THE SPIN L-FUNCTION OF QUASI-SPLIT D,
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1. Introduction
The purpose of this paper is to construct a Rankin-Selberg integral for the Spin L-function

L(s,m, Vspin, g) of a generic cuspidal representation m of a quasi-split adjoint group Gg of
type Dy4. Let us formulate our results more precisely.

1.1. Etale cubic algebras. Let F be a number field with adele ring A and absolute Galois
group Gal(F/F). An étale cubic algebra is an F-algebra E such that £ ®@p F = F°. More
concretely, an étale cubic F-algebra is of the form:
FxF xF,
E =< F x K, where K is a quadratic field extension of F’;
a cubic field.
Since the split algebra F' x F' x F has automorphism group Ss (the symmetric group on 3

letters), the isomorphism classes of étale cubic algebras E over F' are naturally classified by
the set of conjugacy classes of homomorphisms

pe : Gal(F/F) — Sj.

By composing the homomorphism pg with the sign character of S3, we obtain a quadratic
character (possibly trivial) of Gal(F'/F') which corresponds to an étale quadratic algebra Kp.
We call Kg the discriminant algebra of E£. To be concrete,

F x F, if E = F3 or a cyclic cubic field;
Kp=<{K, ifE=Fx K,
the unique quadratic subfield in the Galois closure of E otherwise.

We shall let x, denote the quadratic idele class character associated to Kp.

1.2. Twisted form of Ss. Fix an étale cubic F-algebra E. Then, via the associated ho-
momorphism pg, Gal(F'/F) acts on S3 (by inner automorphisms) and thus defines a twisted
form ' of the finite constant group scheme S3. For any commutative F-algebra A, we have

FE(A) = AutA(E Rp A)

1.3. Quasi-split groups of type Dj. Because S3 is the outer automorphism group of
PGSOg (the split adjoint group of type Dy), associated to F is a quasi-split adjoint group
Gg of type D4. The outer automorphism group of G is precisely the finite group scheme
I'g.

The Langlands dual group of G is the simply-connected complex Lie group

GY, = Sping(C).
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This has 3 irreducible 8-dimensional representations V,,,, whose highest weights j; (i = 1,2 or
3) are the three fundamental weights associated to the three satellite vertices in the Dynkin
diagram of type Dy. These 3 representations are permuted by the outer automorphism group
S3, and the sum
VSpin = Vln ¥ VMQ ©® VHS

extends to a faithful irreducible representation of Sping(C) x Ss. In fact, there are two such
extensions which differ from each other by twisting with the sign character of S3. So we shall
need to specify the extension precisely later (in (2.8)).

The L-group “Gg is a certain semidirect product of Sping(C) with Gal(F/F). More
precisely, the action of Gal(F/F) on Sping(C) is via the homomorphism pg. Thus there is a
natural map

LGp — Sping(C) x Ss,
whose restriction to Gal(F/F) is pg. Via this map, we may view Vs, as a representation
of LG r. We denote this representation by Vspin g and call this the Spin representation of
LG p. Note that Vspin,E 1s reducible unless E is a field.

1.4. The Spin L-function. Now let 7 = ®,m, be a cuspidal automorphic representation of
Gpg(A). For almost all v, the representation 7, is unramifed and gives rise to a semisimple
conjugacy class t;, € “Gp (its Satake parameter). We may thus define the partial Spin
L-function associated to m:

1
LS(Sa T, VSpin,E') = —
;!;J;g det(l — Qv Stm; ‘VSpin,E)

where S is a finite set of places, including the archimedean ones, such that m, is unramified
for all v ¢ S. This Euler product converges when Re(s) is sufficiently large.

In fact, since the representation Vspin g is reducible when FE is not a field, it is natural
to define a refinement of the above L-function by introducing a different variable for each
irreducible constituent of Vspin . More precisely, we have:

e f E=F x F x F, we set s = (s1,52,s3) and
1

LS(§77T7VS in,E) = pp s s .
" Ulgg det(1 — gy " tr,|Vyy ) - det(l — g **tr, [Vyy,) - det(l — gu P tr, Vi)

o If F = F x K, we may assume without loss of generality that the two fundamental
weights 1o and p3 are permuted by the Galois action, so that V), and V,,, ®V,,, are
the two irreducible constituents of Vspin . Setting s = (s1, s23, s23), we then define

1

LS(§7 T, VS in,E) = — — .
’ 1:)12:9 det(l — Qv Sltﬂv ’VNI) ’ det(l — Qu 823t7T1) ’VN2 ©® ‘/HS)

e if F is a field, then s = (s, s, s) and L5 (s, T, Vapin,E) is as originally defined.

1.5. The refined zeta function of E. Likewise, since E is the product of fields F;, the
zeta function (g(s) decomposes as the product of zeta functions of these fields. It is natural
to define a refinement (g(s), with s defined as above in the three different cases. Thus, for
example,

Crxk(8) = Cr(s1) - Cx(s23)-
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In addition, we define another refinement of the zeta function of E:

A C(s1+s2—53) - C(sa+s3—51) - (s34 s1— s9), if E = F
CE(Q): C(2823—81)-CK(81), ifE:FXK;
Ce(s), if E is a field.

This may seem somewhat artificial at first, but note that if one sets all the variables s;
equal to s, one recovers (g(s). In fact, this refined function arises naturally in the normalizing
factor of the Eisenstein series in our Rankin-Selberg integral. In any case, one can simply
regard it as a shorthand for the rather convoluted function it represents.

1.6. The Rankin-Selberg integral. The goal of this paper is to construct a Rankin-Selberg
integral for L(s, 7, Vapin,g) when 7 is globally generic, i.e. possesses a non-zero Whittaker-
Fourier coefficient. The Rankin-Selberg integral we consider is of Shimura type. Thus it
involves the integral of a cusp form, an Eisenstein series and a “theta” function:

ZE((P, (I)vf7§) - tp(g) ’ H(f)(g) ’ E((I)7§7g) dg.

/GE (F)\GEe(A)

To explain the various notations,
e  is a cusp form in m;

e O(f) is a vector in the minimal representation Il of Gg(A), which is the analog of
the Weil representation of a metaplectic group;

o [(P,s,g) is an Eisenstein series on Gg(A) associated to a standard section ®; of a
certain principal series I, (s) of Gg. This principal series Ig,(s) is induced from a
character on the (not-necessarily maximal) parabolic subgroup Qg whose Levi factor
is of semisimple type A; corresponding to the middle vertex of the Dynkin diagram
of type Dj.

Our main theorem is then:

1.7. MAIN THEOREM: The global zeta integral admits an Euler product. Moreover, we
have:

LS(§7 T, VSpin E') ( >
A 7®7f7_ = 3 - : Z U qu)vafvp_
£l S Cpls +1) - Cp(2s) - ¢5(Isl) g@ wole *

where 1 = (1,..,1) and |s| denotes the sum of the components of s (so for example, |s| = 3s
if £ is a field). Moreover, each local factor for v € S admits meromorphic continuation as a
function of s. Thus, the Spin L-function L (s, , Vspin,E) can be meromorphically continued.

Our investigation is inspired by the recent paper [GH| of the second author with D.
Ginzburg. There, they considered the case when the group Gpg is split and constructed
a multi-variable Rankin-Selberg integral which is inherently asymmetric: it gives the L-
functions associated to two of the degree 8 representations (say V,, and V,,,), with one of
them obtained two times (say V), ). The Rankin-Selberg integral we consider here is moti-
vated by the Ss-symmetry of D4, and has the advantage that it extends in a self evident
fashion to all the quasi-split forms. More importantly, when F is a field, the Spin L-function
is one which cannot be analyzed by the Langlands-Shahidi method.
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2. Preliminaries

We begin by establishing some notations and introducing some background results.

2.1. D4 root system. We fix a Borel subgroup Bg of Gg and a Levi subgroup Tr which is
a maximal torus, Eoth defined over F'. Let Vg denote the unipotent radical of Bg. Over the
algebraic closure F', the choice of (T, Bg) gives a set A of simple absolute roots for the set
U of absolute roots of Tr in Gg. Using the standard realization of the root system of type
Dy, we label these simple roots by

1 = €] — €9

ap) — €2 — €3

Qg = €3 — €4

Q3 = €3 + €4,
where {¢;} is the standard basis of R*. In particular, aq is the branch (or middle) vertex in
the Dynkin diagram of type D4s. We let

Oo = a1 + as + asg + 2aq

denote the highest root in ¥. Here is the Dynkin diagram:

For each absolute root 7, we let U, be the associated root subgroup; it may not be defined
over F. Indeed, the absolute Galois group Gal(F/F) acts naturally on ¥ and U, is defined
over F'iff y is fixed by the Galois action. We also let w, denote the element of the Weyl
group corresponding to the reflection in ~.

If E is a cubic field, then Gal(F/F) permutes the roots aj, as and g transitively. If
F = F x K with K a quadratic field, then without loss of generality, we assume that oy is
fixed, whereas as and a3 are exchanged by the Galois action. If E is the split algebra, the
Galois action on V¥ is trivial.

Let w; be the fundamental weight so that

(wi, o) = b4,
and let p; be the fundamental coweight so that
(aj, pi) = i
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In terms of the basis {€/} dual to {¢;}, the fundamental coweights are given by:
H1 = 6?7
fio = €] + €
po = (€] + &+ €3 —€j)/2
ps = (€] + &+ e+ €)/2.

Because G is adjoint, the set {y;} is a basis for the cocharacter group

2.2. Gy root system. We have already fixed the pair (Tg, Bg). If we further fix a Chevalley-
Steinberg system of épinglage relative to this pair, then we have a compatible system of
isomorphisms U, = G, defined over F which are permuted by Gal(F/F). This gives a
splitting of the outer automorphism group

FE' — Aut(GE)

The subgroup scheme of G, fixed pointwise by I'g is independent of the choice of the épinglage
relative to (T, Bg), and is isomorphic to the split exceptional group of type Gs.

Observe that B = Gy N By is a Borel subgroup of Go and T'= Tr N G5 is a maximal split
torus of G3. The torus T is such that

X(T) = (po, o1 + p2 + p3)-
Via the adjoint action of 7" on G'g, we obtain the root system ¥, of Ga, so that
Ve, = ¥r.

Here is a diagram of the root system of type Ga.

> [

A

We denote the short simple root of this G5 root system by « and the long simple root by
8. Then

B=alr and a=ai|r = aslr = as|r.
Thus, the short root spaces have dimension 3, whereas the long root spaces have dimension

1. For each root v € V¥g,, the associated root subgroup U, is defined over F' and the
Chevalley-Steinberg system of épinglage gives isomorphisms:

U~ Resg/r Gg, if 7 is short;
771Gy, if v is long.

When FE is a cubic field, T is in fact the maximal F-split torus of Gg and U, is the relative
root system of Gg.
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For each v € ¥¢,, we shall also let N, denote the root subgroup of G5 corresponding to
~. In particular,

]\/v,Y = U’Y N Gsy.
Because the highest root By of the Dy-root system restricts to that of the Ga-root system,

we shall let By denote the highest root of the Ga-root system also. This should not cause
confusion.

2.3. Two parabolic subgroups. The G5 root system gives rise to 2 parabolic subgroups of
GEg. One of these is a maximal parabolic Pr = MgNg known as the Heisenberg parabolic.
Its unipotent radical Ng is a Heisenberg group and its Levi subgroup Mg is spanned by
the 3 satellite vertices in the Dynkin diagram. The other parabolic Qg = LgUg is a not-
necessarily-maximal parabolic; its Levi subgroup L is spanned by the branch vertex o and
its unipotent radical Ug is a 3-step unipotent group. We shall need to examine the structure
of these 2 parabolics more carefully.

2.4. The Heisenberg parabolic Pg. Let us begin with the Heisenberg parabolic P =
MEgNE. Its unipotent radical is a Heisenberg group with center Z = Ug,. Moreover,

NE/Z: Ug X U[@Jra X U[@+2a X Uﬁ+3a ZFxFExFEXxF.
Note that Pg N G5 is the Heisenberg maximal parabolic P = M N of G, with

M=GNMg=GLy and N =G2NNEg.

Let Qg (F') denote the minimal non-zero Mpg(F')-orbit on
Np(F)/Z(F)=U_gxU_g_q x U_g_20 x U_g_3, 2 F x EX E x F.

It is the orbit of a highest weight vector and its Zariski closure is a cone. A non-zero element
(a,z,y,d) lies in Qp iff

ry = ad

= = ay

y# = dx.
Here

#:F—F

is the canonical quadratic map with the property that x-2# = N(z), where N(z) denotes the
norm of x. So, for example, the element a - (1,z,y,d), with a € F*, lies in Qg(F) iff

y=az" and d=N(z).

Observe that there is a natural map Ng/Z — N/Z given by
(a,2,y,d) — (a,Tr(x),Tr(y), d)

where T'r(x) denotes the trace of z. Given any element y € N/Z, we let Qg denote the fiber
of this map over x. For example, if F is a field and x = (1,0,0,0), then Qg, = {(1,0,0,0)}
since the only z € F with N(z) =0 is = 0.



2.5. The 3-step parabolic Qr. Now we come to the parabolic Q. The unipotent radical
Ug has a filtration

(13 cv) cu? cug
such that
1
UJ(E) = Up, x Ugy—p
is the center of Ug. Further,
U = [Up, U] = Ug, % Uy % Usays

is the commutator subgroup of Ur and is abelian. In particular, Ug is a 3-step unipotent
group; hence we call Qg the 3-step parabolic. Note that Q = Go N Qg = L - U is the
non-Heisenberg maximal parabolic of G, with

L=GosNLg=GLyand U =GyNUg.

It will be necessary to have a more explicit description of L. By examining the root
datum of Lg, one can show that

LE‘ = (GL2 X ResE/F Gm)/AGm
In terms of this isomorphism, the simple absolute roots of G are given on a torus element

t= ( g 2 ) x (c1,c2,¢3) € Tg(F) C Lp(F)

by:
a
ap(t) = 7 and «;(t) = —
fori=1,2 or 3.
From the above description, one sees that the center Zy,, of the Levi subgroup Lg is such

that

X*(ZLE) = <H17H27:U’3>'
Moreover, the group Homp(Lg, G,,) can be described as follows. For 1 < i < 3, let us define
Xi € X*(Lg) by
Xi(g,c1,c2,¢3) = %'
Then the elements y; form a Z-basis of X*(Lg). On restriction to T, we have:

Xi =0 —ay—a; fori=1,2o0r3.

Now taking into account the Galois action, we have:
Lx1 D LxoDZyxs, it E=F xF xF,
Homp(Lg,Gp) =S Zx1®Z - (x2® x3), if E=F x K;
Z-(x1+ x2+ x3), if F is a field.

Observe that the character
VL = X1t X2+ X3
always belong to Homp(Lg, G,,). Moreover, the modulus character of Qp is

0Q, =3 VL.
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2.6. Eisenstein series. With the above description of Homp(Lg,G,,), we can now define
an unramified character of Lg(F,) or Lg(A):
Dl ot el s, i B = PP
Xs =3 bl [xe 4 xstTo=, if E=F x K;
X1+ xz2 + xs|'5, if E s a field.

We can then consider the degenerate principal series
Ig,(s)=1 ndgi Xs (unnormalized induction).

The associated Eisenstein series is given by

E@,s9) = Y.  ®9)

YEQE(F)\GE(F)

for a standard section ®; € Ig,(s). This sum converges absolutely at s = (s1,s2,s3) if
S + Si+1 > siyo for ¢ = 1,2,3 and where the subscripts are taken modulo 3. We let Qg
denote the region consisting of those s satisfying s; + s;41 — Si42 > R, for i = 1,2, 3.

This Eisenstein series is one of the ingredients in our Rankin-Selberg integral.

2.7. Geomeric description of Sping(C). At this point, we should describe precisely what
we mean by the representation Vgpin of Sping(C) » S3. For this, it is necessary to give a
geometric description of the split group Sping. This (very beautiful) description works over
an arbitrary field k£ and can be found, for example, in the paper [Gr].

Let O be the split octonion algebra over k. Then O comes equipped with

e an anti-involution x — Z;
e a (quadratic) norm form N : O — k such that N(z) =z -z =7 - x;
e a (linear) trace form Tr : O — k such that Tr(x) = z + Z.

In particular, we may consider the special orthogonal group SO(Q, N).

Though the multiplication in O is not associative, the symbol Tr(zyz) is well-defined and
satisfies

Tr(zyz) = Tr(yzz) = Tr(zzy).
Now the group Sping over k can be described by:

Sping = {(91,92,93) € SO((O),N)3 :Tr((g17)(g2y)(g32)) = Tr(zxyz) for all x,y,z € O}.

How does S3 act on Sping? A naive guess is that it acts on an element (g1,92,93) by
permuting its three components. However, this is not the case. By the above, it is true that
cyclic permutations of (g1, ¢g2,93) do preserve the group Sping so that the 3-cycles in S3 act
in the natural way. A transposition, on the other hand, acts as follows:

o:(91,92,93) — (92, 91,93)

where



2.8. The representation Vgpin. By the above description of Sping, one sees that Sping
acts on @ & O @ 0. The action preserves each factor of O and gives the three irreducible
representations of dimension 8. We can now describe the extension of this action to the
semidirect product Sping x.S3. Not surprisingly, the 3-cycles in S3 acts on O & O & O by
cyclic permutation. The action of the transposition o, however, is given by:

o:(x,y,2) — (9,7, 2).

It is easy to show that this does define an action of Sping xS3. This representation Vspin is
what we use in the definition of the Spin L-function.

We remark that one could consider the twist of Vgpin by the sign representation of S3 and
thus obtain a different L-function. Though we stated our main theorem in the introduction for
L(s,m, Vspin,E), a slight twist of our Rankin-Selberg integral will give an analogous statement
for L(s, m, Vspin,E ® (sign)).

3. Minimal Representation

Now we come to another ingredient in our Rankin-Selberg integral. For each local field
F,, the group Gg(F,) has a so-called minimal representation Ilg, , first studied by Kazhdan
[K]. It is the analog of the Weil representation of the metaplectic group.

3.1. Local minimal representation. To describe this minimal representation, let r : S5 —
GL2(C) denote the 2-dimensional irreducible representation of S3. Then the composite 7 o
pEw is a 2-dimensional representation of Gal(F,/F,). By Jacquet-Langlands, this is the L-
parameter of an irreducible admissible representation rg , of GLa(F,) given by the following
table:

EU TEw

F3 m(1,1)

Fv XKv ﬂ-(l’XKU)

Galois field T(XE,» XE)

non-Galois field | monomial supercuspidal

Here, xk, and xp, denote the characters of F* associated to K, and E, by local class
field theory, and (1, p12) denotes the representation of GLg(F,) unitarily induced from the
character pu1 X uo of the diagonal torus. The central character of g, is precisely the quadratic
character xk, ,, and we define a representation of

Lg(F,) = (GLe(F,) x E))/AF)
by:
0w =TEw X (XKgwoNg,/F,)-
Here and elsewhere, K refers to “outer tensor product”.
Now Ilg , is the unique irreducible submodule of the induced representation
I ndg’; 522/ :1, OB (unnormalized induction).

If E, is unramified, then Ilg, is a spherical representation.
9



3.2. Automorphic realization. Let I[Ig = ®,I1g, be the global minimal representation of
Gg(A). It is known (cf. [GGJ]) that there is a unique G g-equivariant embedding

0 : HE' — .A(GE‘)

which is constructed using residues of Eisenstein series. We need to know some properties of
this minimal representation.

3.3. Fourier coefficients. Fix a non-trivial unitary character v, of F,. Using ,, the
Killing form and the exponential map, the unitary characters of Ng(F,) can be parametrized
by elements of Ng(F,)/Z(F,). Let x, be a non-trivial unitary character of Ng(F,). Then
the key property of Ilg, is that:

1, if Xov € QE(FU),

dim HomNE(Fu)(HEU’CX”) - {0 if not

Here Qg(F),) is as introduced in (2.4) and parametrizes the minimal non-trivial Mg (F),)-orbit
of characters of Np(F,). An element in Qp(F;,) is the character x( such that

X0|Uﬁ07a0 =1y
and xo|y, is trivial for any other root subgroup U, C Ng. In terms of the description of Qg
given in (2.4),

X0 = (07 07 07 1)

These local results on Homy, (g,)(Ilg,, Cy, ) imply:

Proposition 3.3.1. (i) For f € Ilg, the Fourier expansion of 0(f) along Ng is supported
on the (Zariski) closure of the minimal non-trivial Mg (F)-orbit Qg (F) of unitary characters
of Ng(A) trivial on Ng(F).

(it) For x € Qg(F), the Fourier coefficient 0(f)n,, has an Euler product expansion in
terms of the local functionals. Namely, if f = Q. fy, then

0(F)nex(9) = [ Lo (90 - £0),

where each L, is a non-zero element of the 1-dimensional space HomNE(FU)(H,,,(CXU), nor-
malized for almost all v by the requirement that va(fg) =1 if f2 is the normalized spherical
vector in Ilg .

3.4. An explicit formula. Finally, we come to the only new result in this section. We have
fixed a Chevalley-Steinberg system of épinglage for Gg over F. For almost all finite places v
of F, this system of épinglage gives Gg an Op,-structure such that Gg(Op,) is a hyperspecial
maximal compact subgroup of Gg(Fy).

Fix such a non-archimedean place v, and let L, be a non-zero element of the 1-dimensional
space Homy,, (Ilg,,C,,). We have the following explicit formula:

Proposition 3.4.1. Assume that v is a finite place such that Gg(OF,) is hyperspecial (so that
E, is unramified) and let fo be a non-zero Gg(OF,)-spherical vector in Ilg,. Fort € Tg(F,),
let us set

ko(t) = ord(Bo(t)/ao(t)).
If xo has conductor zero (with respect to the O, -structure on Ng(Fy)), then

on(tfo) =0 Zf k‘o(t) < 0.
10



However, L, is non-zero on fy, so that we may normalize Ly, by setting Ly, (fo) = 1. Then,
if ko(t) > 0, we have:
(i) If B, = F2, then
Ly (- fo) = [Bo()] - (ko(t) +1).
(ii) If E, = F, x K,, then
Ly (- fo) = xr, (Bo(t)) - [Bo(t)] - e2(ko(t) + 1)
where €(-) is the Legendre symbol (3) (with e2(0) =0).
(iii) If E is the unramified cubic field extension of F,, then
Lyo(t - fo) = [Bo(t)] - e3(ko(t) + 1),
where €3(-) is the Legendre symbol (3) (with e3(0) =0).

Proof. In the split case, this is a result of Kazhdan-Polishchuk [KP]. We give a different proof
which covers the non-split case as well.

Choose a representative in Gg(OF,) of the Weyl group element w,; we denote this repre-
sentative by w, also. Then w, normalizes Ng and it will be more convenient to replace o
and Ly, by x{ = waxo and L' = waLy,. Let us give an explicit construction of L'.

By definition, the linear functional L' factors through the quotient (Ilg, )y, Which is

1-dimensional. The root subgroup U, (F),) normalizes Ng(F,) and fixes the character x(. It
thus acts on (Ilg,) Np.y, and this action is in fact trivial. Thus, we see that L’ factors as:

l'U
g, —— (g, ——

where
ld)v € HomUﬂ ((HE’U )UE ) va ) °

Now we recall that IIg , is the unique irreducible submodule of

1/6
Ind3E8y? o

By Frobenius reciprocity, there is a natural (g, -equivariant map
1/6
p:1llg, — 5Q/EU R OEw

which is simply given
p(f)=f(1) for f €llg,.
Thus L’ is the composite of p with the unique Whittaker functional I, of o .

Now take a torus element
t= (( g 2 > ,x) € Tr(F,) C Lg(F,) = (GLy(F,) x E))/AF).

Then




where W, is the normalized spherical Whittaker function of the representation rg, of
GLy(F,). The formula for Wy, on a torus element is well-known:

a2 () ) =) - clordlan)

where
k+1, if B, = F3;
e(k) =< ek +1), if B, =F, x Ky;
es(k + 1), if E, is the unramified cubic field.

Thus, we deduce that

a’b
L't fo) = W XKp(b-N(x)) - e(ord(a/b)) = [Bo(t)] - xxz(Bo(t)) - €(ord(an(t)).
Conjugating back by w, gives the desired result, since w, fixes Gy and sends ag to Gy — «ap.
The proposition is proved. 0

For a general vector f € Ilg, the above construction of the linear functional L, allows one
to obtain the asymptotics of the function (¢, k) +— Ly, (tk- f) on Tg(F,) x K,. This is needed
in Section 9; see Lemma 9.2.2. Further, in Lemma 9.5.1, we shall give another description of
the functional L,, by means of a local Fourier-Jacobi map.

4. A Rankin-Selberg Integral

We are now ready to write down our Rankin-Selberg integral. Let 7 be a globally generic
cuspidal representation of Gg(A). For ¢ € m, @5 € Ig,(s) and f € IIg, we set

ZE((P, (I)vf7§) - tp(g) ’ H(f)(g) ’ E(q)’§’g) dg.

/GE(F NGE(A)
The purpose of this section is to unfold this Rankin-Selberg integral of Shimura type.

Theorem 4.0.2. Let V}, be the mazimal unipotent subgroup of Gg given by

Vi = woVew,' = Ng x U_,.

It is the unipotent radical of the Borel subgroup By, = woBrpw,t, with associated simple

roots —ay; (i =1,2,3) and By — a. Let 1 be the generic unitary character of Vi (A) which is
non-trivial on the associated relative simple root subgroups. Then we have:

o~

Ze(p..1.5) = | ove () 0D vma (@) - Bolg) dg
VL (A\GE(A)

where

Proof. Unfolding the Eisenstein series in the range of absolute convergence, we get
12



ZE(@’ @7 f’§)

_ / #(9) - 0(F)(g) - s(9) dg
QE(IN\GE(A)

-/ ©ug) ([, eleo) D9 d ) dg
QE(F)US (A\GE(A) U FNUG (8)

®s(9) ey (9) - 0(f) 0 (9) dg

/QE(FwS)(A)\GE(A)

+/ s(9) - ey (9) -0, (9) | dg.
Qu(FMUY (ANGE(A) );1 Up’x vd x

Lemma 4.0.3. The first term in the last sum is zero.

Proof. The argument is easiest when F is a field and is more complicated in the split case;
it ultimately relies on the fact that ¢ is cuspidal.

We shall only give the argument when FE is a field. Consider the Fourier expansion of
0(f), 0 along Ng(F)\Ng(A). Because §(f) ) is left-invariant under Ug,—q,(A), this has
E

UE
the form

0(f)ym = > 0(f)Npx-

XEQE(F):xlug o, =1

In other words, the character x intervening in the above sum is represented by (a,z,y,0) €
Qp(F). But if E is a field, then the only elements of this form in Qg(F) are (a,0,0,0) with
a€F.

Consider first the constant term 6(f)x, in the Fourier expansion, which corresponds to
a = 0. By [GGJ, Prop. 5.3(iv)], the restriction of §(f)n, to Mg lies in the span of two
automorphic characters of Mg (A). Since this is the case for any f € Ilg, we see that 0(f)n,
is left-invariant under U, (A), and thus under Ug(A).

Now consider the other terms in the Fourier expansion of 6(f) p- If 1, is the character
E

associated to (a,0,0,0) € Qp(F) with a # 0, then U,(A) normalizes Ng(A) and fixes the
character 1,. Thus the Fourier coefficient 0(f)n, 4, is left-invariant under U, (A) (we have
used the local analog of this fact in the proof of Prop. 3.4.1). Hence 6(f)n 4, is also
left-invariant under Ug(A). Hence we have:

®s(9) -y (9)- (Z H(f)NE,wa(g)> dg

acel

s(g) - | D 0 ) Nea(9) | - ug)du | d
L o (Z v <g>> ( L oron 209 ) ’

acel
0

/QE(FwS)(A)\GE(A)

since ¢ is cuspidal. This proves the lemma when FE is a field.
13



When E is not a field, there will be more terms intervening in the Fourier expansion of
0(f) OR Thankfully, there are also more F-rational standard parabolics in Gg. These other
E

terms in the Fourier expansion ultimately lead to the constant terms of ¢ along these other

parabolics. We omit the details.
O

(1)

On the other hand, the non-trivial characters of Uy’ (A) in the second term are permuted
transitively by Qg (F). If we let x¢ denote the character which is trivial on Ug, and non-
trivial on Ug,_q,, then the stabilizer of x¢ in Qg (F') is the subgroup AgVg where Ap is the
3-dimensional torus in T such that

Xi(Ag) = (1 — po, pi2 — Ho, 13 — Ho)-
In view of this, we have:

ZE'(907 ¢7 f7§)

/ o, ) S e, (9 0w 09 | do
F)Up” (AN\Cr(4) €A (F)Ve(F)\Qs(F)

D, (g) - 0D (ad
/AE (F)Vi(F)US (M\GE (A) (9) (pUé;l),Xo(g) (f)USEl)m(g) g

®,(g) - / ng) -0(f),m . (ng) | d
/A N (e ) (9) < o)) () N ) Pum o (19) - 0(F)yo | g)> 9

By Prop. 3.3.1(i), we see that

0(f)

v Z O(f)Ngwa (9

zel

Here v, corresponds to the element
(N(z), 5%, 7,1) € Qp(F).

Moreover, the group U, (F) = E acts simply transitively on the set {¢, : © € E}. Note that
if x = 0, then g is simply the trivial extension of xg from U g ) to N . Thus,

<Z ONgpe (9)  O(f)Np,w, (g)> dg

zeE

Ze(p..1.9) = |

Ap(F)Ua(F)NE(A\GE(A)

= / P,(g) - YNg,o (9) - H(f)NEJJJo(g) dg

Ap(F)Ng(A\GE(A)
Now consider the Fourier expansion of ¢, 4, along U_,. Because ¢ is cuspidal, this takes
the form:

PNpa(9) = Y vru(19),
vEAER(F)

where 1 is a generic character of V},. Substituting this into the last expression for our
Rankin-Selberg integral, and using the fact that 6(f)n, ., is left-invariant under U_,(A), we
14



obtain:

ZE(()Dv (I)v f7 §)
= D(9) - 0(f)Nuwo(9) - v 4(v9) | dg
/AE<F>NE<A>\GE<A> o %AZE(F) ?
— / y(9) - 0 ) Nprin9) - vy 0(9) dg
Ne(A\Gr(4)

—/ 0(f)Ngwo(9) - (/ oy p(ug) - @s(ug) du> dg
VE(A\GE(A) U—a(A)

o~

= / 0(f)Ngw0(9) - vy (9) - Ps(g) dg.
VL (A\GE(A)

Theorem 4.0.2 is proved. O

5. Local Zeta Integral
After Theorem 4.0.2, we see that

ZE(SO, Q)’ faﬁ) = H ZU((Pva q)va fU7§)

where

—

Zy (0o, Py, fo,8) = Wy ,w(g “pw) - on(g “ fo) - (I)S,U(g) dg.

E

/VE/:(FU)\GE(FU)

This integral converges when s € Qg (cf. (2.6)) for R > 0, as we shall show in Prop.
9.1.3. The rest of the paper is devoted to the study of this local zeta integral. In particular,
we shall compute the local zeta integral explicitly when all the data involved are unramified.
The purpose of this section is to provide explicit formulas for the 3 functions appearing in
the local integral in the unramified setting.

Assume henceforth that all the data involved in Z, are unramified. Then by the Iwasawa
decomposition, we have

Zv(@va D, fva 3) = /S () WVé,w(t . (Pv) : on(t : fv) . 557}(15) . 53}5 (t)il dt
Ey v

where Sg, C Tg, is the maximal F,-split torus.
Henceforth, since the setting is entirely local, we shall suppress v from the notations.

5.1. A change of system of simple roots. Because we are looking at the Whittaker
functional relative to the Borel subgroup By, it is useful to use the corresponding system of
simple roots:
ap = fo — ap, o = —a;, fori=1,2and 3.
For this new system of simple roots, the highest root is still
Bo = 2af, + o} + af + af
and the modulus character of B, is given by

dpy = [6(a) + a5 + aj) + 10ag).
15



The associated fundamental coweights are given by:

!/

o =po  p;=po—p; fori=1,2and 3.

As above, let Sg C Tg denote the maximal F-split torus. We consider the 3 different
cases:

o if E=F x F x F, then Sgp =Tg. An element of Sg(F') is of the form
t = po(to) - i (t1) - pa(ta) - ps(ts), with t; € F*.
We shall sometimes write this element as t = (tg, 1, to, t3).

e if F = F x K with K a quadratic field, then

X.(SE) = (1o, 1, o + p3)-
An element of Sg(F) is of the form

t = po(to) - wi(tr) - (o) (tas).
We shall write this element as t = (to, t1,t23).

e if F is a cubic field, then

X (Sp) = (po; 1 + o + pi3).
An element of Sg(F) is of the form

t = pug(to) - (p i) (t123)-

We shall write this element as t = (tg, t123).

5.2. Casselman-Shalika formula. For the value of the Whittaker functional Wy, on
Sg(F), one has the well-known Casselman-Shalika formula. Let us state this precisely since
it is slightly more subtle when the group Gg is not split. To the best of our knowledge,
the first discussion about the interpretation of the Casselman-Shalika formula in terms of
an appropriate dual group in non-split cases is due to Tamir [T]. Our description below is
somewhat cleaner than that in [T], since the relative root system involved here is reduced.
The description in [T] works for all relative root systems; indeed the case needed in [T] is
that of the quasi-split unitary groups whose relative root system is of type BC,.

For t € Sp(F), Wy, 4(t - ¢) is zero unless [t;[ < 1 for all entries ¢; of ¢, in which case it

depends only on the valuation of the t;’s. If we write ¢; = wh with k; > 0, then we denote
the corresponding torus element by

t= t(k) = t(k‘o, kl, k‘Q, kg) or t(ko, k‘l, kigg) or t(ko, k‘)
in the three respective cases.

Now we need to examine the notion of Satake parameter for a general quasi-split group
with reduced relative root system. The Satake parameter ¢, which was used in the definition
of the Spin L-function is a G},-conjugacy class in the quotient G x Gal(F,,/F) of the L-
group “Gp, where F,, is the maximal unramified extension of F in F. In fact, ¢, lies in the
coset G}, - Frob of the Frobenius element Frob. Thus we may write

tr = (sx, Frob) € Gf; x Gal(Fy, /F)
16



where now s is well-defined up to Frob-conjugacy as an element of G)%. Under Frob-
conjugation, we may assume further that

sz € Hp = (Gyy) @ Fur/E)
in which case s is well-defined up to conjugacy in H jE Note that

Sping(C), if B = F3;
Hp =< Spin;(C), if E=F x K;
G2(C), if E' is a field.

However, the Casselman-Shalika formula is not interpreted in terms of the element ¢, or
the element s;. Rather, the group G contains a connected F-split subgroup Hg whose
root system is equal to the relative root system of G and whose maximal split torus is the
maximal F-split subtorus Sg of Tg. In our case,

Gp, if E = F3,
HE: 507, ifE:FXK;
Go, if ' is a field,
so that its dual group is
Sping(C), if E = F3;
HyY = Sp(C), if E=F x K;
G2(C), if E is a field.

From the diagram of inclusions
Sp —— Hpg

]

we obtain on the dual side:

TJ\E‘/—>GE

Sp —— Hp
where the horizontal arrows are inclusions but (* is surjective. Indeed, ¢* restricts to an
isogeny
(Tg/)Gal(Fm/F) _ 5%

As explained by Borel in [Bo, §6], the map ¢* induces a bijection
{semisimple Frob-conjugacy classes in G} « {semisimple conjugacy classes in H 2}
We set
Sz ="(sx).
It is the element s, which intervenes in the Casselman-Shalika formula.

More precisely, the element ¢ = t(k) corresponds to an element of X, (Sg) = X*(S)) in
the dominant chamber and thus gives rise to an irreducible representation Vi of H}. The
Casselman-Shalika formula says:

17



Proposition 5.2.1. With the notations introduced above,
O, (4(k)) ™2 Wy (t(k) - ) = Tr (52| Vi).
In our unramified computations in the following sections, we shall state more precisely

what the representation V}, is for each given £.

5.3. The map *. For the purpose of calculation, we need to understand the map ¢* more
explicitly. When E = I3, there is nothing to do, since ¢ is the identity map and 5; = s,. We
examine the other two cases in turn. Since

3

X (T§) = X*(Ip) = P 2ai,
i=0

the element s, € T} is of the form

3
Sp = H ol ().
i=0
- - . s vy Gal (Fur/F) _ :
Indeed, if s, is assumed to lie in (T%) , then we further have ty = t3 (respectively,

t1 =ty =t3) when F = F x K (respectively when F is a field). On the other hand,

X*(Tr)/(cy — o), if E=F x K;

X.(Sp) = X*(SE) =
(SE) (Se) {X*(TE)/<O/1 — oy — ), if E is a field.

If we let @, denote the image of o in the quotient lattice above, then a basis of X, (S)) is

(@) @@}, it E=F x K;
{ap,a}, if E is a field.

Now we have:

e when £ = F x K,
L ao(to) - (t1) - ab(ta) - a(ts) = T (to) - @ (t1) - @y (tats)
e when F is a field,
rag(to) - @ (tr) - dh(t2) - a(ts) = @o(to) - @) (titats)

5.4. Formula for L,,(t- f). On the other hand, Prop. 3.4.1 gives an explicit formula for
Ly, (t- f). For ease of reference, we restate it here:

e when E = F3,
Lo (t(ko, krs ka, ka) - f) = [Bo(t)] - (ord(ag(t)) + 1) = g~ Frotkithatha) (g 4 1),
e when ' = F x K,
Ly (Ko, K1, Kzs) - f) = (—1) - GRob2kaa) g (g 1),
e when F is a field,
Ly (t(ko, as) - f) = g~ PFot3120) - ey (kg + 1).

18



5.5. Formula for &D;(t) Finally, we need a formula for @\S(t) We first note the following
simple lemma, whose proof we leave to the reader.

Lemma 5.5.1. Suppose that ® is the unramified vector in Indgl‘gxs (unnormalized induc-
tion), where

xs(@’ () = [t
and « is the positive root of SLo. Then

e ((s)
/ P@=ar)) -0 dr = N (ord(D) T 1)s)

With this lemma, we can calculate &’\S(t) We shall do so assuming that E = I3 is split.
The other cases are similarly handled. Let

3
t =] wit).
=0

3
:/ Dyt - (H T_q, (ti_lri)) “p(ry + ro + 13) dry draodrs
3

v =1

3
:‘tl’Sl+1‘t2‘82+1‘t3‘83+1’t0‘81+82+83+3 . /3 (I)S(H x—ai(t;lri)) . ¢(Tl 17y —|—’I”3) dry drs drs
F, i=1

v

:|t1|51+2|t2|52+2|t3|53+2|t0|51+52+53+3-

3
: /F3 Oy([ [ 7—a:(re)) - (tir) - Pltara) - W(tsrs) dry dry drs
i=1

v

Now, observing that
D (ay(t)) = [t|'T52T3751  and so on,

and appealing to Lemma 5.5.1, we obtain the following proposition.

Proposition 5.5.2. (i) When E = F3,

q)S(t) =
]tl\31+2]t2\32+2]t3]53+2\t0]51+52+53+3-

((s2 + 83 — 51) .
C(sg 4+ s3—s1+1)-C((ord(t1) + 1)(s2 + s3 — s1))
((s3+ 51— s2) '
C(sg+s1—s2+1)-C((ord(ta) + 1)(s3 + s1 — s2))
C(s1+ 52 — 53)
C(Sl + 89 — 83 + 1) . C((O’I”d(tg) + 1)(81 + 89 — 83)) '

(ii) When E = F x K,



|t1 |S1+2 |t23|2823+4|t0|31+2823+3'

((2s23 — 51) '
C(2823 — 81 + 1) . C((O’I“d(tl) + 1)(2823 — 81))

Ck(s1)
Cre(s1+1) - Cxe((ord(tas) +1)s1)

(iii) When E is a field,

—~ 3546|; |35+3 C(5)
Dy(t) = [t123]"" " [to] Ce(s+1)-Ce((ord(tias) + 1)s)

We are now ready to begin the unramified computation, Here is the main local theorem
to be proved:

Theorem 5.5.3. Set

Z*(va(bafv 8) - éE(§+l) ' C(’§D : Z((P,(I’,f, 8)'

Then
L(S T VES in)
Z* @7®7f75 = — -
( ) Ce(2s)
Before diving into the computation, we would like to point out the three main steps in the
computation. Hopefully this will make the structure of the computations more transparent.

(i) (Separation of Variables). Both sides of the identities are functions in the vector s,
but on the RHS, one clearly has a separation of variables. Thus, our first step is to
prove that the LHS also has separation of variables. This is the most complicated
step and uses the results of [BKW] regarding the decomposition of tensor products

of representations of classical groups. Obviously, this step is not necessary if E is a
field.

(ii) (Replacing s, by Sr). Observe that the LHS is expressed in terms of 5; via the
Casselman-Shalika formula, but the RHS is in terms of s;. Thus, the second step is
to interpret the RHS in terms of 5;. Obviously, this step is not necessary if £ = F3.

(iii) (Comparison) The final step is the comparision of the two sides. This also requires
knowledge of decomposition of the tensor product of two representations. However,
one of the representations will be fairly small, and so one can appeal to a more direct
technique, such as Brauer’s method, as opposed to using [BKW].

6. Unramified Computation: FE a field.

As might be expected, once the subtleties of non-split groups are understood, the compu-
tation there turns out to be simpler than the split case. Thus we begin with the case when
E is a field.
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6.1. Zeta integral side. Recall that we have the two versions of Satake parameter:

Sp € H}; = GQ((C) and 35; € H% = GQ(C)

If we set
r = q—3s’
then the LHS of Theorem 5.5.3 is equal to:
1— +1
-1 k: k
L—a)™" ) es(ko+1) - Tr(sﬂ]VkO k) ot ﬁ

ko,k

(1—x)" 2263 (ko +1) - Tr(5ﬂ|Vk k:) glthotk,
ko,k 1=0

Here, Vi, x is the irreducible representation of H), with highest weight (ko, k), where (1,0)
stands for the fundamental weight attached to the 7-dim representation of H); and (0,1) that
of the adjoint representation.

6.2. L-function side. On the other hand, to explicate the other side of the main theorem,
which involves the Spin L-function, we consider the restriction of Vg gpin to the subgroup
Hl;, x Gal(F/F). This decomposes as:

H’ _
Vespin = (V" @ 1)K (1@ xp ® x5

where V1 o 1is the 7-dimensional fundamental representation of Hy = Ga(C). Since t; =
(sﬁ,Frob) with s, € HY;, we see that

det(1 — "t Vigspin) = (1 — ¢) - det(1 — g%, [V/'tF).
Thus the RHS of the identity in Theorem 5.5.3 is equal to

L(s,m, Vg spin)
Ce(2s) - ((3s)
=(1-¢7%) - (1—¢~%) 7" det(1 — ¢~ >3V} 0 #)!

=(1—xz)7'-(1-2? -Zx"-Tr 7T]Sym (Vl,o )
=(1—x)" ZTr W\Vno

In the last equality above, we have used the fact that
Sym™ (Vi) = Sym™ (Vi) @ Vio.
For this fact, see the table on [Br, Pg. 13].

6.3. Comparison. We can now attempt to compare the two sides. Unfortunately, one side
of the identity is expressed in terms of 5; while the other in terms of s;. Thus, we need to
express the trace of s3 on V;IOIE in terms of the trace of 5; on some representation of H .
Using the explicit description of the map ¢* in (5.3) and the Weyl character formula, we

obtain:
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Lemma 6.3.1.

If we cancel the factor (1 — 2)~! from both sides of the desired identity and compare the
coefficient of ", we see that to complete the proof of Theorem 5.5.3 in this case, we need to
prove:

Proposition 6.3.2.

TT(EH/Q n) Z 5=
—— 5 = 63(k‘0 + 1) : TT(SW|Vk0,k)'
Tr(5x|V20) k-+ko<n<2k-+ko

The rest of this section is devoted to the proof of this proposition.

6.4. Reduction to SLs. The long root subgroups of G2(C) generate a subgroup of Gs
isomorphic to SL3(C), sharing the same maximal torus S}Y. The roots {8,3a + 3} of G
form a system of simple roots for S L3, whose fundamental weights are

w1 = 2o+ 3
CUQ:OZ+ﬁ.

We write W, for the irreducible representation of SL3(C) with highest weight awi + bwo
and let x4 be its character. Henceforth, we shall use the coordinates given by the weights
w1y and wo of SLg.

Using the Weyl character formula, one checks that

TT(5|Wa+b+1,b) - TT(5|Wb,a+b+1)
TT(S|W1,0) - T’I”(8|W071) '

Tr(s|Vap) =

Thus the identity of Prop. 6.3.2 is:

(6.4.1) (Xn+3,n — Xn.n+3) (X1,0 — X0,1)

= Z e3(ko + 1) - (Xktko+1,6 — Xiehrko+1) | (X3,0 — X0,3) -
k+ko<n<2k+ko

We use Brauer’s method, which for these purposes is conveniently stated as follows. Let &
be any virtual character of SL3(C), given by

E(t) =Y m)t,

with the sum being over the weight lattice, m(v) € Z for each v, and m(v) = 0 for almost all
v. Note also that, since x is a virtual character, m(wv) = m(v) for any weight v and any w
in the Weyl group. For \ any weight, let

A = Y sgn(w)t™,

UJEWSLS
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and let x» = Ax;,/A,. Then

(6.4.2) =Y mV)xasw-

Observe that x,, so defined, is equal to the character of the irreducible representation with
highest weight A when A is dominant, and is zero when A 4 p has a stabilizer in the Weyl
group, and that x) + x, = 0 whenever A + p and p + p are related by a simple reflection.

We apply (6.4.2) to both sides of (6.4.1), and summarize the answer by a picture of the
weight lattice where each node 7 is labeled with the multiplicity of the corresponding y. As
it turns out all multiplicities are 0,1 or -1, and 0’s are omitted. The application to the left
hand side, with § = x1,0 — X0,1, is straightforward, and for n > 1 yields two hexagons of side
1, centered at (n+3,n) and (n,n+ 3) (here, and throughout, weights are expressed in terms
of the basis of fundamental weights) with alternating signs. See Figure 1.

+ - - +
[ ] [ ] [ ] [ ]

. (n,n+3) -l.- -l.- (n+3,n) .

+ - - +
[ ] [ ] [ ] [ ]

FIGURE 1. the LHS of (6.4.1).

Next we apply (6.4.2) to the right hand side of (6.4.1) with & = x3,0—X0,3- The representa-
tions W3 g and W) 3 have nine weights each, but six of them are common to both, and cancel,
leaving a hexagon with sides of length three, and signs alternating. As may be expected, the
details are a bit different for the first few values of n. We give an argument which works
for n > 6. The reader may find it an enjoyable diversion to work out the remaining cases.
Alternatively, one could use the computer package LiFE to verify the cases n < 6.

Now, we note that

Z e3(ko + 1) - (Xk+ko+1,k — Xk ktho+1)

k+ko<n<2k+ko
= > es(a —b)Xab — > e3(b — a)Xap
0<b<a<n+1<a+b 0<a<b<n+1<a+b

= Y ala—byas

0<a,b<n+1<a-+b
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FIGURE 2

The sum is now over the lattice points contained in the triangle with vertices (n+1,0), (0,n+1)
and (n+ 1,n+ 1). Let us denote this triangle by Ap41.

We now multiply the above sum by &, using (6.4.2) on each term. It’s clear that x, appears
in the product with nonzero multiplicity only if 7 lies in one of the six translates of A,,+1 by
the weights v such that m(v) # 0. Setting

e3(1) = es(a—0b) for 7 = (a,b),

observe that

e3(1) = e3(t +v) for each such v.
Figure 2 shows A,,+1, along with its six translates, visualized as pointing straight up. With
things drawn this way, x(7) is constant on vertical lines, and p points straight up. The
multiplicity with which x; = X, appears in the product is

e3(T) Z m(v).
ViT—VEAL L1

Now, we must analyze the cancellation coming from the overlap of the six translates of this
triangle.

This is displayed in Figure 3: we first see how many of the translates with m(v) = 1 each
point lies in, and then how many of the ones with m(rv) = —1. Subtracting, we see that the
only weights which contribute lie in six rhombi with side 2, one on each side of each vertex
of our triangle. (The precise picture is only valid for n at least 6 but the reader will find that
this description holds for n as small as 2. )

We consider the two rhombi near the vertex (n+1,n+1). As we see in Figure 4, the points
on the long diagonals of our two rhombi do not contribute because e3(a — b) is zero on these
lines. The remaining points give precisely the two hexagons of side 1 we saw before, and the
signs match.

Next we turn to the four rhombi at the vertices (n + 1,0) and (0,n 4 1). In Figure 5 one
of these rhombi is displayed in grey, while its translate by p is shown in black. We see that,
24



FIGURE 3. Positive and negative translates of A, cancel almost completely.

1-101-101-101-1

+ - - +
[ ] [ ] [ ] [ ]

. (n,n+3) i— i— (n+3,n) .

+ - - +
[ [ [ [

FIGURE 4. grey numbers indicate €3; black signs indicate m(v); cf Fig. 1.

upon translation by p, the three points on the short diagonal are taken to points which are
stabilized by an elementary reflection, so their contributions vanish. The remaining six points
are related by this elementary reflection, so their contributions cancel. This last statement
relies on the fact that the values of e3(a — b) at corresponding points are equal, which may
also be observed from Figure 5.

A similar consideration shows the desired vanishing for the other 3 rhombi. Proposition
6.3.2 is proved.

7. Unramified Computation: £ = F x K

Now we come to the case when E = F' x K. In this case, the element ¢ of Sg(F) is of the
form

t = gy (to) i (t1) (o) (t23) = iy (0 iy (@) (i) ("2,
25



FIGURE 5

We recall the Casselman-Shalika formula:
—1/2 i+ HY
5B'E (t) / Wvéﬂﬂ(t ) = TT(S”’Vklioyk%)'
Vv
Here, Vg‘io ks denotes the irreducible representation of HY. = Spg(C) with highest weight
kiv1 + kova + kosvs where v, 19, v3 are the fundamental weights of Spg(C) numbered such

that v1 corresponds to the standard representation.
7.1. Zeta integral side. Let z = ¢~*' and y = ¢~ 223, Then the LHS of Theorem 5.5.3 is:

1 _ ($_1y)k1+1 1 _ x?(k:gg-i—l) . Sp
’ 2 TT(S”’VliSO,k%)'

o0
(L—ay)™t- 3 ahothyhothanc, (k4 1) (~1)

| _
o 1—xty 1—=z

Next we have the following crucial lemma, which gives a separation of variables in the
above sum:

Lemma 7.1.1. The LHS of Theorem 5.5.3 is equal to:

— 1S m —°
<Z<—x>m<sﬂ|vk,g,%>> 2 YD TV

k=0 £,m=0

So as not to disrupt the flow of the argument, we defer the proof of the lemma to the end
of the section.

7.2. L-function side. Now we consider the L-function side of the main theorem, which is a
priori expressed in terms of t; € LG@p. We know that VE spin is reducible as a representation
of “Gg: it decomposes as:

VE,Spin = Vul @(Vm ©® VN3)‘
As in the previous section, we consider the restriction of Vg spin to the subgroup

Hp x Gal(F/F) = Spiny(C) x Gal(F/F).
It is not difficult to see that:
~Y H/
Vi = (Vi gl B xk) @(1 X1),

where Vﬁfo is the 7-dimensional standard representation of Spinz, and

Iav) H,
Vie ® Vi = VO,O,EI X1 xK),
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where Vj f is the 8-dimensional Spin representation of Spiny. Thus, we obtain:

1 1 1
(L= 471)  det(l + g 18, [VET7)  det(l — g~ 25252 |VSET7)

L(§7 , VE,Spin) =

Next we need to express the above in terms of 5, rather than s,;. For this, we need to
know explicitly the map

L Th — S
The maximal torus T} of Sping(C) is conveniently parametrized by five complex variables

(u,t1,to,t3,t4) subject to the relation titotsty = u?. With this parametrization, the map to
the maximal torus S}, of Sps(C) is simply

(w,ty,ta,t3,t4) — (t1,12,13).
From this, it is not hard to see that
det(1+q % sV ™) = (14 ¢7") - det(1 + ¢ *'5x|V; 48),

where Vfg ¢ is the 6-dimensional standard representation of Spg(C). Thus, we have:

1 1
(L+q*) det(1+ q—15,| Vite™)

S _
¢(2s1) ZTr Sl SymFVEs) - (~1)k - R
k=0

=((251) ZTT (SelVicho) - (1) g7,

where for the last equality, we have used the well-known fact that

Sym” (Vlséo%) = ng,ﬁo

n,

which can be found in the table on [Br, Pg. 13].

On the other hand, by [Br, Pg. 13] again, we see that
det(1 = 2 VR = G 2sn) S Tr 2V,
n=0

where VOS(I)’ "7 denotes the irreducible representation of Spin; with highest weight equal to n

times the third fundamental weight. We claim:

Lemma 7.2.1.

TV = TV

Proof. Let us view s = (u,ty,te,t3,t4) as above. The fact that s, actually lies in the
maximal torus of H}, = Spin;(C) implies that ¢4 = 1. The coordinates of s2 are then
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(t1tats, t2,t3,43,1). Let s(t) =t —t~1. Then the Weyl character formula can be given quite
nicely in terms of determinants in this case:

ST0) S sl
ST s s()
. s thrl s thrl s thrl
S(té) S(tg) S(tg)
S(t%) S(t%) S(t:{,)
s(ty) s(tz) s(t3)
A similar formula holds for the characters of Spg(C):
S(tlf1+k2+k3+3) 8(t12€1+k2+k3+3) s(tl§1+k2+k3+3)
sferiass) ey sy
s(t7*7) s(ty”™) 3(t33 )

— S
TT(S” ’ ka& k3 ) =

So we see that
Tr(s2|Votm") =

as desired. O

7.3. Comparison. Summarizing, we have shown that:

L(5177T7V1)_ = —:Ck (3 Spe

and

0 _ S
L(8237 Ue) ‘/;Lz @ Vu3) Z yn . TT(SW"/Llpi%)
Cr (2523) .

Thus the RHS of the identity in Theorem 5.5.3 is:

> s ) (= TGVt
<Z(—x)kTr(sﬂ\Vk?070)> : (;)y m) :

k=0
Comparing this with Lemma 7.1.1, we see that it remains to prove:

Proposition 7.3.1.

Tr(s|V:oP n
( ‘ l,l,n) _ Z(_l)Z . TT(S‘VE%D,%—Z)'

S
Tr(slVite) i

Proof. This can be proved using Brauer’s method, as in Prop. 6.3.2, but is harder to explain
in this case since we will be working in 3-dimensional space. We give a proof using the
expression of the characters in determinantal form.
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The identity to be proven can be restated as

sgtig sgt% sgtgg
n n n s(t s(t s(t
ST i A s e\ G I IR
m=0 s(t}nJrl) g(t%”rl) S(t%”rl) S(t:{)) S(t%) S(tg)
! ? ’ s(t7) s(t3) s(t3)

s(ti) s(tz) s(t3)

S(t?+5) S(thrS) S(tn+5
= [s(E79) st (et
S(E) syt s

We first check that

s(ty) s(t5) s(t3)
sgti’; sgt% sgt%
s(ty) s(t3) sli3 —1  —Typ=1  g=Tyq—=1 | 4—1
Alt) = = (t; +t t; 4+t to, "+t 1+ t1te)(1 4+ t1t3)(1 + tats).
() S(t?) S(t%) S(t%) (1 2 )( 1 3 )( 2 3 )( )( )( )
() s(id) s(t3)
s(ty) s(tz) s(t3)
Next we note that
s(t?"'?’) s(tg+3) s(tg"'?’) €1 tﬁl(n+3) 6275;2(n+3) 63t;):a(n+3)
(7.3.2) s(ﬂlm-j) s(tgﬂ_i) S(t?+i) — Z eltil(m-f—?) 6275;2(7%4—2) 63t§3(m+2) )
ST sty st ey et mHD) pelmal) el

Now expand each of these determinants by minors on the first row, we see that this is equal
to

€i+1(m+2) €itr2(m+2)
Z Z e -(n+3) €z+1thH €i+2 tzig
€ tel-‘rl(m"’l) € t€z+2(m+1)
ec{+1}34€Z/3Z i+1bi41 i+2Yi42
2€i+1 2€; 42
e «(n+3) €i+1ti+1 €Z+2tz+2 tei+1mtei+2m
. t€i+1 t€i+2 i+1 142
Citllipr  CGit2biq2

ee{£1}3 ZGZ/3Z

Now summing over m, we see that

n s st sty
ST SR s ) st
m=0 s(t7H) sty st
1— (_ €z+1t51+2)n+1
+3 1 3 7 3 3 +1 +2
Z Z (_1)71 t€1€2€3 - tgn )es tf:llt;:; : (t;:—ll - th:—Qg) ' 1+ ;61+1;ez+2
ee{+1}3i€Z/3Z i+1 Y42

(7.3.3)

If we let T; = t?, then this last expression is a linear combination 7" and 77" T5*T5* with co-
efficients given by rational functions of ¢;’s essentially independent of n (the only dependence
on n being the factor (—1)").
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Similarly, we expand the RHS of the desired identity in a manner analogous to (7.3.2). It

is equal to:
5 5 5
th t262 t363
Z 616263Tf1T2€2T3€3 . t?q t;q t§€3 .
ec{+1)3 AR - u
Treat both sides of the desired identity as polynomials in T71,7%,73,7T] I,TQ_I,T 3 ! with
coefficients in C(t1,t2,t3). Then we need to show:

- the coefficient of T/ on the LHS vanishes. By symmetry, it suffices to show

Z €1€2tilt§2 ) (til — tgz) -0

€1 41€2 °
ee{£1}2 1+ ity
This is immediately verifiable by hand.

- the coefficient of T7*T52T5* on both sides agree. By symmetry again, it suffices to
verify:

2t 12
(t:{’t%tg,(h—%) tgt?at%(t:s—tl)+t§t%t%(t1—t2)) Y33

CA®) =8t ).
1+ tots 1+ i3t L+ tits ©) PRI
1 2 3

Again, this is easily verified by hand.

The proposition is proved.

7.4. Proof of Lemma 7.1.1. Finally, we need to give the proof of Lemma 7.1.1.

For this, we use a formula which goes back to Murnaghan and Littlewood, and has been
given a nice interpretation in terms of “universal characters” in [Ko] and [K-T]. This is
discussed in greater detail in the appendix. We state it in the notation of the appendix. We
associate the highest weight of V,i{o ,527 ks with the partition (k1 + ko + k3, k2 + k3, k3), and for
A a partition with at most 3 parts, let xgps(A) denote the character of the representation
with the corresponding highest weight. We consider also finite formal sums of partitions, and
extend xgp, to these by Z-linearity.

Thus, the right hand side of the identity is

(7.4.1) (1 —zy) <Z(—$)kXSpe(’f)> D o VS N ()

k=0 0<p2<p1

On the set of all partitions, we define operations - and / by
A= Z LR v
v

and
A p= Z LRfL,ﬂ/,

where the Littlewood-Richardson coefficient LR/);,,, counts the number of ways to add the

boxes that make up the Young diagram of p to the diagram of v in order to obtain that of
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A subject to certain constraints (see [F-H, p.455-56]), and so each of these sums is actually
finite.

The formula may be stated as

(7.4.2) Xspa(N)Xspa (1) = Tspe | D xsp((A/Q) - (/) |
¢

where xgp(v) is a certain “universal character,” which is defined for all partitions v (while
Xsps is defined only for those with < 3 parts) and extended to finite formal sums by Z-
linearity, and mg,, is a projection from the ring of universal characters to that of characters
of Spg. In our case, by the interpretation of the Littlewood-Richardson coefficients in terms
of adding boxes to the Young diagram, we get

X sps (K)X Spe (Mlug) = Z T5ps (Xsp(V)),

where the sum is over partitions v and x satisfying
O=rs<vy<rK3<v3<pup=ry<vy <K <,
and
1+ p2+ v+ v+ s+ vg+vs — 261 — kg = k.
For v having 3 or fewer parts, we have
Tsps (XSp(V)) = Xsps (V)-

For v having exactly 4 parts, it is zero. So we find that (7.4.1) is equal to
(7.4.3)

v3 v Vi o0
(1—:cy) Z XSPG(V) Z Z Z Z x#l‘H’l‘H’Q‘H’B*Q’il*Q’QS(_1)M2+V1+V2+V3ylll.

0<v3<vo<iy k3=0 p2=v3 K1=V2 U1=K1
Now,
o0
> ()t = (zy)™ (1 —ay)
H1=RK1
and

%)
Do (== (=1 e — vy + 1),
p2=vs
Plugging these in, we obtain

V3 V1
(7.44) S xsmes - 1) 3 3 ety i,
0<wv3<ro<ui Kk3=0K1=V2

Summing over 1 yields
v 1— (.’E_ly)yl_y2+1

(z71y)

1—a2 1y
We then write v3 — 2k3 = —v3 + 2r3, where r3 = v3 — k3, and sum 73 from 0 to v3 obtaining
1 — xQ(V3+1)
1— 22

We now have

Z XSps(V)€2(V2 — V3 + 1)x”1_”3yV2(_1)V1—u2

0<v3<ra<in

1 — p2(ws+1) 1 (z—Ly)rr—ratl

1— a2 1—azly
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Translating this back to the other notation via the correspondence

S
XSpr(Vl’ V27 VS) = Tr( |VI/1p6V2,V2 1/3,V3)

and plugging in S, we obtain the desired result. Lemma 7.1.1 is proved.

8. Unramified Computation: E = F3

Finally, we come to the split case. This case is the most complicated of the three, because
it involves decomposing the tensor product of 3 representations of Sping(C).

8.1. The identity. Let us set
z;=q % fori=1,2or 3.

Then the LHS of the identity in Theorem 5.5.3 is:

0
k +k1, . ko+ka, ko+k
(1 — 1‘121?2.’/63 E ko =+ 1 ng,lﬁ,kz k3T 0Tl 0 2z 30 3%

1— (:cl_lacgscg)k1+1 1-— (562_1$1563)k2+1 1-— (:cglsclsw)k?’+1

1 — (z7 wox3) 1 — (x5 wy23) 1 — (x5 w122)

On the other hand, the RHS of the identity is:

Using the fact that (cf. [Br, Pg. 13])
Sym" (Vii,) = Sym"=*(Vyi,) ® Vo,

this is equal to

o0
0y by b
D Vo,00 @ Vo000 ® Vo,0,0,6,71 75205
£;=0

Thus the identity we wish to prove is:

0 by £
Z%el,oo®%oz2,o®%ooz3$19622 >
;=0
1 o0
k: +k1 ko-l—kz ko+k3
= ko + 1)V 0 x
—1_ 17273 2 Z ko,k1,kz2,k3 L 3

1-— (xl_lxgxg)lirl 1-— (x;lxlxg)kQJrl 1-— (x§1$1x2)k3+1

1 — (z7 wox3) 1 — (x5 wy23) 1 — (x5 w120)
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8.2. Decomposition of tensor products. We make use of the fact (cf [GH, Lemma 3.3])
that

min(¢2,03)

V0,0,62,0 @ V0,0,0,65 = @ VO, ko —k 03—k
k=0

to rewrite the identity as
[e.e]
l, mi+ma, mi+m
E , V0,6,0,0 ® Vo,my me,ms T1%9 ' 2'763 L
£,m;=0

1
1 — zyzox
10223 £

o0

ko+k1,.ko+ka, kotk

(ko + 1)V/€0J€1,k27/€3x10 Lyt gt
i=0

-1 k1+1 -1 ko+1 -1 k3+1

1— (2] wow3)™ T 1 — (25 @qz3)™2 T 1 — (25 wy@g)Rst

(8.2.1) - - -
1— (2] lxgxg) 1— (x5 lxlxg) 1— (x5 lxlxg)

We will be using a method of evaluating tensor products which is due to Black, King,
and Wybourne [B-K-W]. They make use of an identification of certain weights of Sping
with partitions. Specifically, we identify the highest weight of Vi 1, r, x, With the quadruple
(ko + k1 + ]”LQIQ, ko + kQ;’”, kQJQFk?’, k3§k2) which, if k3 — ko is even and non-negative, is then
identified with a partition by dropping any terminal zeros. We could, of course, have made
such an identification in five other ways, and picking this one in particular privileges the eight
dimensional representation Vj 10,0 over the other two, and fixes one particular identification
of the representation ring of SOg with a subring of that of Sping. For y a dominant weight,
let Xsping (1) denote the character of the representation with highest weight p. If 11 consists
of integers, then this representation factors through V4 10,0 and we may also write xs0,-

Let ¢ denote the involution of Sping which reverses the last two fundamental weights.
Then the set of dominant weights is the union of the sets {, u+ (3)%, u, (4 (3)*)'}, where
u ranges over partitions. The union is disjoint, but if ;4 has fewer than 4 parts, then pu = p*.
Hence the character of the LHS of (8.2.1) is given by

> xs0s (0)af (xsou ()t a4 s, (u )y ik
L

1 _ 1 1 1 -
(8.2.2) XSping(N+(§)4)xgl u4x§tl+u4+ +Xspm8((,u+(5)4)L)x§“+u4+ x/étl H4>

— S xson(Dxsos )k zars,
Z:N:N4:0

where ¢ is summed over Z>( and p is summed over partitions satisfying po = pas.

We describe the method of computing the necessary products of characters in brief here,
and more completely in the appendix. First, the computation of the product of characters
of Sping is reduced to one of characters of GLy4, which are indexed by pairs of partitions
having at most four total parts. Such a pair of partitions also gives a character of GL,, for
each n > 4. Each character is expressed as a determinant involving elementary symmetric
polynomials and an identity in these determinantal expressions gives the product for all n
sufficiently large or, as we prefer, in a suitably defined projective limit. We thus obtain a
finite sum of “universal characters” xqr(7;v). (We follow [B-K-W] in writing (7;v), rather
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than (7,7)). We then must analyze the contribution of each of these universal characters to
the original product under projection.

We now write down a formula for the sum of universal characters that must be considered
(cf. formula (11.4.4) in the appendix). Since one of our highest weights is the one-part
partition ¢, the formula is a bit simpler than in the general case. It is:

(8.2.3) > xar (@ (/(n- Q) - w))-
UES

Here ¢ and n are summed over all partitions, but we only get contributions when each is a
single integer and their sum does not exceed ¢. Making further use of the interpretation of
the Littlewood-Richardson coefficients in terms of adding boxes to the Young diagram, we

obtain
Z XGL(EI(,UW V,R, g)a V)7

VK
where the sum is over v and s partitions satisfying
Vs S Kg S 4,V S k3 S V3 S pg = Kp = g < Vg < K S,
and subject to the condition that
(v, ki, 0) = €+ 261 + 2K3 + 24 — j1] — jlg — V] — Vg — U3 — Vg — Vs

is non-negative. The precise manner in which a term ygr(¢';v) contributes to the product
depends on the precise relationship between the highest weight of our second representation
and the partition y. This is the topic of the next subsection. For now, we prove a formula for

(8.2.4) Do aty Tty (O (p v s, i),
w,l VK
where the sum in v and k is as above. Let
D(nz,ng;x,z) = (1—27") (1 — (z271)™) — (22)" (1 — 2?™)(1 — (zz~)").

Then we prove

Proposition 8.2.5. The sum (8.2.4) is equal to

F(z,y,2)7" Y xar(lsv)a c(v; 2, y, 2)

Vv
with
F(z,y,2) = (1—ay)(1 -2 'y)(1 —z2)(1 — 2z~ ") (1 - 2?)

and
c(viz,y,z) = " sy 2 (1) — pg +1)(1 — (x_ly)”l_”2+1)D(1/3 —vy+ vy —vs+ 12, 2).
Proof. We first bring the sum over /¢ inside, and get

> xan@iv)at >yt P, v an),

vl “w
where

P(Ma v; .Cl?) — Z x#l+M4+I/1+I/2+V3+1/4+1/572/{172%372%4'
K

Observe that

P(p,viz) = Pi(p1,v1, v @) Po(pa, v3, va, V55 )
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where
min(g1,v1)

Pl(HlthV%x) — E :CM1+V1+V2*2K1

K1=V3
and
min(yeq,v4)
Pg(,u4, V3, Vs, Us; .Cl?) _ Z Z phatvstvatvs—2ra—2k3
K4=V5  kz=max(u4,Vs)
Now, let
0o vy 0o
Q1(V1,V2;$,y) _ Z P1(,u1,V1,V2;x)y“1 _ Z Z xu1+'/2+u172myu1’
H1=V2 R1=V2 H1=K1
and let
Q (1/3,1/4,V5,$ Z Z P)2 /L4,V3,l/4,l/57 Z/M _ Z Z Z xu4+V3+1/4+1/5 2K4— 2/@3
Ha=V5 K4=V5 K3=V4 4=K4

Then we have

c(viw,y,2) = (2 —v3 + 1)Q1(v1, vo; 7, y)Q2(v3, va, V53 1, 2).

The (v2 — 3+ 1) comes because in original sum we had a free variable (say, p3) ranging from
v3 to ve. The @Q; can be evaluated explicitly:

Qi(v1, v, y) = (1 —ay) (1 — 2 ty) " tay2 (1 — (7~ ty) 2ty
and
Q2(v3,vg,v5;2,2) = (1 —22) 1 (1 — 227 )TN — 2?)1prag—vetes
((1 o .21?2(V3_V4+1))(1 o (xz—l)y4—u5+1) _ (.Q?Z)VB_V4+1(1 o x2(y4—]/5+1))(1 _ (.Q?z_l)y3_y4+1)) .

The result follows. O

In the next subsection, we describe how each yr (¢';v) gives a contribution to the product

1
X505 (O)Xspins (€), with & = (uu+ ") or (u+2")" and e =0 or .

Just as the precise contribution depends on ¢ and the presence or absence of ¢, so too does
the polynomial which will accompany it in (8.2.2). As may be seen from (8.2.2), and the fact
that F(z,y,2) = F(x,y,2"1), this will be
C(V;IEl,IIJQ.’Eg,CC;l.’Eg) for pu;
-1
, . fO L.

F(x1,m923, 2005 ) Lol x elv; @1, 223, xﬂil) LR 1
z3c(v; a1, waxs, T; 3) for p+ (3);
$2C(V;9317$2933,902$§1) for (p+ (%))L'

We also record for later use the analogous statement for the smaller sum being subtracted at
the end of (8.2.2). The proof is easily obtained by adapting that of the previous proposition:

Lemma 8.2.6. We have

Z 93{(932333)”1XGL(5'(M7 v,k €);v) = ZXGL(Z/; V)xlfcl(l/;xhxw«“?,)
L,p:p4=0 v
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where v can have at most four parts, and

(v — v + D)a¥ ™ (wg5)"2 (1 — (ay taaws) —2 1) (1 — 270 747Y)

(1 — xyz0m3)(1 — xflxgscg)(l — x%)

d(vyzy, zomws) =

8.3. From xqgr’s to Xsping’s. Now, we briefly describe the contribution of xar(?';v) to
X505 (€)X Sping (+¢€*). The answer is always zero or +X Sping (€) for some weight £. The corre-
sponding contribution to xsos(¢)Xsping (1t + €*)*) would then be zero or Fxsping(€'). First,
there is a projection from universal characters to characters of GL4 which sends xgr(7;v)
either to 0 or to £xar,(7°;v°) for a pair of partitions (7°;v°) with at most four total parts.
In our case, 7 = £/, and v can have at most five parts. Among such pairs, the only ones
which have more than four total parts, (recall that ¢/ = 0 gives the empty partition having
no parts) and are not killed are those of the form (1;01), where o1 is the partition obtained
by appending a 1 to the partition o having exactly four parts. The projection of xgr(1;01)
is —xgr,(0; ). If the total number of parts is already less than four, then yqr(¢'; v) projects

to xar, (V5 v).

The parametrization of representations by pairs of partitions is such that ygr,(#;v) is
the character of the representation whose highest weight w is v if ¢/ = 0 and (v1, v9,v3, —¢')
otherwise. (Here we append terminal zeros to v if it has fewer than 3 parts.) Now, we must
add €* to w. The contribution to xs0s (€)X spins (1t + &%) is as follows:

Xsping(v + 1), if £/ =0
(8.3.1) 0, if w + * + p has a nontrivial stabilizer in the Weyl group of Spins,
sgn(w) X spins (€), if w + &* + p = w(& + p) for € dominant.

Here p is half the sum of the positive roots of Sping, which corresponds to the quadruple
(3,2,1,0). The last case will produce a weight of the form (o + £*)*, with ¢ a partition.
Indeed, (o + &*)* arises directly as the weight corresponding to (o4 + 2¢; 01, 09,03) and the
weights corresponding to the three other pairs:

(0-3—'_]-+25;01702704_1)7(02+2+25;01703_17O_4_1)7(O_1 +3+25;0-2_170-3_170-4_1)

are related to it by Weyl elements w with signs —, + and — respectively, provided ¢ has four
parts. Hence these terms in the sum for (1 + )" contribute to (o + ).

8.4. Completion of proof. We now fix a partition o and compute the coefficient of x gping(o+
e) in (8.2.2). Since Xsping (0 + €*) is the character of Vyy— gy 01— 09.05—04.05-+0a+2¢, We should
get

F(xthxS,CCQCCgI)*l(l — CC%)(O'Q — o3+ 1)$T1_030'52_04$g2+04+25

(1 — (z7 twows) ™72 ) (1 — (wy25 tag) 73 74T (1 — (wywgag H)o8 ToaT2etl,

Furthermore, once we check this, we are done, since both sides of (8.2.1) are symmetric if we
replace the subscript 2 everywhere by 3 and vice versa.

Clearing denominators, we just need to check some identities of polynomials. As will be
evident from the discussion above, there are fewer terms if ¢ has fewer than four parts.
However, if we append zeros to o, the case o4 = 0 is recovered from the general case. For
example, the term corresponding to (o3 + 1 + 2¢; 01, 02, 04— 1) should not be there, but there
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is no harm in including it, because D(ng,0;x, 2) is equal to zero anyway. Thus, there are
only two identities to check.

First, we perform a simplification that is relevant to both; namely one shows that

:1:‘171703+04x32xgg(02 —o3+1)(1— (xflxgxg)al_”“)D(ag +1,1; 21, xgxgl)

—a T2 02 082 (0 — 0y 4 2)(1 — (27 ' wows) ™ ) D (04, a1, waw3 )
+x?1+02—04+3xg3—1xg3—1(0_3 — o4+ 1)(1 o (:Cl—1562563)017¢73+2)D(O_47 1;x1,x2x§1)
_xt171+02704+3x5371xg371(03 — o4+ 1)(1 o (x1—1x2x3)02—03+1)D(04’ 1;.9?1,%’29651)

is equal to
(02 — 03 + 1).’/6[171703+04 (.21?2.’163)(72(1 — (xflxgxg)‘”_”“)
(D(o3 + 1,1, xl,:cgscgl) — x?(UTMH)D(m;, 1; xl,:cgscgl)).
Canceling from both sides of (8.2.1) the expression

01—03 _09—04 _02+04+2¢
3 (]' - ( )

(09 — 03+ 1)a] x5 z )"1*"2“)

561_11E2563

which appears in ¢(o; z1, Tox3, $2_1£1?3), c(ol;xy, zows, :1:2_1:1:3) and (o3 21, xoms, :1:2:1:51) (when
e = 0), and making use of (8.3.1), the identities to be checked boil down to:

(i) corresponding to & = 0,
D(Jg — 04 + 1, o4 + 1;x1,$2_1x3) — .’/U%D(Jg — 04 + 1, 04;21?1,21?2_121?3) + (.’/legx??l)(n‘

(D(o3+1,1; $1,$2$§1)—x§(03704+1)D(04, 12, xgxgl)—(l—xlzc;lxg)(1—:01502:0:;1)(1—:0%073704“)))

= (1 — (v123 '23) (1 — (zr2y tey )Tt (1 — )
(ii) corresponding to € = %,

D(U3 — 04 + 1,04 + 1;.’161,21?2_121?3) — x%D(Ug, — 04 + 1,04;%1,%’2_1963)

+(zyzozy )T (D (03 + 1, 1; 21, w925 1) — x?(03704+1)D(04, 121, w013 1))
= (1 — (z1ay 'w3) ™~ (1 = (w1my ') BT 2) (1 — 2).
Each of these may be checked by hand.

This completes the proof of Theorem 5.5.3 in the split case.

9. Ramified Factors

Finally, we shall address the analytic properties of the local zeta factor at a ramified place
v € §. Thus, we continue to work locally and suppress v from the notations.
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9.1. The local zeta integral. Recall that:

Z(6. 0, f,5) = / Wor w(g- ) Talg - ) - Ba(g) dg
VE(FN\GE(F)

(9.1.1) - / o / o Wl ) Tl 7)) @) dudy

(9.1.2) /S/ . Wy y(th - @) - Ly (th - f) - 1h(u) - Dy(utk) - 51 ()" du dk dt.

In this section, by the local zeta integral Z(¢, @, f,s), we mean this last integral (9.1.2).

Assuming absolute convergence of (9.1.2), the manipulations above would be justified and
we can collapse the two integrals in (9.1.1) to get:

Z(p,®, f,s)

- / Wr (9 9) - Taalg - 1) - Do) dg
(F)\GEg(F)

— /V o <I>s(g).( . Wy o(ug ) - Tao(ug - f) du) "
:/Kq)(k) </SE Xs(t) - 6B, (1) / Wy, p(uth - ) - mdudt> dk.

Setting Y (¢, f, s, k) to be the inner integral, we would have

Z(¢,®, f.5) = /K (k)Y (g, f.5. k) dk

The above formal manipulation is justified by the following proposition, which is the main
result of this section:

Proposition 9.1.3. (i) The local zeta integral Z(p,®, f,s) (i.e. the integral (9.1.2)) con-
verges absolutely for s € Qg (cf. (2.6)) when R is sufficiently large. In particular, Y (p, f, s, k)
converges absolutely in Qg as well, and we have

Z(p,®, f,5) = /K (k)Y (o, o5, k) dk

for s € Qpg.

(ii) Both Y (p, f,s,—) and Z(p,®, f,s) admit meromorphic continuation to the whole of
C™=! where r = rankp(Gg).

(iit) For a fized sy € C"=1, there is a choice of @, ® and f such that Z(p,®, f,s) is
holomorphic at sy and non-zero there.
As a consequence, we have:

Corollary 9.1.4. The partial Spin L-function L°(s,, Vapin,E) admits meromorphic contin-
uation to C"1,

The rest of this section is devoted to the proof of the proposition.
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9.2. Asymptotics of functions. With r = rankr(Gg), we identify Sg(F') with (F*)" using
the fundamental coweights {x;} as described in (5.1). We first note the following lemmas:

T

Lemma 9.2.1. There are finitely many finite functions & on (F*)" such that for any ¢ € 7,
one can find Schwarz-Bruhat functions ¢; (depending on ¢) on F" x K satisfying

Wyy y(th - @) = Zwk &)

This lemma is well-known. See [JS, §4, Props. 1 and 3] and [S, §4, Thm. 1]. We have a
similar lemma for the asymptotics of the linear functional L,, on the minimal representation.

Lemma 9.2.2. There are finitely many finite functions n; on (F*)" such that given any
f €llg, one can find Schwarz-Bruhat functions f; on F' x K satisfying

XO tk f Zfz th )

Proof. This follows from the construction of the linear functional L, described in the proof of
Prop. 3.4.1. Indeed, if L};U}; is the 3-step parabolic containing B, then L, was described
as the composition of an Up-invariant map to a representation o of L' followed by the
Whittaker functional on o. Thus the lemma follows by the analog of the previous lemma for
Whittaker functions on Lg. O

9.3. Proof of Prop. 9.1.3(i). We are now ready to prove Prop. 9.1.3(i), i.e. that the
integral

/ /S / Wiy ot - )| - (Lo (B )] - [tk - 83 (£) st

converges when s € Q r with R > 0.

If we commute ¢ across v in the above integral and change variables in u, as we did in the
calculation before Prop. 5.5.2, we see that we need to prove the convergence of

// Wy 4 (tk - 9)] - | L Ly (tk- f)| -6 ()1.(/_a |<I>§(uk:)|du> dt dk

where J5 is an explicit character of ¢t which can be read off from the computation before Prop.
5.5.2.

Now the integral over U_,, is a standard intertwining operator which converges in Qp for
R > 0 and defines a smooth function of k. On the other hand, the convergence of the
integrals over Sy and K follows from Lemmas 9.2.1 and 9.2.2. This proves Prop. 9.1.3(i).

9.4. Proof of Prop. 9.1.3(ii). To prove meromorphic continuation, we first note:

Lemma 9.4.1. (i) When s € Qg with R > 0, the integral defining &D;(g) converges absolutely.
(i3) It admits a holomorphic continuation to C"~1.

(1it) Moreover, there are finitely many finite functions xs; on (F*)" depending holomor-
phically on s such that for any flat section ®4, one can find Schwartz-Bruhat functions ¢ s ;
on (F*)~! x K depending holomorphically on s satisfying

Z¢sz tla--- r— 17k) 'X§,i(t)'

The finite functions xs; are preczsely those which appear in Proposition 5.5.2.
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Proof. (i) The absolute convergence of the integral defining </IS§ has been addressed in the
proof of Prop. 9.1.3(i) above.

(ii) Observe that the value &’;(g) is obtained by restricting g - @5 to Mg, thus obtaining
a section in a family of principal series of Mg, followed by applying the Jacquet integral for
this family of principal series (which is a Whittaker functional). The desired holomorphic
continuation was shown in Jacquet’s thesis [J1].

(iii) This follows by an analog of Lemma 9.2.1 with parameters. Such a result is proved in
[S, 84, Thm. 4], as well as in the recent article [J2]. O

As a consequence of Lemmas 9.2.1, 9.2.2 and 9.4.1, the local zeta integral is equal (for
s € Qp) to a sum of various integrals over Sg x K of finite functions & on Sp against
Schwarz-Bruhat functions ¢; on F" x K. If the Schwarz functions ¢; are independent of s,
the meromorphic continuation of this type of integrals is well-known (cf. [JS, §3]). Indeed,
in the p-adic case, the integral is easily seen to be equal to a rational function in ¢~%. For
a general local field, it was shown in [JS, §3] that the resulting meromorphic function is the
product of various abelian L-functions (which are independent of the ¢;’s) and an entire
function depending on the ¢;’s.

Now in our case, the Schwarz functions ¢; do depend holomorphically on s (via Lemma
9.4.1). The meromorphic continuation of our integrals then follows from the case discussed
in the previous paragraph and [J2, Lemma 1, Pg. 377]. This proves the meromorphic
continuation of Z(p, @, f,s). The same argument gives the meromorphic continuation of the
integral Y'; one simply omits the integration over K. This proves Prop. 9.1.3(ii).

9.5. Proof of Prop. 9.1.3(iii). Recall that

Zp.0.f.5) = [ @)Y (o, fo.B) b
K
The function ® is an arbitrary smooth function on K subject to the condition that
O(lk) =®(k) forallle KNQg(F).

The function Y (¢, f,s, k) on K is easily seen to be left invariant under K N Ug(F). Thus to
show that data can be chosen to ensure the non-vanishing of Z (¢, ®, f,s) at s = sg, we need
to show that the integral

Yo, f.s) = / Y(p. fo5,0) dl
KNLg(F)

is non-zero for some choices of f and . Note that since Y has meromorphic continuation to
C"1, so does the integral Y.
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Now we are going to massage the expression for Y’ as follows:

Y/(@7f7§)
_/ (/ / X§(t)‘5BE(t)71-Wvéﬂz)(utk-(p) ‘Wdudt) dk
KnLy \Jsg Ju,

— / / xall) - n (1) Wiy o (ul - ) - T (ul - ) dudl
Us\Lg JUa E7

[ ] ] 0G0 Wit ) Tt g dus .
E —B a

In the above, to obtain the second equality, we have used the Iwasawa decomposition for
L, and to obtain the last equality, we have used the Bruhat decomposition to replace the
integral over Ug\Lg by the integral over the open dense subset U_g - Tg.

Now the above manipulations are initially valid for s € Qg (with R > 0), where the
integral on the RHS of the last equality converges absolutely. However, we shall presently
show that for suitable choices of f, this integral admits meromorphic continuation to C"~!.

Let us write the torus T as Ty x Ty, where Ty = F* via the coweight ), and T} = E*
via the coweights {4}, ph, p5}. Correspondingly, we shall write the torus element ¢ as totq. If
we conjugate ¢ to the left across u,u_g, and change variables, we see that

Y/(QO, f: §) = /T /T / U Mﬁ(totl)'w\/}gw (tluau_,gtO'go)-LXO (tluau_ﬁto . f) dua du_ﬁ dto dtl,
0 1 aXU_p

where p, is the resulting character of Tg after these manipulations.

At this point, we need the following lemma which gives an alternative construction of the
functional L,, on the minimal representation Ilg.

Lemma 9.5.1. Let P” = M"N" be the Heisenberg parabolic subgroup of Gg so that the
center of N" is Z" = Uy = Usatp. Let Py = M N" be the derived group of P". The
unique irreducible representation of the Heisenberg group N" with central character v can be
realized on S(Uy x U_g) = S(E x F) and this representation extends uniquely to the Weil
representation wy, of Ply.

(i) There is a P"-equivariant injective map
v:1llg — Indllz;;ww.
(ii)) We may realize the latter induced representation on the space of smooth functions on

Ty = F* taking values in S(Uy x U_g). Thus a function in this space may be denoted by
é(to; ua,u—g). Moreover, the image of v contains S(Ty) ® S(Uy x U_p).

(iit) The linear functional Ly, is given by
Ly (f) = ¢(£)(1;0,0)
for f € llg. Thus, we have:
Lyo(tiuau—gto - f) = x(t1) - o(f)(to; wa, u—p),
where x is a character of T1 which we will not make explicit here.
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Proof. We shall give a sketch of the proof. The statements (i) and (ii) follow from the very
construction of the minimal representation (cf. [K] and [GS]). To deduce (iii), we observe
that via Frobenius reciprocity, ¢ gives a Pl -equivariant map (the local Fourier-Jacobi map)

FJw g — S(Ua X U,g)
This is explicitly described by
FJy(f)(ua,u—g) = o(f)(1;ua, u_g).
In the p-adic case, this is in fact the unique such map, since (Ilg)zr y = wy,. If we let
R =(Z",Us0428,Usa+p,Uats) C NE,

then the composition of F'Jy, with evaluation at (0,0) gives a linear functional ! on IIg
satisfying
Ur- f)=xo(r) - 1(f)

In the p-adic case, we have (wy)ry, = C, so that

(IIg) R,y = C.
Thus, [ = Ly, up to scaling. The archimedean case can be finessed from this by a global
argument using weak approximation; we omit the details. ]

In view of the lemma, we have

(9'5'2) Y/(QO, /s §) = /T / U L(f)(to; Uqys u_g) : Hi(to) : Y”(uau_gto : 307§) dug du—ﬂ dto,
0 aXU_pg

where
Y"(p,5) = /T ps(tr) - x (1) - Wy (81 - @) dty.
1

Now as we noted in the proof of Prop. 9.1.3(ii) (after the proof of Lemma 9.4.1), an integral
of the type defining Y"(¢,s) (i.e. the Mellin transform of a Whittaker function) admits
meromorphic continuation to C" 1 (cf. [JS, §3]). Further, at a point so of holomorphy, one can
show that the linear functional ¢ — Y" (¢, sg) is continuous. Thus the map (to, uq,u—g) —
Y (touqu—_g - ¢, s) defines a smooth function.

Now by Lemma 9.5.1(ii), we may take f so that

(f)(to; ua,u—g) = fo(to) - f1(ua,u_p)

for arbitrary fo € C°(Tp) and f1 € C°(Uy x U_g). Thus, the integrals over Ty and U, x U_g
converges absolutely and the equation (9.5.2) gives the meromorphic continuation of Y.

By the above discussion, we see that if Y'(¢, f, s) vanishes for all choices of f, then Y (¢, s)
vanishes for all choices of . We are thus reduced to showing that there exists ¢ such that

/T Wy gt 9) - ps(ta) - x(t1) dty
1

is absolutely convergent for all s and non-zero for a particular s. For this, we take ¢ €
S(U-4) = S(F) and replace ¢ by

Gxp= /U o(u) - m(u)p du.

Then



where qg is the Fourier transform of ¢. We may choose ¢ so that $ is an arbitrary compactly
supported function. Then, for a suitable choice of such a ¢, the integral over T} converges
absolutely for all s and can be arranged to be non-zero for any given sy.

This completes the proof of Prop. 9.1.3(iii).

10. Polynomial Invariants

In the case of split groups, Ginzburg has observed that all L-functions L(s,m,p) which
are known to be representable by some Rankin-Selberg integrals have the property that
the representation (p,V) of “G has the property that (C[V]LG is a polynomial ring. This
observation appears, for example, in [GH2] (where the word “split” was mistakenly omitted).
Ginzburg has confirmed in private communication that his observation does not address the
non-split cases.

In any case, the referee of this paper suggested that we investigate if Ginzburg’s observation
remains valid in our case. Thus, we shall describe briefly the algebras of “G°- and G-
invariant polynomials on

Vspin = Vg @ Vi, ® Vs
For each 4, there is a (unique up to scaling) nondegenerate quadratic form @; on V,,, which
is fixed by “G°. We may normalize these so that the action of S3 permutes them. It is
well-known that

L A~0
ClV.] ¢ =ClQi].
In addition, there is an “G%invariant trilinear linear form R (unique up to scaling) on V,,, x

Vs X Vs In fact, one can show that C[Vspm]LGo is the polynomial algebra generated by
these four elements, as may be deduced from the local computations when £ = F x F' X F.

In fact, using the geometric description of Vgpin in (2.8), one can write down the above
invariants easily. If (z1,z2,23) € Vspin = 03, then for i = 1,2, 3, we have:
Qi(x1,x9,23) = N(z;) and R(z1,z2,23) = Tr(xi1x973).

From this description, it is easy to verify that the @);’s are permuted by S3 whereas R is fixed
by S3. For example, when o is the transposition such that

o : (1,22, 73) — (T2, T1, T3),
then
R(o(x1,x9,x3)) = Tr(Tazias) = Tr(zsrizs) = R(x1, x2,x3).
So for example,
C[Vapin) P8 55 = C[4, 59, X3, R]
where the 3;’s are the elementary symmetric functions in the @;’s.
There are thus four possibilities for (C[Vspin]LG corresponding to the four possibilities for

the image of the Galois group in Ss:
e when E=F x F'x F,

C[VSpin]LG = (C[le Q27 Q37 R]
e when £ = F x K,
(C[Vspin]LG = C[Q1,Q2 + Q3,Q2Q3, R].
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e when F is Galois cubic,

(C[VSpin]LG = (C[Qla Q27 Q3]A3 [R]7

where C[Q;]4? is the direct sum of the symmetric and skew-symmetric polynomials
in the @Q;’s.

e when F is non-Galois cubic,

ClVapim] © = C[1, X2, 5, R).

Observe that (C[Vspin]LG is a polynomial ring except when F is Galois cubic. This suggests
that, if Ginzburg’s observation were to extend to the non-split case, it is the “GC-invariants,
rather than the “G-invariants, that should play a role.

11. Appendix: Tensor Products and Universal Characters

In this section, all groups are over C, so the “C”’s are suppressed throughout. Thus
GL, means GL,(C), etc. For G a connected reductive Lie group, let R(G) denote the
representation ring of G. Our primary goal here is to give an exposition of some of the
results in [B-K-W] from a point of view akin to that of [K-T].

It is perhaps worthwhile to comment on a potential source of confusion: the relationship
between highest weights and partitions (i.e., nonincreasing sequences of integers of finite
length). For classical groups there is a natural identification between a subset of the set
of partitions (those with a number of parts bounded suitably in terms of the group) and a
subset of the set of weights (for example, for Sping,+1, the weights which factor through the
projection to SOgp4+1). Greek letters, A, p,v, etc., are hence used for both partitions and
weights. One must therefore be a bit careful about what “\” is in any given sentence: is it
a partition, which may have too many parts, and hence not be a weight, or is it a weight,
which may not lie in the subset parametrized by partitions?

For G = GL,, we consider the subring R, (G) of “polynomial representations,” i.e., rep-
resentations whose characters are polynomials in the coordinates of an element of the torus.
(The character of a general representation being the product of one of these times a power
of the inverse of the determinant.) The highest weight of an element of R, (G) is a partition
with at most n parts, A, the value at diag(t1,...,t,) being [, tf‘z Here, if X\ has fewer
than n parts, we add terminal zeros.

Since the map that sends a representation to its character is injective, we shall generally
speak in terms of characters, rather than representations. We introduce a little more general
notation. For G as above, and A a dominant weight of G we let I'¢(\) denote the irreducible
finite dimensional representation of G with highest weight A, and x¢(A) its character.

11.1. Review and Summary. We review the method of universal characters as discussed
in [K-T]. For each n, let A,, = R (GLy) = Z[t1,...,t,]%. For m > n, let pmn : Am — Ay,
be the ring homomorphism that sends ¢; to t; if ¢ < n and 0 if i > n. Then (A, pm,n) is
a projective system. The projective limit (in the category of Z>o-graded algebras), A, with
maps pp to each A,, was defined by MacDonald [M] and is called the universal character
ring.
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For each n, we define the elementary symmetric polynomials, e} (t) by
n o
[ +tiw)= D ep(t)a”.
=1 k=—00
In particular, ef(t) = 0 if k < 0 or k > n. Then Z[t1,...,t,]%" = Zle},...,e"]. Clearly
Pmn(ef’) = €}, so we get elements ej, of A. Similarly, we consider p}' defined by
n [e.e]
[T —at)™t = > p1)a,
i=1 i=—o00

so that p = 0 for i < 0 but not for ¢ large. Then py, »(p") = pl', and so once again we get
elements of A.

We have the classical determinantal expressions
(1L.1.1) XGLn(A) = [PX4i—jl = e il

Here and throughout |f(7,j)| denotes the determinant of the square matrix whose 7, j entry
is f(i,7), and X is the transpose of the partition A. Note that in each expression, the only
dependence of n is the superscripts on the p;’s (resp. e;’s). In particular, the size of the
determinant is equal to the number of nonzero parts of A (resp. \') and does not depend on
n. Making use of these, together with the elements p;,e; € A above, we define xqr(A) € A.
For each n we have the natural projection m, : A — A,,. Then clearly 7, (xar(\)) = xarL, (A)
if A has at most n parts. What is more, if A has more than n parts, then the top row of the
second determinantal expression in (11.1.1) is all zeros, so that m,(xacr(A\)) = 0.

The universal characters xqr(A) are a Z-basis for A, and the corresponding structure
constants are the Littlewood-Richardson coefficients LR/’)J,. See [F-H, p. 455-56]. Thus,

xer(wxar(v) =Y LRy ,xar (),
A

where the sum is over all partitions A, whereas

XGL, (WXxaL, () = Y LR} xar, (N,
A

where now the sum is only over those partitions with at most n parts.

We turn now to Sps,. Highest weights are once again naturally identified with partitions

of length < n. We have
X5pan (V) = PR i—j + 0102300 1al.

where ; ; is a Kronecker § and p?" has been restricted from the torus of GLo, to that
of Span. Once again this is nearly independent of n and allows us to define xg,(A\) € A.
However, it is no longer true that the determinant simply vanishes when A has more than
n parts. The universal characters xsp(A) give a second Z-basis for A. The corresponding
structure constants may be given in terms of the Littlewood-Richardson coefficients, as in

[Ko], Theorem 7.5. This has a nice expression if we adopt one of the notational innovations
in [B-K-W], namely the definition

(11.1.2) M¢ =Y LR}L
€
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Let z,2 and ¢ denote the sums of the parts of (,£ and A respectively. The coefficient LR’\
counts the number of ways to add the z boxes to the Young diagram of £ (or z to that of
() so as to obtain the Young diagram of A, subject to certain conditions. In particular, it is
zero for x + z # £, so the above sum is effectively finite, and zero for almost all (. With this
notation, we have

(11.1.3) Xsp(A)xsp(p ZXSP (A/Q) - (1/€)),

where the interior product is given by the Littlewood-Richardson rule. Here we extend the
definition of g, to finite sums of partitions by Z-linearity. Hence

(11.1.4) X820 (N)XSpan (1) = Tpan | Y Xsp(A/C) - (1/€))
¢

Here 7gy,, is the projection from A to R(Sps,) obtained by projecting to As, C R(GLay,)
and then restricting to Spa,. This formula essentially goes back to Littlewood and Newell.
Only the interpretation in terms of universal characters is new.

As noted above, it is not the case that mg,,, gives the naive projection onto the set of
partitions with at most n parts. A nice description of the projection and its kernel is given
in [Ko, Section 9]. For purposes of our application to Spg, we only need to know that

XSps(A) if A has at most 3 parts;

Tspe (Xsp(A)) = {

0, if A has exactly 4 parts.

11.2. New Material. We turn now to the formulae in section 7 of [B-K-W]. These are
derived by similar means, but in contrast to the above, they relate characters of representa-
tions of classical groups to those of general linear groups not by restricting, say, from G Lo,
to SOy, but rather by restricting from SOs, to GL, embedded as the Levi factor of the
Siegel parabolic. The symplectic and odd orthogonal cases are also considered in section
7 of [B-K-W], but it is only the even orthogonal case where the method there really offers
substantial improvement over the method of section 5 of that paper and the previous section
of these notes.

It is convenient to think of SO,, as a subset of G Lo,, with the maximal torus of diagonal
elements t = diag(t1,...,tn,ty ", .., t1), and identify the partition A with the map ¢ — [, tf‘z
Indeed, we have already done so in referring to “the Siegel parabolic.” Of course, there
is another identification which works just as well (using the other parabolic) and in the
case n = 4, which is our primary interest here, there are still more possibilities arising
from the additional symmetry of the Dynkin diagram. We fix once and for all one of these
identifications. When n # 4, the highest weight of the unique projection to SO, is identified
with the partition 1 having one part. When n = 4, we will also refer to the representation
whose highest weight has been identified with this partition as “the” projection. Because of
our choice of identification, it is no longer on equal footing with the other two.

There are three matters which must be addressed.
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(i) The first is that the restriction of a representation of SOs, to GL,, will not be contained
in A,, = R+(GL,). Hence we can anticipate the need for some larger “universal” ring which
covers all of R(GL,,).

(ii) The second is that we are not satisfied with R(SOa,), but want all of R(Sping,). It will
turn out that for the cases we need here this second issue may to a certain extent be ducked.
We must replace GL,, by its inverse image in Spin,,,, which is a double cover GL,,, but as we
shall see later, the double cover enters the computation only in a trivial way. Alternatively,
everything could be phrased in terms of the Lie algebras.

(iii) The third issue is that, while the product of two elements of R(@En), each of which
is a restriction from R(Spingy,) is certainly the restriction of something, we need a way to
recognize what element of R(Sping,) it is a restriction of. This is handled by the following
Lemma, akin to Brauer’s method, which is very pretty in its own right. (It will be applied
with G = Sping, and H = éfn the Levi subgroup of the Siegel parabolic.) It is due to King
[Ki].

To state the lemma we need some notation, as before, let G be a connected reductive Lie
group. Fix maximal torus T and a choice of positive roots, and let H be a standard Levi
(there is a more general formulation, but restricting to standard Levi subgroups is sufficient
for our purposes here and simplifies certain things a bit). Then we obtain a set of positive
roots for H with respect to T', and the notions of G-dominance and H-dominance for elements
of the lattice L of weights. Let LJC; denote the set of G-dominant weights and LJI_} the set of
H-dominant ones. Then Lg C L;} since G-dominance is more restrictive than H-dominance.

For A\e Landt €T, let
A (t) = Z sgn(w)t*A
weWg
and
xc(A) = Axtpq /Ape-

For A\ G-dominant, this agrees with the previous definition as the character of I'c(\). For A
not G-dominant, it is equal to sgn(w)x, if 7 = w(A + pg) — pg is G-dominant, and is zero
otherwise.

Lemma 11.2.1. With this notation, we have

xeMxe(w) = > <Zn c(H >XG( )

TGL+

T

where n% is the multiplicity of ' (n) in the restriction () to H, and c(H)J , is the
multiplicity of T (1) in Tg(A) @ T (w).

Note that this decomposition is in terms of x¢g’s, but the 7’s are only H-dominant. Before
we proceed to the proof, let us note that

xeWxa(p) = Y (Zn c(H >XH( ),

TELJr

as is immediate from the definitions. So the lemma may be interpreted as follows. Suppose we

have a formula for the restriction from G to H and a method of computing tensor products of

representations of H. Then we may compute the product of two irreducible representations
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of G as follows: restrict one of them to H, take the product of this restriction with the
irreducible representation of H that has the same highest weight as the other, and then
simply replace each of the I'g’s in the answer by the corresponding I'g. This is precisely the
method employed in [B-K-W] section 7, the requisite branching rules having been obtained
in earlier work.

We now remark why it is possible to essentially duck the issue of the difference between
R(SOq,) and R(Sping,) in the cases we are dealing with. This is because we never need to
compute a product where both of the characters involved are in R(Sping,,) — R(SOa),). When
one of them is, we make the corresponding weight “u” rather than “N\.” Suppose A is a weight
of Spina,, but not of SOy,. Then either it is of the forrn (%, . 2, 2) + p with p a partition,
or it is associated to a weight of this form by the automorphism that reverses the last two
fundamental weights. It is enough to consider the case when A = (3 1 %) + p. It is not

T
a weight of GL,,, but of the double cover GL . But since

1 11
xar, (5o 5 2)-%p)—-detQXGL (p),

the double cover comes in only in a trivial way.

Proof of Lemma 11.2.1: Let pg denote half the sum of the positive roots of G and pg
half the sum of the positive roots in H. Let W denote the Weyl group of G with respect to
T. Note that the Weyl group Wg of H is naturally identified with a subgroup of the Weyl
group Wg of G, and that pg — py is Wy-stable.

Let m§(v) denote the multiplicity of the weight v in I'()\), and define m# (v) similarly.
Then

(11.2.2) XG ZmA v)xe(v+p) = ZZn v)xe(v + p).

For v a weight we define |v|g and ﬁ as follows. If the stabilizer of v + pg in W is trivial,

then |1/|G is the unique dominant weight 7 such that 7 + pg = w(v + pg) for some w € Wg

and is the sign of this w. If the stabilizer of v + pg in W is not trivial, then —— = 0,

\V| vlg

and it does not matter what |v|¢g is (since it is multiplied by zero).

Then from the first equality above, we obtain
V4l
(@fu= D, mEW— = D sgn(w)mS (w(r + pe) — 1 pe)-
_ v+ pla
lv+ulg=" weWe
Similarly,
+v

c(H T = mH v ’ui
(i .§:_ e

vilptv|p=T

Now |p + v|g = 7 means that w(p + v + pg) = 7 + pg for some w € Wy in which case
w(p + v+ pg) =T+ pa, since pg — py is Wy -stable. Thus (11.2.2) equals

Z Z A Z H B+

nn mn (V) XG(T)a
‘. ln+ vl
reLnel  vilptvig=r

and the result follows. [ |
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Remark: One can, and King does, formulate and prove a more general result applicable
to the case G = Go, H = SL3. In this case pg — py is no longer Wy-stable, so the expression
is more complicated:

XeWxa(w) = DY n)elH) s popynXc(T = pc + pa)-
TGL"}'I neL

11.3. An analog of A. As noted above, in order to place the branching rule method of King
and his collaborators within a framework analogous to that of [K-T], we need an analog of A
that surjects onto all of R(GL,,) for each n, not only R, (GL,).

Let R, = Z[t1, ..., tp,u1,. .., uy|® % where &, is the symmetric group, the first acting
by permuting the ¢t-indices and the second permutes the u-indices. Let 7, be the map R,, —
R(GL,), defined by u; — t;l. Also, for m > n there is a surjective map py,n : Rm — Ry,
defined by t; — t;,u; — u;, @ < n and t; — 0,u; — 0, i > n. Clearly, 7, o py,, does not
factor through ,,. However, (R, pm) forms a projective system. We let R denote the
projective limit in the category of Z>¢ x Z>( graded algebras, and let p,, denote the natural
map R — R,.

We denote the n-tuples (t1,...,t,), (U1, ..., u,), (tl_l, ..., t;1) ete., more briefly by t,u,t 71,
etc.

Lemma 11.3.1. For each n, we have R, = Z[e}(t), ..., en(t), el (u),...,ep(u)].
From this it is clear that the map m, is surjective, since R(GLy,) is generated by e'(t),i =
1,...,n and det™' = 7, (el (u)).

Proof: This is clear: Z[t1,...,t,]%" = Z[e}(t),...,e"(t)] (likewise with u’s) and

ren

R, =Zlty,... ,tn]G" ®z Lluy, . .. ,un]G”.

Since pmn (et (t)) = e} (t) (likewise with u), we obtain elements of R, which we denote by
er,+ and ey _, such that p,(ex+) = e (t), and py(ex,—) = ef(u) for each n. The notation
ex,— is, of course, motivated by the fact that 7, o p,(e,—) = el (t™1).

It follows from Lemma 11.3.1 that R = Z[{ey + }].

Lemma 11.3.2. For every element x of R, there is an N such that if n > N, then x is not
in the kernel of m, o py,.

Proof: Clearly, for each n, the map p,, is injective on Z[{ey + : k < n}]. The kernel of 7,
is generated by {e}(t)el'(u) —el!_;(t) : i =0,...,n}. Given x € R, we define K; to be the

largest k& such that ey  appears in the expression of x in terms of the e; 4+, and K> to be the
largest k such that ey _ appears. Then N = K; + K3 + 1 is sufficient. |

Next, we wish to define an element of R associated to any pair of partitions A and u. This
is given in terms of the transpose partitions A’ and x4, and it will be convenient to denote
A1, which is equal to the number of parts in A, more briefly by r. Similarly, we let u; = s.
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Then, let

eu/w* s e#é*T*SJFL*
() . e,
7. — 2 +57177 Hy—T—
xer(A) =1 "™ L
X —s,+ SV = s B
EN —r—s+1,4+ --- EN +

Let n be at least A} + p}. Then, making use of the identity det™"(t)e(t) = e,_r(t™1), it
is easy to check that

T 0 pn (XaL (5 A)) = det “*xar, (T(\, 1)),

where 7 is the partition such that 7(A\, ) = (n — phy...,n — pi, A, .o, AL). (This 7(A, p)
may be visualized as follows: start with the Young diagram of A\. Add p; columns of length
n at the left side. Then take the Young diagram of u, rotate it 180 degrees, and subtract it
from the n x p; rectangle.) So, m, o p, maps {xcr(@i; \)|\] + p) < n} bijectively onto the
set of characters of irreducible representations of GL,,.

Observe that A is naturally identified with a subring of R, A, with a subring of R, and
the restriction of py, p is P for each m,n. Also, when p is the empty partition, xqr(f; )
is precisely the universal character xgr(A) € A defined above.

We may now offer a remark about why we do not simply generate R(GL,) by {e} :
i =1,...,n} and det™'. Let X be a partition. The expression for yso,,(A\) as a sum of
characters of GL,, is stable (in the sense that it is independent of n sufficiently large) when
these characters are expressed as 7,0 p,XGL(f; v). On the other hand, the expression in terms
of det *xqr, (T(v, 1)) does not stabilize as n — co. Indeed, the partition 7(v, u) is different
for each value of n.

11.4. A review of our application. With the background established, let us go back over
the application to the local computations when E = F' x F' X F. We must compute the product
of two characters. One of them is the character of a representation whose highest weight not
only is a partition, but is one with strictly less than n parts. Let us call this partition .

We first need a formula for the restriction of xso,, (A) from SOg, to GL,. Once again the
“/” notation of (11.1.2) allows for a nice formulation. The relevant formula, which appears
in [B-K-W] as (A4) on p. 1586 is, in our notation:

(11.4.1) XS0z, (A) = Z?Tn o pn (xar, (&M /(€ 5))),
&6

where A has at most n parts, £ is summed over all partitions, and (§ is summed only over
partitions such that each part appears with even multiplicity. This is a finite sum, since there
are only finitely many pairs (£, 3) such that \/(£- ) is nonzero. But note that this holds only
for those A which (a) are partitions, as not all weights of SOg,, much less those of Sping,
are, and (b) as partitions, have strictly fewer than n parts,

Next, we take the product of (11.4.1) with the character of Eﬁm which has the same highest
weight as our other representation of Sping,. Let us assume that this weight is u+(e, ..., ¢, ¢),
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where 1 is a partition, and € = 0 or 1. Then this character is x¢r, (1) det €. So, we obtain

(11.4.2) X502, Mgz, (1 +") = det“mn 0 p | Y xarn (& A/ (6 - B)xar ()
€8

We now need to evaluate these products of characters of GL,,, which we wish to do in R and
then project. The product in R is described by formula (5.2) p. 1571 of [B-K-W]. In our
notation:

xar (i A)xar(F; v) ZXGL (n/o) - (k/7); (A/7T) - (v]a)).
Plugging this into (11.4.2) we get

X502, MXgz, (14 ") = det® > "m0 pulxar (i (A (CnB)) - (1/0))),
7,68

where we have extended x¢y to pairs of finite formal sums of partitions by Z-linearity. Let
us now define, for each n a map T77 o . from R(GL,,) to R(Sping,) which is Z-linear
and sends xg7 (A) t0 Xsping, (A) for each welght A. Then we get

(11.4.3) X502, (A)XSpina, (1 + ") Z GLy—Sping, (det°xGL, (&M (€ B))xaL, (1)

(11.4.4) = Tar . gping, (46850 0 pu(xar (7 (A (CnB)) - (1/C)))) s
6.8

All that is needed now to compute xs0,, (A)xaGrL, (1) is an efficient algorithm for reducing
Xar modulo the kernel of m, o p,,. This is given in the next subsection. The answer is always
either 0 or +xqr, (7°;v°) for a single pair of partitions 7°, v° with at most n total parts.

11.5. Reduction Modulo Ker(m, o p,). In this section we show how, for any pair of
partitions (fi; A) with any numbers of parts, to reduce xqr(f; A) modulo the kernel of
Tn © pp, Obtaining either zero, or a pair (f°;A\°) with at most n total parts, such that
Tn © pn(XxerL(i; A) = £xar, (2% A°), with an explicit description of the sign. This corre-
sponds to the U, SU,, modification rule in Table 3 of [B-K-W], although it may be necessary
to apply that rule more than once to obtain the answer we describe below. By contrast,
the modification rules in Tables 4 and 5 correspond to finding the dominant weight |v|g
associated to v by the action of the Weyl group, shifted by pg.

For any infinite sequence a = ay,as,...,an,... of integers with the property that a,, =
1 —m for m > N, we define E(a) to be the N x N determinant whose (i, j) entry is eq; 41,
and define E"(a) analogously with e™’s. Observe that this definition is independent of the
choice of specific N having the requisite property. If £ is an infinite sequence of integers such
that ¢, = 0 for all m sufficiently large, we follow [Ko| in defining the associated [-sequence
B(€) by B(£)m = lm + 1 —m. Observe that if A is a partition, then xgr(\) = E(B()\)), where
we have identified the partition A’ with the infinite sequence obtained by appending zeros at
the end.

We now consider m,, 0 p,, (XL, (fi; A)). Making use of the identity €, (t71) = el (t) " te”_,(t),
we find that

T 0 pn(XGL, (; A) = (en) *E"(B(a(A, 1)),
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where

a\ ) = (n—phy...on— N, 0.
Here, we have once again denoted A\; and p; by r and s, as is convenient to do when they
show up as the number of parts of the transpose partitions A" and p/. When n — ) > A this
expresses T, © pn(XGL, (f; A) as the character of a polynomial representation of GL,, times a
power of det™! .

Now suppose that a(), 1) is not a nonincreasing sequence (i.e., that pj + ] > n.) Denote
B(a(A, 1)) more briefly by 3. If there exists ¢ # j such that §; = (3;, then E(5) = 0. Otherwise,

we may rearrange the terms to obtain a sequence (8 which is strictly decreasing such that
E(B) = £E(f), with the sign depending on the number of order reversals. We observe that
if 81 > n, then E({) = 0. Furthermore, if 8; = n, then the initial €] is the only nonzero

entry in the first row of the determinant defining F(/3) and so we may express it as e times
the lower right minor. In this way, we see that

E(B) = (en)"E(5°)
for some k € Z>¢ and 3° a strictly decreasing sequence of integers, such that 3;, =1 —m for
m sufficiently large and 3] < n. We may then recover two partitions A° and p° such that

AN+ n<n pi=s—k
and
B(a(A®, w?)) = B°.
Thus we have
XGL, (B3 A) = £xGL, (1% A7)
with the sign being the one obtained from the order reversals to get B from S.

11.6. Dictionary. Now, for the reader familiar with [B-K-W] or interested in consulting it
now, we offer a partial dictionary to translate from our notation to theirs.

The translation is not precise since the notion of a projective limit does not appear in
[B-K-W], only various identities which “stabilize” once n is sufficiently large and hence are
ripe for interpretation in terms of this notion. In the text of this appendix, we have used
A and p both for partitions (which might not be weights) and for weights (which might not
be partitions); throughout this table, A and p are partitions, while other Greek letters are
weights. Some of the notations depend on the number of parts of the partitions. These will
be denoted by p and q respectively. We subdivide into three parts: notations common in
the majority of [B-K-W], notations appearing mainly in section 6, and then a few logical
equivalencies. We remark that [A]+ and [A; M|+ are also defined for p > n. For a “universal
character” interpretation, see [Ko]. Note that [0; \]+ and [A;®; A1+ are not equal to [A]+ and
[A; A1 for p > n.
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Our notation

Their notation

det €

LR, my,,

Tn 0 pp(XarL(fi; ) _ {1 A}

Pn(xarL(N) = mn 0 pu(xarn(®; X)) {A}

T 0 pn(XcL(i;0)) {n}

Topan (X5p() )

L for - ]p — -]

X502, () [A]+ if p<n
X502, (A) + X502, (A") (A if p=n
X503, (A) = X505, (A") (Al =M+ = [A- ifp<n
X Spinza (A + (%)n) [A; ]+ ifp<n
XSpinan A+ (3)") + X502, (A + (2)™)) | [A5A] ifp<n
XSping, (A +1") [0 Al+ if p<n
XSpinz, (A +1") + XSpina, (A +17)") | [0 A] if p<n
&L —Sping, © ™ ° pn(xaL(p A)) (5 A+

Tat., —spiny, (det 2mn 0 pu(xar (i A))) | [A; 5 A+

xa(v) (V)¢ (alternate notation of section 6.)
PG oc

C(H)g,u-‘,—pc—pH K;ZWGJr(SG*lSH

ny Bl

my () Mgz

Equation (11.4.3)
Equation (11.4.4)

(1 A) = £(°5 A7)

xa(W) = msxa(lvle)

Equations (7.1a) & (7.1b)

Equations (7.5a) & (7.5Db)

U,, SU,, Modification rule of Table 3
(possibly applied more than once)
Modification rule for G in Tables 4 &5

(possibly applied more than once)
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