TEMPORAL REMOTENESS MARKERS IN A TENSELESS LANGUAGE

JÜRGEN BOHNEMEYER

Understanding Human Time
Cambridge University
April 9–10, 2020
OUTLINE

- The changing face of temporal remoteness markers
- Yucatec as a tenseless language
- Yucatec temporal remoteness markers
- Analysis
- Summary
THE CHANGING FACE OF TEMPORAL REMOTENESS MARKERS (TRMS)

▸ the early take on TRMs: semantically specific tenses

(1.1) Temporal remoteness distinctions in ChiBemba (Givón 1972)

a. baåléebomba
 ‘They were working (before yesterday).’

b. baåléebomba
 ‘They were working (yesterday).’

c. baåcilåáombomba
 ‘They were working (earlier today).’

d. baåbombba
 ‘They’ve just worked (a little while ago).’ (Cable 2013: 220)

Figure 1.1. The traditional picture of TRM semantics
the early take on TRMs (cont.)

Figure 1.2. TRM in the languages of the world: Dahl & Velupillai (2013)
‘Temporal distance’ involves, by definition, a measurement of the distance between two points or intervals in time; this implies that for this dimension to be relevant, at least two such time points should be involved in the interpretation of a sentence. Given the Reichenbachian points S, R and E, there are the following possibilities: In the unmarked case, R coincides with either S or E. In those cases, which constitute the overwhelming majority in any text, the only possible distance to measure will be between S and E, that is, ‘distant’ will mean ‘distant from the time of speech’” (Dahl 1985: 120, emphasis JB)

\[[\text{TRM}] = \Delta(E,S) \]

Figure 1.3. The traditional picture of TRM semantics
“If R is separate, however, we will have two intervals to measure: on one hand, the distance S-R, on the other, the distance R-E. In principle, both these might be relevant in a TMA system. The tendency, however, seems rather to be for remoteness distinctions to be neutralized in such contexts; many languages do not even have a separate category which like the English Pluperfect is used for events that take place before an R which in turn precedes S. I also have relatively little information concerning these cases - being conceptually more complex, they are rather hard to elicit reliable information about - and shall just note one fairly clear example of a minimal pair differing in the distance between a past R and a preceding E.” (Dahl 1985: 120-121, emphasis JB)
the one example of an anaphoric TRM distinction
Dahl (1985: 121) and Comrie (1985: 86) cite

Sesotho (Southern Bantu, Lesotho and South Africa)

(1.2) Ha letsatsi le-likela re-ne re-tsoa tloha Maseru
when sun PRV-disappear we-PAST we-IMMP leave Maseru
‘At sunset, we had just left Maseru.’

(1.3) Ha letsatsi le-likela re-ne re-tloh-ile Maseru
when sun PRV-disappear we-PAST we-leave-RECP Maseru
‘At sunset, we had left Maseru.’ Morolong (1978: 77; glosses JB)

\[[\text{TRM}] = \Delta(E,R) \]

Figure 1.5. Morolong’s analysis of -tsoa and -ile in the Reichenbachian system

S leaving M sunset

- tense constrains the **topic time** t_{TOP} of an utterance vis-a-vis an **evaluation time**
 - which may be **utterance time** t_U
 - or some **reference time** t_R (cf. Bohnemeyer 2014)
- the relation between t_{TOP} and the event time $\tau(e)$ is constrained, not by tense, but by viewpoint aspect
new perspectives: the break with Reichenbach – (cont.)

(1.4) *When Sally called, Floyd was working on his paper*

![Diagram](image)

Figure 1.6. An illustration of the unified theory of tense and viewpoint aspect

- Past tense *was working*: constrains \(t_{TOP} \) to \(t_{TOP} < t_U \)
- Imperfective/progressive aspect *was working*: places \(t_{TOP} \) inside \(\tau(e) \) (\(t_{TOP} \subset \tau(e) \))
new perspectives: Klecha & Bochnak (2016)

purely anaphoric TRMs in Luganda (NE Bantu, Uganda) in ‘iterated’ constructions

Context: A and B are talking about a party they went to a few days ago.

A: Nalabye Kato kabaga.
 1SG.see.INT K at-party
 ‘I saw Kato at the party.’

B: Wabadde wayogera naye?
 2SG.COP.INT 2SG.talk.DIST him
 ‘Had you talked to him (before that time)’?

B’: #Wali wayogedde naye?
 2SG.COP.DIST 2SG.talk.INT him
 Intended: ‘Had you talked to him (before that time)’?

Figure 1.7. Klecha & Bochnak’s schematic representation of the semantics of iterated TRM
new perspectives: Klecha & Bochnak (2016) (cont.)

- analysis: Luganda TRMs simply encode an anteriority relation between two time intervals plus their distance

\[\text{REC.P, INT.P, DIST.P - 'recent', 'intermediate', 'distant past'} \]
\[t - t_{TOP} \]
\[\text{apparently, K&B assume that in the iterated construction, the AUX's } t_{TOP} \text{ is the main verb's } t_R \]
\[u - \text{evaluation time } = t_U \text{ or } t_R \]
\[\text{close, far - measure functions} \]
\[s - \text{positive standard function (Kennedy 2007)} \]
new perspectives: Cable (2013)

- Gĩkũyũ (NE Bantu, Kenya) TRMs specify $\Delta(\tau(e), t_U)$, not $\Delta(t_{TOP}, t_U)$ - they are not tenses in the Kleinian (etc.) sense (1.7)

The graded tenses of Gĩkũyũ (Mugane 1997)

a. ‘Current Past’:
 Mwangi nīekũinaga.
 ‘Mwangi was dancing (within the day).’

b. ‘Near Past’:
 Mwangi nĩarainaga.
 ‘Mwangi was dancing (within last few days).’

c. ‘Remote Past’:
 Mwangi nĩainaga.
 ‘Mwangi was dancing (prior to ‘Near Past’).’

d. ‘Current Future’:
 Mwangi nīekũina.
 ‘Mwangi will dance (within the day).’

e. ‘Remote Future’:
 Mwangi nīakaina.
 ‘Mwangi will dance (tomorrow or later).’ (Cable 2013: 221)
new perspectives: Cable (2013) (cont.)

the evidence for this analysis comes from the structure of distance categorization in this system

Generalization regarding the ‘Remote Past’
REMP is used when a speaker does not know whether an event occurred on the day of the utterance, ‘recently’, or some time prior to that.

Generalization regarding the ‘Near Past’
NRP is used when a speaker does not know whether an event occurred on the day of the utterance or at an earlier ‘recent’ time, *but does know that it occurred ‘recently’.*

Generalization regarding the ‘Remote Future’
REMF is used (in interrogatives) when a speaker does not know whether an event will occur on the day of the utterance or some time after that.

The TRM Specificity Principle
Speakers must use the most specific TRM consistent with their knowledge. If the use of a particular TRM α is ‘licit’ in some context, then the speaker *cannot* use any TRM weaker than α.

(Cable 2013: 245-247)
new perspectives: Cable (2013) (cont.)

rejecting a Gricean analysis, Cable instead proposes that Gĩkũyũ TRMs denote partial identity functions on events (1.7)

a. \[
[[\text{CUR}]]^{g.t} = [\lambda e : T(e) \circlearrowright \text{day surrounding } t . e]
\]
b. \text{IMPST}(t):
A function from temporal intervals to temporal intervals. Maps interval \(t \) to an interval \([t'...t'']\), where \(t', t'' < t \), and both lie within the day surrounding \(t \).

\text{Illustration:}
\text{IMPST(‘12 PM; 5/31/12’) = [‘11 AM; 5/31/12’ ... ‘11:30 AM; 5/31/12’]}

c. \text{REC}(t):
A function from temporal intervals to temporal intervals. Maps interval \(t \) to an interval \([t'...t'']\), where \(t' < t \) and lies before the day surrounding \(t \), and \(t'' \) is the endpoint of the day surrounding \(t \).

\text{Illustration:}
\text{REC(‘12 PM; 5/31/12’) = [‘3 PM; 5/27/12’ ... ‘11:59 PM; 5/31/12’]}

d. \[
[[\text{IMM}]]^{g.t} = [\lambda e : T(e) \circlearrowright \text{IMPST}(t) . e]
\]
e. \[
[[\text{NRP}]]^{g.t} = [\lambda e : T(e) \circlearrowright \text{REC}(t) . e]
\]
f. \[
[[\text{REM}]]^{g.t} = [\lambda e : e]
\]

(Cable 2013: 253-254)
new perspectives: Cable (2013) (cont.)

as such, they introduce presuppositions the content of which is defined by the partial identity functions

e.g., the feature CUR encoded by both the ‘current future’ and ‘current past’ TRMs has the meaning

(1.8) \[[\text{CUR}]^{g,t} = [\lambda e : \tau(e) \infty \text{ day surrounding } t_U . e]\]

this presupposes the existence of a suitable event since the meaning of the TRM is undefined otherwise

however, Cable argues that these presuppositions do not project and thus cannot be tested
new perspectives: Cable (2013) (cont.)

Cable uses this presuppositional semantics to generate the observed usage extensions of the TRMs by invoking the **Maximize Presupposition** maxim of Heim (1991)

"**Maximize Presupposition:** Among a set of alternatives, use the felicitous sentence with the strongest presupposition." (Chemla 2008)

(1.9) a. #A weight of our tent is under 4lb (Heim 1991)

b. #I talked to a father of the victim (Hawkins 1991)

c. #Every candidate should send his book (# if some candidates wrote multiple books) (Sauerland 2008)
and now: Yucatec

- formalizing an analysis informally sketched in Bohnemeyer (1998: 328-342)
- Yucatec TRMs specify $\Delta(\tau(e), t_{TOP})$
 - so their behavior combines features of the TRMs of Gĩkũyũ and Luganda
 - they are purely anaphoric, like the TRMs of Luganda
 - they directly access $\tau(e)$, like the TRMs of Gĩkũyũ on Cable’s analysis
 - however, unlike the Gĩkũyũ TRMs, they relate $\tau(e)$ to t_{TOP}, not to t_U or some other evaluation time t_R
and now: Yucatec (cont.)

- Yucatec has been argued to be a profoundly tenseless language (Bohnemeyer 1998, 2009)
- so if Yucatec TRMs are Kleinian tenses, their existence contradicts profound tenselessness
- OTOH if they aren’t Kleinian tenses
 - their occurrence in a profoundly tenseless language further underscores the difference b/w TRMs and tenses
OUTLINE

- The changing face of temporal remoteness markers
- Yucatec as a tenseless language
- Yucatec temporal remoteness markers
- Analysis
- Summary
two functional categories expressing temporality in Yucatec clauses

- preverbal **aspect-mood (AM) markers** and **status suffixes**
 - every finite verbal projection has exactly one of each
 - the AM marker selects for a particular status category in its lexicon entry

(2.1) Morphologically bound AM markers

a. \(\text{K-in=xok-ik} \quad \text{le=periyòodiko=o'} \)

Imperfective \(\text{IMPF-A1SG=read-INC(B3SG) DEF=newspaper=D2} \)

'I (used to) read the paper'

b. \(\text{T-in=xok-ah} \quad \text{le=periyòodiko=o'} \)

Perfective \(\text{PRV-A1SG=read-CMP(B3SG) DEF=newspaper=D2} \)

'I read the paper'

- the remaining 13 or so AM markers are stative predicates
 (not auxiliaries or light verbs)
Synopsis of the system: the aspectual AM markers

Table 2.1. The aspectual AM markers

<table>
<thead>
<tr>
<th>Subset</th>
<th>Marker</th>
<th>Category label in Bohnemeyer 2009</th>
<th>Meaning</th>
<th>Status category selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspectual</td>
<td>t-/h-</td>
<td>Perfective</td>
<td>Perfective aspect</td>
<td>CMP</td>
</tr>
<tr>
<td></td>
<td>k-</td>
<td>Imperfective</td>
<td>Imperfective aspect; habitual/generic reference</td>
<td>INC</td>
</tr>
<tr>
<td></td>
<td>tāan</td>
<td>Progressive</td>
<td>Imperfective aspect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ts’o’k</td>
<td>Terminative</td>
<td>Perfect aspect</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mukah/mikah</td>
<td>Prospective</td>
<td>Prospective aspect</td>
<td>INC /SUBJ</td>
</tr>
<tr>
<td></td>
<td>/bikah</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
YUCATEC AS A TENSELESS LANGUAGE (CONT.)

- synopsis of the system: the modal AM markers

Table 2.2. The modal AM markers

<table>
<thead>
<tr>
<th>Subset</th>
<th>Marker</th>
<th>Category label in Bohnemeyer 2009</th>
<th>Meaning</th>
<th>Status category governed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modal</td>
<td>yan</td>
<td>Obligative</td>
<td>Social obligations; plans; scheduled events; future time reference to naturally occurring events</td>
<td>INC</td>
</tr>
<tr>
<td></td>
<td>k’a’náan / k’abéet</td>
<td>Necessitive</td>
<td>Deontic necessity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>táak</td>
<td>Desiderative</td>
<td>Desires and bodily needs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>he’... =e’</td>
<td>Assurative</td>
<td>Commitments, promises, agreement, assurances</td>
<td></td>
</tr>
<tr>
<td></td>
<td>óolak</td>
<td>Penative</td>
<td>Proximity of realization in counterfactual worlds</td>
<td>SUBJ</td>
</tr>
</tbody>
</table>
... and today’s protagonists: the TRMs

Table 2.3. The TRMs
testing for deictic tense: is a clause formed with a given marker compatible with present, past, and future topic times?

- e.g., the perfect-like ‘terminative’ aspect marker *ts'o‘k*

- with a past topic time, like a pluperfect:

\[(2.2) \quad \text{K-u=k'uch-ul-o'b=e',} \\
\quad \text{IMPF-A.3=arrive-INC=TOP} \]

\[
\begin{align*}
\textit{ts'o‘k} & \quad u=kim-il \\
\textit{TERM} & \quad \text{A.3=die-INC} \\
\text{le=chàampal=e'}. & \quad \text{DEF=small:child=D3}
\end{align*}
\]

'(By the time) they arrived, the baby **had** already died.'
with a future topic time, like a future perfect:

(2.3) Sáamal óok-a'n+k'iin=e'
tomorrow enter-RES+sun=TOP

ts'o'k u=bèet-ik le=túus+bèel=o'
TERM A.3=do-INC(B.3.S) DEF=send+way:REL=D2

'By tomorrow at dusk (the boy) **will have done** the errand.'
(Andrade 1955: 135-136)

all Yucatec clauses are freely compatible with topic times in the past, present, and future of utterance time

with one exception: the perfective aspect marker t-/*h-
perfective aspect excludes FTR in matrix clauses

(2.4) #T-in=ts' on-ah le=kèeh sáamal=o',
PRV-A1SG=shoot-CMP(B3SG) DEF=deer tomorrow=D2
intended: ‘I will shoot the deer tomorrow’

it does, however, occur w/ FTR in conditional protases

(2.5) Wáah t-in=ts' on-ah le=kèeh sáamal=o',
ALT PRV-A1SG=shoot-CMP(B3SG) DEF=deer tomorrow=D2
he' in=tàas-ik=e'!
ASS A1SG=come:CAUS-INC(B3SG)=D3

‘If I shoot the deer tomorrow, I agree to bring it!’
perfective aspect excludes FTR in matrix clauses (cont.)

- this can be explained assuming that the completive status suffix expresses realis mood

 independent evidence for this analysis: the perfective is also excluded from counterfactuals

 where past tense markers are crosslinguistically very common otherwise (Iatridou 2000)
perfective aspect in counterfactuals

(2.6) [Context: Pedro lives in the U.S. In September, his was visiting his brother in Mexico. At the time, the two of them were thinking that there would be a good harvest that year. Then Pedro returned home. In November, he spoke to this brother on the phone and asked him how the harvest had turned out. And he was told by his brother that the corn had been completely destroyed by a storm. And then his brother said:

a. ??Wáah ma’ h-òok (ka’ch) le=chak+iik’-al=o’,
 ALT NEG(B3SG) PRV-enter(B3SG) formerly DEF=rain+wind=D2

??hach h-yàan-chah (ka’ch) le=nal=o’.
 really PRV-EXIST-INCH.CMP(B3SG) formerly DEF=maize=D2

Intended: ‘If the storm hadn’t entered, the corn would have turned out really well.’ [rejected by all four speakers it was tested with]
perfective aspect in counterfactuals (cont.)

(2.6) [Context: Pedro lives in the U.S. In September, his was visiting his brother in Mexico. At the time, the two of them were thinking that there would be a good harvest that year. Then Pedro returned home. In November, he spoke to this brother on the phone and asked him how the harvest had turned out. And he was told by his brother that the corn had been completely destroyed by a storm. And then his brother said:]

b. Wáah ma’ tuméen òok-ìk le=chak+íík’-al=o’,
 ALT NEG(B3SG) CAUSE enter-EXTRAFOC(B3SG) DEF=rain+wind=D2
 (béeh) ts’ò’k u=hach=yàan-tal (ka’ch) le=nal=o’.
now TERM A3=really=EXIST-INCH.INC formerly DEF=maize=D2

‘If the storm hadn’t entered, the corn would have turned out really well.’ [accepted by all four speakers it was tested with]
the (complex) basic facts of future time reference in Yucatec

Table 2.4. Finite clauses and future topic times in Yucatec

<table>
<thead>
<tr>
<th>Syntactic environment</th>
<th>Matrix clauses</th>
<th>Conditional protases</th>
<th>Other finite subordinate clauses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspectual reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stative (lexical state predicates; non-perfective aspect)</td>
<td></td>
<td>A: Unconstrained</td>
<td></td>
</tr>
<tr>
<td>Eventive = perfective</td>
<td>B: Future t_{top} excluded</td>
<td>C: Unconstrained</td>
<td>D: Future t_{top} requires irrealis marking</td>
</tr>
</tbody>
</table>
OUTLINE

- The changing face of temporal remoteness markers
- Yucatec as a tenseless language
- Yucatec temporal remoteness markers
- Analysis
- Summary
YUCATEC TEMPORAL REMOTENESS MARKERS

- like Luganda TRMs, Yucatec TRMs are anaphoric, not deictic
- like Gĩkũyũ TRMs on Cable’s analysis, they directly access $\tau(e)$
- however, unlike the Gĩkũyũ TRMs, they relate $\tau(e)$ to t_{TOP}, not to t_U or some other evaluation time t_R
 - in the following examples, t_{TOP} is introduced by topicalized subordinate clauses marked in blue
Example 1: remote past marker úuch with a future t_{TOP}

(3.1) [Context: Jorge, visiting the speaker’s village, is about to return to the United States. It is known that he plans to visit again the following year. Jorge knows that the speaker plans to build a house and has asked when it will be completed. Response:]

Chéen ka’=sùunak-ech t-u=láak' ha’b=e’,
SR:IRR REP=turn\ATP:SUBJ-B2SG PREP-A3=other year=TOP
úuch in=mèet-∅ le=nah=o’
REMP A1SG=do:APP-SUBJ(B3SG) DEF=house=D2

‘When you return next year, it will be long ago that I built the house.’

Figure 3.1. Diagramming the analysis of (3.1)
Example 2: remote future marker bíin with a past \(t_{TOP} \)

(Context: Jorge has just returned to Pedro’s village. It has been two years since his last visit. He learns that Pedro has built a house and asks whether it’s new. Response:]

\[
\text{Káa}=h-\text{tàal-ech} \quad \text{way} \quad h-\text{ts’o’k} \quad \text{ka’}=p’\text{éel} \quad \text{ha’b}=e’, \\
\text{CON}=\text{PRV-come-B2SG} \quad \text{here} \quad \text{PRV-end(B3SG)} \quad \text{two}=\text{CL.IN} \quad \text{year}=D3
\]

\[
\text{bíin} \quad \text{in}=\text{mèet-∅} \quad \text{le}=\text{nah}=o’
\]

\text{REMF} \quad \text{A1SG}=\text{do:APP-SUBJ(B3SG)} \quad \text{DEF}=\text{house}=D2

‘When you came here two years ago, it was going to be a long time before I would build the house.’

(4/4 speakers consulted: it was only a vague idea at the time)

Figure 3.2. Diagramming the analysis of (3.2)
Example 3: immediate past marker táantik …=e’ with a future t_{TOP}

(3.3) [Context: Jorge, visiting the speaker’s village, is about to return to the United States. It is known that he plans to visit again the following year. Jorge knows that the speaker plans to build a house and has asked when it will be completed. Response:]

Chéen ka'=sùunak-ech t-u=láak’ ha’b=e’,
SR:IRR REP=turn\ATP:SUBJ-B2SG PREP-A3=other year=TOP

táantik in=mèet-ik le=nah=o’
IMMP A1SG=do:APP-INC(B3SG) DEF=house=D2

‘When you return next year, I will have just build the house.’

(4/4 speakers consulted: SPKR plans to finish the house b4 July, the month Jorge usually visits)

Figure 3.3. Diagramming the analysis of (3.3)
Yucatec TRMs behave more like viewpoint aspect markers than like tenses

- more specifically:
 - the immediate, recent, and remote past TRMs express $\tau(e) < t_{TOP}$
 - like perfect aspects (‘have written a book’)
 - the proximate and remote future TRMs express $t_{TOP} < \tau(e)$
 - like prospective aspects (‘be going to write a book’)

YUCATEC TEMPORAL REMOTENESS MARKERS (CONT.)
Yucatec TRMs behave like viewpoint aspect markers (cont.)

- support for this analysis
 - Yucatec TRMs are extremely rare in narratives and when they do occur, it is (exclusively?) in backgrounded clauses
 - Yucatec TRMs are paraphrased with a deontic modal for future-oriented TRMs
 - and perfect (‘terminative’) aspect for past-oriented TRMs
 - Yucatec TRMs are incompatible with \(\tau(e) \) adverbials and cannot be used in questions about \(\tau(e) \)
 - just like the English (present) perfect and the Yucatec ‘terminative’, i.e., perfect (Bohnemeyer 2014)
Table 3.1 shows AMs used by four speakers in paraphrases of TRM sentences.

The main point here is what the speakers did not use to paraphrase sentences with past-oriented TRMs.

They did not use the perfective AM marker.

Table 3.1. AM markers used by four speakers in paraphrases of sentences with TRMs

<table>
<thead>
<tr>
<th>TRM</th>
<th>Other AM markers used in elicited paraphrases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote past úuch</td>
<td>Terminative ts’ó’k (result-state aspect)</td>
</tr>
<tr>
<td>Recent past sáam</td>
<td>Terminative ts’ó’k (result-state aspect)</td>
</tr>
<tr>
<td>Immediate past táantik ...=e’</td>
<td>Lexical stative predicates</td>
</tr>
<tr>
<td>Proximate future ta’itak</td>
<td>Obligative yan (social obligations, plans, scheduled events)</td>
</tr>
<tr>
<td>Remote future bíin</td>
<td>Obligative yan (social obligations, plans, scheduled events)</td>
</tr>
</tbody>
</table>
In frequent use in narratives, usually (exclusively?) in backgrounded clause

(3.4) [Context: The Prodigal Son has returned. His father is throwing him a party.]

Hach ma' sáam hóok'-ok u=mèet-a’l le=fiyèesta bèey=a’
really NEG RECP exit-SUBJ A3=do-PASS:INC DEF=party thus-D1

káa=h-k'uch le=suku'n-tsíil=e'
CON=PRV-arrive(B3SG) DEF=elder.brother-ABSOL=D3

u=nohoch suku'n
A3=big older.brother

‘It hadn’t been long since the party got underway, [when/and then] the elder brother arrived, his oldest brother.’
incompatibility with event time specifications

(3.5) [Context: It has been established that B mailed a certain letter a while ago. A wishes to know when exactly this happened:]

A: #Ba’x k’íin séam/úuch a=tùucht-eh?
what sun(B3SG) RECP/REMP A2=send-SUBJ(B3SG)
[Intended: ‘When (lit. what day) did you send it?’]
lit. ‘At what day was it recent/long ago that you sent it?’

B: #Lúunes-ak séam/úuch in=tùucht-eh
Monday-CAL RECP/REMP A1SG=send-SUBJ(B3SG)
[Intended: ‘Last Monday (was when) I sent it.’]
lit. ‘It was last Monday that it was recent/long ago that I sent it’
the Yucatec TRMs are stative predicates that characterize the distance between two times as great or small

- relative to contextual standards
- as predicates, they can be negated (cf. (3.4), (3.10)-(3.12))

the use of the TRMs is entirely optional

- speakers use TRMs exclusively when distance is at issue
 - and the temporal relation vis-à-vis topic time is presupposed
Yucatec TRMs treat only $\Delta(\tau(e), t_{TOP})$ as at-issue content

- the ordering relation $\tau(e) < t_{TOP}$ or $t_{TOP} < \tau(e)$ is projective

- Example 1: recent past sáam

(3.6) Ma’ sáam sùunak le=kòombio=o’, ...

Neg RECP turn\ATP:SUBJ(B3SG) DEF=van=D2

‘It was not a while ago that the bus returned, …’

a. … inw=a’l-ik-e’ h-ts’o’k mèedya òora.

A1SG=say-INC(B.3.SG)=TOP PRV-end(B3SG) half hour

‘... I think it was half an hour ago.’

b. #… tuméen ma’ sùunak=i’.

CAUSE NEG turn\ATP:SUBJ(B3SG)=D4

‘... because (in fact) it has not returned (yet).’
Yucatec TRMs treat only $\Delta(\tau(e), t_{TOP})$ as at-issue content

- the ordering relation $\tau(e) < t_{TOP}$ or $t_{TOP} < \tau(e)$ is projective

- Example 2: remote past úuch

(3.7) Ma’ úuch inw=il hun-túul chak+mo’l te=k’áax-o’, ...
 NEG REMP A1SG=see(B3SG) one-CL.AN red+claw PREP:DEF=jungle=D2
 ‘Not long ago I saw a jaguar in the jungle, …’

 a. … inw=a’l-ik=e’ h-ts’o’k chéen hun-p’éel semàana .
 A1SG=say-INC(B3SG)=TOP PRV-end(B3SG) only one-CL.IN week
 ‘… I think it was only a week ago.’

 b. #… hach t-u háah-il-e’ tak be’òora-a’
 really PRV-A.3 truth-REL-TOP even now-D1
 mix hun-téen inw=il=i’. NEG.EMPH one-times A1SG=see(B3SG)-=D4
 ‘… as a matter of fact, until now, I have not seen one once.’
Yucatec TRMs treat only $\Delta(\tau(e), t_{TOP})$ as at-issue content

- the ordering relation $\tau(e) < t_{TOP}$ or $t_{TOP} < \tau(e)$ is projective

- Example 3: proximate future ta’itak

(3.8) Ma’ ta’itak in=bin Mérida=i’, ...
 NEG PROX A1SG=go Mérida=D4
 ‘It won’t be soon that I go to Mérida, …’

a. ... inw=a’l-ik=e’ yan u=xáan-tal.
 A1SG=say-INC(B3SG)=TOP OBL A3=last-INCH.INC
 ‘… I think it will take some time (before I go).’

b. #... mix+bik’in in=bin.
 NEG.EMPH+? A1SG=go
 ‘… I’ll never go (there).’
OUTLINE

- The changing face of temporal remoteness markers
- Yucatec as a tenseless language
- Yucatec temporal remoteness markers
- Analysis
- Summary
ANALYSIS

- combine Klecha & Bochnak-style scalar distance semantics
- with Cable-style partial identity functions over events that generate the observed ordering presuppositions

Table 4.1. The semantics of the Yucatec TRMs: a first stab

<table>
<thead>
<tr>
<th>TRM category</th>
<th>Morpheme</th>
<th>Ordering/realization on presupposition</th>
<th>Scalar distance semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote past</td>
<td>([úuch]^c)</td>
<td>([\lambda.e : \tau(e) < t_{TOP}(c) . e] ; \lambda.e[far(\tau(e), t_{TOP}(c)) > s(far)])</td>
<td></td>
</tr>
<tr>
<td>Recent past</td>
<td>([sáam]^c)</td>
<td>([\lambda.e : \tau(e) < t_{TOP}(c) . e] ; \lambda.e[close(\tau(e), t_{TOP}(c)) < s(close)])</td>
<td></td>
</tr>
<tr>
<td>Immediate past</td>
<td>([táantik ...=e']^c)</td>
<td>([\lambda.e : \tau(e) < t_{TOP}(c) . e] ; \lambda.e[close(\tau(e), t_{TOP}(c)) > s(close)])</td>
<td></td>
</tr>
<tr>
<td>Proximate future</td>
<td>([ta'itak]^c)</td>
<td>([\lambda.e : t_{TOP}(c) < t \tau(e) . e] ; \lambda.e[close(\tau(e), t_{TOP}(c)) > s(close)])</td>
<td></td>
</tr>
<tr>
<td>Remote future</td>
<td>([bíin]^c)</td>
<td>([\lambda.e : t_{TOP}(c) < t \tau(e) . e] ; \lambda.e[far(\tau(e), t_{TOP}(c)) > s(far)])</td>
<td></td>
</tr>
</tbody>
</table>
close, far - measure functions

s – maps measure functions to the threshold degree for the relevant comparison class (Kennedy 2007)

the analysis of the recent past marker sáam is motivated by its behavior under negation

cf. (3.4), (3.10)
the difference to Cable’s analysis

- Gĩkũyũ TRMs combine compositionally with future and perfect aspect markers
 - hence, Cable argues that the topic time of Gĩkũyũ clauses is constrained by a separate tense system
 - and the TRMs relate $\tau(e)$ to t_U rather than to t_{TOP}

- in contrast, Yucatec TRMs are in strict complementary distribution with respect to all other AM markers
 - there is thus no obvious need for postulating intervening evaluation times
OUTLINE

- The changing face of temporal remoteness markers
- Yucatec as a tenseless language
- Yucatec temporal remoteness markers
- Analysis

Summary
SUMMARY

- yet another kind of non-tense-like TRMs
 - Yucatec TRMs behave aspect-like
 - constraining event times vis-à-vis topic times
 - the at-issue content of Yucatec TRMs is a scalar distance semantics
 - while the ordering relation $\tau(e) < t_{TOP}$ or $t_{TOP} < \tau(e)$ is projective content
- due to their non-tense-like semantics, Yucatec-style TRMs are compatible with profound tenselessness
ACKNOWLEDGMENTS

- special thanks to
 - Fulgencio Ek Ek, Ernesto May Balam, Saturnino May Ek, and the late Ramón May Cupul
 - and a number of other Yucatec speakers I have worked with on temporality and TRMs over the years
 - Ryan Bochnak
 - Seth Cable
 - the members of the UB Semantic Typology Lab
 - the audience of an earlier presentation at SULA 10
 - you!!!
 - ... none of whom should be assumed to share any of the views argued for in this paper 😊
THANKS!