John Benjamins.