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1. Introduction

The purpose of this paper is to construct a Rankin-Selberg integral for the Spin L-function
L(s,π, VSpin,E) of a generic cuspidal representation π of a quasi-split adjoint group GE of
type D4. Let us formulate our results more precisely.

1.1. Étale cubic algebras. Let F be a number field with adele ring A and absolute Galois
group Gal(F/F ). An étale cubic algebra is an F -algebra E such that E ⊗F F ∼= F

3. More
concretely, an étale cubic F -algebra is of the form:

E =






F × F × F ;
F × K, where K is a quadratic field extension of F ;
a cubic field.

Since the split algebra F × F × F has automorphism group S3 (the symmetric group on 3
letters), the isomorphism classes of étale cubic algebras E over F are naturally classified by
the set of conjugacy classes of homomorphisms

ρE : Gal(F/F ) −→ S3.

By composing the homomorphism ρE with the sign character of S3, we obtain a quadratic
character (possibly trivial) of Gal(F/F ) which corresponds to an étale quadratic algebra KE .
We call KE the discriminant algebra of E. To be concrete,

KE =






F × F, if E = F 3 or a cyclic cubic field;
K, if E = F × K;
the unique quadratic subfield in the Galois closure of E otherwise.

We shall let χKE denote the quadratic idele class character associated to KE .

1.2. Twisted form of S3. Fix an étale cubic F -algebra E. Then, via the associated ho-
momorphism ρE , Gal(F/F ) acts on S3 (by inner automorphisms) and thus defines a twisted
form ΓE of the finite constant group scheme S3. For any commutative F -algebra A, we have

ΓE(A) = AutA(E ⊗F A).

1.3. Quasi-split groups of type D4. Because S3 is the outer automorphism group of
PGSO8 (the split adjoint group of type D4), associated to E is a quasi-split adjoint group
GE of type D4. The outer automorphism group of GE is precisely the finite group scheme
ΓE.

The Langlands dual group of GE is the simply-connected complex Lie group

G∨
E = Spin8(C).
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This has 3 irreducible 8-dimensional representations Vµi , whose highest weights µi (i = 1, 2 or
3) are the three fundamental weights associated to the three satellite vertices in the Dynkin
diagram of type D4. These 3 representations are permuted by the outer automorphism group
S3, and the sum

VSpin = Vµ1 ⊕ Vµ2 ⊕ Vµ3

extends to a faithful irreducible representation of Spin8(C) ! S3. In fact, there are two such
extensions which differ from each other by twisting with the sign character of S3. So we shall
need to specify the extension precisely later (in (2.8)).

The L-group LGE is a certain semidirect product of Spin8(C) with Gal(F/F ). More
precisely, the action of Gal(F/F ) on Spin8(C) is via the homomorphism ρE . Thus there is a
natural map

LGE −→ Spin8(C) ! S3,

whose restriction to Gal(F/F ) is ρE . Via this map, we may view VSpin as a representation
of LGE . We denote this representation by VSpin,E and call this the Spin representation of
LGE . Note that VSpin,E is reducible unless E is a field.

1.4. The Spin L-function. Now let π = ⊗vπv be a cuspidal automorphic representation of
GE(A). For almost all v, the representation πv is unramifed and gives rise to a semisimple
conjugacy class tπv ∈ LGE (its Satake parameter). We may thus define the partial Spin
L-function associated to π:

LS(s,π, VSpin,E) =
∏

v/∈S

1
det(1 − q−s

v tπv |VSpin,E)

where S is a finite set of places, including the archimedean ones, such that πv is unramified
for all v /∈ S. This Euler product converges when Re(s) is sufficiently large.

In fact, since the representation VSpin,E is reducible when E is not a field, it is natural
to define a refinement of the above L-function by introducing a different variable for each
irreducible constituent of VSpin,E. More precisely, we have:

• If E = F × F × F , we set s = (s1, s2, s3) and

LS(s,π, VSpin,E) =
∏

v/∈S

1
det(1 − q−s1

v tπv |Vµ1) · det(1 − q−s2
v tπv |Vµ2) · det(1 − q−s3

v tπv |Vµ3)
.

• If E = F × K, we may assume without loss of generality that the two fundamental
weights µ2 and µ3 are permuted by the Galois action, so that Vµ1 and Vµ2 ⊕ Vµ3 are
the two irreducible constituents of VSpin,E . Setting s = (s1, s23, s23), we then define

LS(s,π, VSpin,E) =
∏

v/∈S

1
det(1 − q−s1

v tπv |Vµ1) · det(1 − q−s23
v tπv |Vµ2 ⊕ Vµ3)

.

• if E is a field, then s = (s, s, s) and LS(s,π, VSpin,E) is as originally defined.

1.5. The refined zeta function of E. Likewise, since E is the product of fields Ei, the
zeta function ζE(s) decomposes as the product of zeta functions of these fields. It is natural
to define a refinement ζE(s), with s defined as above in the three different cases. Thus, for
example,

ζF×K(s) = ζF (s1) · ζK(s23).
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In addition, we define another refinement of the zeta function of E:

ζ̂E(s) =






ζ(s1 + s2 − s3) · ζ(s2 + s3 − s1) · ζ(s3 + s1 − s2), if E = F 3;
ζ(2s23 − s1) · ζK(s1), if E = F × K;
ζE(s), if E is a field.

This may seem somewhat artificial at first, but note that if one sets all the variables si

equal to s, one recovers ζE(s). In fact, this refined function arises naturally in the normalizing
factor of the Eisenstein series in our Rankin-Selberg integral. In any case, one can simply
regard it as a shorthand for the rather convoluted function it represents.

1.6. The Rankin-Selberg integral. The goal of this paper is to construct a Rankin-Selberg
integral for L(s,π, VSpin,E) when π is globally generic, i.e. possesses a non-zero Whittaker-
Fourier coefficient. The Rankin-Selberg integral we consider is of Shimura type. Thus it
involves the integral of a cusp form, an Eisenstein series and a “theta” function:

ZE(ϕ,Φ, f, s) =
∫

GE(F )\GE(A)
ϕ(g) · θ(f)(g) · E(Φ, s, g) dg.

To explain the various notations,

• ϕ is a cusp form in π;

• θ(f) is a vector in the minimal representation ΠE of GE(A), which is the analog of
the Weil representation of a metaplectic group;

• E(Φ, s, g) is an Eisenstein series on GE(A) associated to a standard section Φs of a
certain principal series IQE(s) of GE . This principal series IQE (s) is induced from a
character on the (not-necessarily maximal) parabolic subgroup QE whose Levi factor
is of semisimple type A1 corresponding to the middle vertex of the Dynkin diagram
of type D4.

Our main theorem is then:

1.7. MAIN THEOREM: The global zeta integral admits an Euler product. Moreover, we
have:

ZE(ϕ,Φ, f, s) =
LS(s,π, VSpin,E)

ζ̂S
E(s + 1) · ζS

E(2s) · ζS(|s|)
·
(

∏

v∈S

ZE,v(ϕv ,Φv, fv, s)

)

where 1 = (1, .., 1) and |s| denotes the sum of the components of s (so for example, |s| = 3s
if E is a field). Moreover, each local factor for v ∈ S admits meromorphic continuation as a
function of s. Thus, the Spin L-function LS(s,π, VSpin,E) can be meromorphically continued.

Our investigation is inspired by the recent paper [GH] of the second author with D.
Ginzburg. There, they considered the case when the group GE is split and constructed
a multi-variable Rankin-Selberg integral which is inherently asymmetric: it gives the L-
functions associated to two of the degree 8 representations (say Vµ1 and Vµ2), with one of
them obtained two times (say Vµ1). The Rankin-Selberg integral we consider here is moti-
vated by the S3-symmetry of D4, and has the advantage that it extends in a self evident
fashion to all the quasi-split forms. More importantly, when E is a field, the Spin L-function
is one which cannot be analyzed by the Langlands-Shahidi method.
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2. Preliminaries

We begin by establishing some notations and introducing some background results.

2.1. D4 root system. We fix a Borel subgroup BE of GE and a Levi subgroup TE which is
a maximal torus, both defined over F . Let VE denote the unipotent radical of BE. Over the
algebraic closure F , the choice of (TE , BE) gives a set ∆ of simple absolute roots for the set
Ψ of absolute roots of TE in GE . Using the standard realization of the root system of type
D4, we label these simple roots by






α1 = ε1 − ε2
α0 = ε2 − ε3
α2 = ε3 − ε4
α3 = ε3 + ε4,

where {εi} is the standard basis of R4. In particular, α0 is the branch (or middle) vertex in
the Dynkin diagram of type D4. We let

β0 = α1 + α2 + α3 + 2α0

denote the highest root in Ψ. Here is the Dynkin diagram:

!!

!

!

01

2

3

For each absolute root γ, we let Uγ be the associated root subgroup; it may not be defined
over F . Indeed, the absolute Galois group Gal(F/F ) acts naturally on Ψ and Uγ is defined
over F iff γ is fixed by the Galois action. We also let wγ denote the element of the Weyl
group corresponding to the reflection in γ.

If E is a cubic field, then Gal(F/F ) permutes the roots α1, α2 and α3 transitively. If
E = F × K with K a quadratic field, then without loss of generality, we assume that α1 is
fixed, whereas α2 and α3 are exchanged by the Galois action. If E is the split algebra, the
Galois action on Ψ is trivial.

Let ωi be the fundamental weight so that

〈ωi,α
∨
j 〉 = δij ,

and let µi be the fundamental coweight so that
〈αj , µi〉 = δij .
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In terms of the basis {ε∗i } dual to {εi}, the fundamental coweights are given by:





µ1 = ε∗1,

µ0 = ε∗1 + ε∗2
µ2 = (ε∗1 + ε∗2 + ε∗3 − ε∗4)/2
µ3 = (ε∗1 + ε∗2 + ε∗3 + ε∗4)/2.

Because GE is adjoint, the set {µi} is a basis for the cocharacter group

X∗(TE) = HomF (Gm, TE).

2.2. G2 root system. We have already fixed the pair (TE , BE). If we further fix a Chevalley-
Steinberg system of épinglage relative to this pair, then we have a compatible system of
isomorphisms Uγ

∼= Ga defined over F which are permuted by Gal(F/F ). This gives a
splitting of the outer automorphism group

ΓE ↪→ Aut(GE).

The subgroup scheme of GE fixed pointwise by ΓE is independent of the choice of the épinglage
relative to (TE , BE), and is isomorphic to the split exceptional group of type G2.

Observe that B = G2 ∩BE is a Borel subgroup of G2 and T = TE ∩G2 is a maximal split
torus of G2. The torus T is such that

X∗(T ) = 〈µ0, µ1 + µ2 + µ3〉.

Via the adjoint action of T on GE , we obtain the root system ΨG2 of G2, so that

ΨG2 = Ψ|T .

Here is a diagram of the root system of type G2.

!

"

We denote the short simple root of this G2 root system by α and the long simple root by
β. Then

β = α0|T and α = α1|T = α2|T = α3|T .

Thus, the short root spaces have dimension 3, whereas the long root spaces have dimension
1. For each root γ ∈ ΨG2, the associated root subgroup Uγ is defined over F and the
Chevalley-Steinberg system of épinglage gives isomorphisms:

Uγ
∼=

{
ResE/F Ga, if γ is short;
Ga, if γ is long.

When E is a cubic field, T is in fact the maximal F -split torus of GE and ΨG2 is the relative
root system of GE .
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For each γ ∈ ΨG2, we shall also let Nγ denote the root subgroup of G2 corresponding to
γ. In particular,

Nγ = Uγ ∩ G2.

Because the highest root β0 of the D4-root system restricts to that of the G2-root system,
we shall let β0 denote the highest root of the G2-root system also. This should not cause
confusion.

2.3. Two parabolic subgroups. The G2 root system gives rise to 2 parabolic subgroups of
GE . One of these is a maximal parabolic PE = MENE known as the Heisenberg parabolic.
Its unipotent radical NE is a Heisenberg group and its Levi subgroup ME is spanned by
the 3 satellite vertices in the Dynkin diagram. The other parabolic QE = LEUE is a not-
necessarily-maximal parabolic; its Levi subgroup LE is spanned by the branch vertex α0 and
its unipotent radical UE is a 3-step unipotent group. We shall need to examine the structure
of these 2 parabolics more carefully.

2.4. The Heisenberg parabolic PE. Let us begin with the Heisenberg parabolic PE =
MENE. Its unipotent radical is a Heisenberg group with center Z = Uβ0. Moreover,

NE/Z = Uβ × Uβ+α × Uβ+2α × Uβ+3α
∼= F × E × E × F.

Note that PE ∩ G2 is the Heisenberg maximal parabolic P = MN of G2, with

M = G2 ∩ ME
∼= GL2 and N = G2 ∩ NE .

Let ΩE(F ) denote the minimal non-zero ME(F )-orbit on

NE(F )/Z(F ) = U−β × U−β−α × U−β−2α × U−β−3α
∼= F × E × E × F.

It is the orbit of a highest weight vector and its Zariski closure is a cone. A non-zero element
(a, x, y, d) lies in ΩE iff






xy = ad

x# = ay

y# = dx.

Here
# : E −→ E

is the canonical quadratic map with the property that x ·x# = N(x), where N(x) denotes the
norm of x. So, for example, the element a · (1, x, y, d), with a ∈ F×, lies in ΩE(F ) iff

y = x# and d = N(x).

Observe that there is a natural map NE/Z −→ N/Z given by

(a, x, y, d) +→ (a, Tr(x), T r(y), d)

where Tr(x) denotes the trace of x. Given any element χ ∈ N/Z, we let ΩE,χ denote the fiber
of this map over χ. For example, if E is a field and χ = (1, 0, 0, 0), then ΩE,χ = {(1, 0, 0, 0)}
since the only x ∈ E with N(x) = 0 is x = 0.
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2.5. The 3-step parabolic QE. Now we come to the parabolic QE. The unipotent radical
UE has a filtration

{1} ⊂ U (1)
E ⊂ U (2)

E ⊂ UE

such that
U (1)

E = Uβ0 × Uβ0−β

is the center of UE . Further,

U (2)
E = [UE , UE ] = Uβ0 × Uβ0−β × U2α+β

is the commutator subgroup of UE and is abelian. In particular, UE is a 3-step unipotent
group; hence we call QE the 3-step parabolic. Note that Q = G2 ∩ QE = L · U is the
non-Heisenberg maximal parabolic of G2, with

L = G2 ∩ LE
∼= GL2 and U = G2 ∩ UE .

It will be necessary to have a more explicit description of LE . By examining the root
datum of LE , one can show that

LE
∼= (GL2 × ResE/F Gm)/∆Gm.

In terms of this isomorphism, the simple absolute roots of GE are given on a torus element

t =
(

a 0
0 b

)
× (c1, c2, c3) ∈ TE(F ) ⊂ LE(F )

by:

α0(t) =
a

b
and αi(t) =

b

ci

for i = 1, 2 or 3.

From the above description, one sees that the center ZLE of the Levi subgroup LE is such
that

X∗(ZLE ) = 〈µ1, µ2, µ3〉.
Moreover, the group HomF (LE , Gm) can be described as follows. For 1 ≤ i ≤ 3, let us define
χi ∈ X∗(LE) by

χi(g, c1, c2, c3) =
det(g) · ci

c1c2c3
.

Then the elements χi form a Z-basis of X∗(LE). On restriction to TE , we have:

χi = β0 − α0 − αi for i = 1, 2 or 3.

Now taking into account the Galois action, we have:

HomF (LE , Gm) =






Zχ1 ⊕ Zχ2 ⊕ Zχ3, if E = F × F × F ;
Zχ1 ⊕ Z · (χ2 ⊕ χ3), if E = F × K;
Z · (χ1 + χ2 + χ3), if E is a field.

Observe that the character
νLE = χ1 + χ2 + χ3

always belong to HomF (LE , Gm). Moreover, the modulus character of QE is

δQE = 3 · νLE .
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2.6. Eisenstein series. With the above description of HomF (LE , Gm), we can now define
an unramified character of LE(Fv) or LE(A):

χs =






|χ1|1+s1 · |χ2|1+s2 · |χ3|1+s3, if E = F 3;
|χ1|1+s1 · |χ2 + χ3|1+s23 , if E = F × K;
|χ1 + χ2 + χ3|1+s, if E is a field.

We can then consider the degenerate principal series

IQE(s) = IndGE
QE

χs (unnormalized induction).

The associated Eisenstein series is given by

E(Φ, s, g) =
∑

γ∈QE(F )\GE(F )

Φs(γg)

for a standard section Φs ∈ IQE(s). This sum converges absolutely at s = (s1, s2, s3) if
si + si+1 . si+2 for i = 1, 2, 3 and where the subscripts are taken modulo 3. We let ΩR

denote the region consisting of those s satisfying si + si+1 − si+2 ≥ R, for i = 1, 2, 3.

This Eisenstein series is one of the ingredients in our Rankin-Selberg integral.

2.7. Geomeric description of Spin8(C). At this point, we should describe precisely what
we mean by the representation VSpin of Spin8(C) ! S3. For this, it is necessary to give a
geometric description of the split group Spin8. This (very beautiful) description works over
an arbitrary field k and can be found, for example, in the paper [Gr].

Let O be the split octonion algebra over k. Then O comes equipped with
• an anti-involution x +→ x̄;
• a (quadratic) norm form N : O −→ k such that N(x) = x · x̄ = x̄ · x;
• a (linear) trace form Tr : O −→ k such that Tr(x) = x + x̄.

In particular, we may consider the special orthogonal group SO(O, N).

Though the multiplication in O is not associative, the symbol Tr(xyz) is well-defined and
satisfies

Tr(xyz) = Tr(yzx) = Tr(zxy).

Now the group Spin8 over k can be described by:

Spin8 = {(g1, g2, g3) ∈ SO(O, N)3 : Tr((g1x)(g2y)(g3z)) = Tr(xyz) for all x, y, z ∈ O}.

How does S3 act on Spin8? A naive guess is that it acts on an element (g1, g2, g3) by
permuting its three components. However, this is not the case. By the above, it is true that
cyclic permutations of (g1, g2, g3) do preserve the group Spin8 so that the 3-cycles in S3 act
in the natural way. A transposition, on the other hand, acts as follows:

σ : (g1, g2, g3) +→ (ĝ2, ĝ1, ĝ3)

where
ĝ : x +→ g(x̄).
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2.8. The representation VSpin. By the above description of Spin8, one sees that Spin8
acts on O ⊕ O ⊕ O. The action preserves each factor of O and gives the three irreducible
representations of dimension 8. We can now describe the extension of this action to the
semidirect product Spin8 !S3. Not surprisingly, the 3-cycles in S3 acts on O ⊕ O ⊕ O by
cyclic permutation. The action of the transposition σ, however, is given by:

σ : (x, y, z) +→ (ȳ, x̄, z̄).

It is easy to show that this does define an action of Spin8 !S3. This representation VSpin is
what we use in the definition of the Spin L-function.

We remark that one could consider the twist of VSpin by the sign representation of S3 and
thus obtain a different L-function. Though we stated our main theorem in the introduction for
L(s,π, VSpin,E), a slight twist of our Rankin-Selberg integral will give an analogous statement
for L(s,π, VSpin,E ⊗ (sign)).

3. Minimal Representation

Now we come to another ingredient in our Rankin-Selberg integral. For each local field
Fv, the group GE(Fv) has a so-called minimal representation ΠEv , first studied by Kazhdan
[K]. It is the analog of the Weil representation of the metaplectic group.

3.1. Local minimal representation. To describe this minimal representation, let r : S3 →
GL2(C) denote the 2-dimensional irreducible representation of S3. Then the composite r ◦
ρE,v is a 2-dimensional representation of Gal(F v/Fv). By Jacquet-Langlands, this is the L-
parameter of an irreducible admissible representation rE,v of GL2(Fv) given by the following
table:

Ev rE,v

F 3
v π(1, 1)

Fv × Kv π(1,χKv)
Galois field π(χEv ,χ

−1
Ev

)
non-Galois field monomial supercuspidal

Here, χKv and χEv denote the characters of F×
v associated to Kv and Ev by local class

field theory, and π(µ1, µ2) denotes the representation of GL2(Fv) unitarily induced from the
character µ1×µ2 of the diagonal torus. The central character of rE,v is precisely the quadratic
character χKE,v , and we define a representation of

LE(Fv) ∼= (GL2(Fv) × E×
v )/∆F×

v

by:
σE,v = rE,v ! (χKE ,v ◦ NEv/Fv).

Here and elsewhere, ! refers to “outer tensor product”.

Now ΠE,v is the unique irreducible submodule of the induced representation

IndGE
QE

δ1/6
QEv

σE,v (unnormalized induction).

If Ev is unramified, then ΠEv is a spherical representation.
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3.2. Automorphic realization. Let ΠE = ⊗vΠEv be the global minimal representation of
GE(A). It is known (cf. [GGJ]) that there is a unique GE-equivariant embedding

θ : ΠE −→ A(GE)
which is constructed using residues of Eisenstein series. We need to know some properties of
this minimal representation.

3.3. Fourier coefficients. Fix a non-trivial unitary character ψv of Fv. Using ψv, the
Killing form and the exponential map, the unitary characters of NE(Fv) can be parametrized
by elements of NE(Fv)/Z(Fv). Let χv be a non-trivial unitary character of NE(Fv). Then
the key property of ΠEv is that:

dim HomNE(Fv)(ΠEv , Cχv) =

{
1, if χv ∈ ΩE(Fv);
0, if not.

Here ΩE(Fv) is as introduced in (2.4) and parametrizes the minimal non-trivial ME(Fv)-orbit
of characters of NE(Fv). An element in ΩE(Fv) is the character χ0 such that

χ0|Uβ0−α0
= ψv

and χ0|Uγ is trivial for any other root subgroup Uγ ⊂ NE. In terms of the description of ΩE

given in (2.4),
χ0 = (0, 0, 0, 1).

These local results on HomNE(Fv)(ΠEv , Cχv) imply:

Proposition 3.3.1. (i) For f ∈ ΠE, the Fourier expansion of θ(f) along NE is supported
on the (Zariski) closure of the minimal non-trivial ME(F )-orbit ΩE(F ) of unitary characters
of NE(A) trivial on NE(F ).

(ii) For χ ∈ ΩE(F ), the Fourier coefficient θ(f)NE ,χ has an Euler product expansion in
terms of the local functionals. Namely, if f = ⊗vfv, then

θ(f)NE ,χ(g) =
∏

v

Lχv(gv · fv),

where each Lχv is a non-zero element of the 1-dimensional space HomNE(Fv)(Πv, Cχv), nor-
malized for almost all v by the requirement that Lχv(f0

v ) = 1 if f0
v is the normalized spherical

vector in ΠE,v.

3.4. An explicit formula. Finally, we come to the only new result in this section. We have
fixed a Chevalley-Steinberg system of épinglage for GE over F . For almost all finite places v
of F , this system of épinglage gives GE an OFv -structure such that GE(OFv ) is a hyperspecial
maximal compact subgroup of GE(Fv).

Fix such a non-archimedean place v, and let Lχ0 be a non-zero element of the 1-dimensional
space HomNE (ΠEv , Cχ0). We have the following explicit formula:

Proposition 3.4.1. Assume that v is a finite place such that GE(OFv) is hyperspecial (so that
Ev is unramified) and let f0 be a non-zero GE(OFv)-spherical vector in ΠEv . For t ∈ TE(Fv),
let us set

k0(t) = ord(β0(t)/α0(t)).
If χ0 has conductor zero (with respect to the OFv -structure on NE(Fv)), then

Lχ0(tf0) = 0 if k0(t) < 0.
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However, Lχ0 is non-zero on f0, so that we may normalize Lχ0 by setting Lχ0(f0) = 1. Then,
if k0(t) ≥ 0, we have:

(i) If Ev = F 3
v , then

Lχ0(t · f0) = |β0(t)| · (k0(t) + 1) .

(ii) If Ev = Fv × Kv, then

Lχ0(t · f0) = χKv(β0(t)) · |β0(t)| · ε2(k0(t) + 1)

where ε2(·) is the Legendre symbol
( ·

2

)
(with ε2(0) = 0).

(iii) If E is the unramified cubic field extension of Fv, then

Lχ0(t · f0) = |β0(t)| · ε3(k0(t) + 1),

where ε3(·) is the Legendre symbol
( ·

3

)
(with ε3(0) = 0).

Proof. In the split case, this is a result of Kazhdan-Polishchuk [KP]. We give a different proof
which covers the non-split case as well.

Choose a representative in GE(OFv ) of the Weyl group element wα; we denote this repre-
sentative by wα also. Then wα normalizes NE and it will be more convenient to replace χ0

and Lχ0 by χ′
0 = wαχ0 and L′ = wαLχ0 . Let us give an explicit construction of L′.

By definition, the linear functional L′ factors through the quotient (ΠEv )NE ,χ′
0

which is
1-dimensional. The root subgroup Uα(Fv) normalizes NE(Fv) and fixes the character χ′

0. It
thus acts on (ΠEv)NE ,χ′

0
and this action is in fact trivial. Thus, we see that L′ factors as:

ΠEv −−−−→ (ΠEv )UE

lψv−−−−→ C
where

lψv ∈ HomUβ ((ΠEv )UE , Cψv).

Now we recall that ΠE,v is the unique irreducible submodule of

IndGE
QE

δ1/6
QEv

σE,v.

By Frobenius reciprocity, there is a natural QEv -equivariant map

p : ΠEv −→ δ1/6
QEv

⊗ σE,v

which is simply given
p(f) = f(1) for f ∈ ΠEv .

Thus L′ is the composite of p with the unique Whittaker functional lψv of σE,v.

Now take a torus element

t =
((

a 0
0 b

)
, x

)
∈ TE(Fv) ⊂ LE(Fv) = (GL2(Fv) × E×

v )/∆F×
v .

Then
L′(t · f0) = lψv (f0(t)) = δQEv

(t)1/6 · lψv(σE,v(t)(f0(1)))

=
|ab|3/2

|N(x)|
· χKE(N(x)) · Wψv

(
a 0
0 b

)

11



where Wψv is the normalized spherical Whittaker function of the representation rE,v of
GL2(Fv). The formula for Wψv on a torus element is well-known:

|a/b|−1/2 · Wψv

(
a 0
0 b

)
= χKE(b) · ε(ord(a/b))

where

ε(k) :=






k + 1, if Ev = F 3
v ;

ε2(k + 1), if Ev = Fv × Kv;
ε3(k + 1), if Ev is the unramified cubic field.

Thus, we deduce that

L′(t · f0) =
|a2b|
|N(x)| · χKE(b · N(x)) · ε(ord(a/b)) = |β0(t)| · χKE(β0(t)) · ε(ord(α0(t)).

Conjugating back by wα gives the desired result, since wα fixes β0 and sends α0 to β0 − α0.
The proposition is proved. "

For a general vector f ∈ ΠE , the above construction of the linear functional Lχ0 allows one
to obtain the asymptotics of the function (t, k) +→ Lχ0(tk ·f) on TE(Fv)×Kv. This is needed
in Section 9; see Lemma 9.2.2. Further, in Lemma 9.5.1, we shall give another description of
the functional Lχ0 by means of a local Fourier-Jacobi map.

4. A Rankin-Selberg Integral

We are now ready to write down our Rankin-Selberg integral. Let π be a globally generic
cuspidal representation of GE(A). For ϕ ∈ π, Φs ∈ IQE(s) and f ∈ ΠE , we set

ZE(ϕ,Φ, f, s) =
∫

GE(F )\GE(A)
ϕ(g) · θ(f)(g) · E(Φ, s, g) dg.

The purpose of this section is to unfold this Rankin-Selberg integral of Shimura type.

Theorem 4.0.2. Let V ′
E be the maximal unipotent subgroup of GE given by

V ′
E = wαVEw−1

α = NE ! U−α.

It is the unipotent radical of the Borel subgroup B′
E = wαBEw−1

α , with associated simple
roots −αi (i = 1, 2, 3) and β0 −α0. Let ψ be the generic unitary character of V ′

E(A) which is
non-trivial on the associated relative simple root subgroups. Then we have:

ZE(ϕ,Φ, f, s) =
∫

V ′
E(A)\GE(A)

ϕV ′
E ,ψ(g) · θ(f)NE ,χ0(g) · Φ̂s(g) dg

where

Φ̂s(g) =
∫

U−α(A)
Φs(ug) · ψ(u) du.

Proof. Unfolding the Eisenstein series in the range of absolute convergence, we get
12



ZE(ϕ,Φ, f, s)

=
∫

QE(F )\GE(A)
ϕ(g) · θ(f)(g) · Φs(g) dg

=
∫

QE(F )U (1)
E (A)\GE(A)

Φs(g) ·
(∫

U (1)
E (F )\U (1)

E (A)
ϕ(zg) · θ(f)(zg) dz

)

dg

=
∫

QE(F )U
(1)
E (A)\GE(A)

Φs(g) · ϕ
U

(1)
E

(g) · θ(f)
U

(1)
E

(g) dg

+
∫

QE(F )U (1)
E (A)\GE(A)

Φs(g) ·




∑

χ '=1

ϕ
U (1)

E ,χ
(g) · θ(f)

U (1)
E ,χ

(g)



 dg.

Lemma 4.0.3. The first term in the last sum is zero.

Proof. The argument is easiest when E is a field and is more complicated in the split case;
it ultimately relies on the fact that ϕ is cuspidal.

We shall only give the argument when E is a field. Consider the Fourier expansion of
θ(f)

U
(1)
E

along NE(F )\NE(A). Because θ(f)
U

(1)
E

is left-invariant under Uβ0−α0(A), this has
the form

θ(f)
U

(1)
E

=
∑

χ∈ΩE(F ):χ|Uβ0−α0
=1

θ(f)NE ,χ.

In other words, the character χ intervening in the above sum is represented by (a, x, y, 0) ∈
ΩE(F ). But if E is a field, then the only elements of this form in ΩE(F ) are (a, 0, 0, 0) with
a ∈ F .

Consider first the constant term θ(f)NE in the Fourier expansion, which corresponds to
a = 0. By [GGJ, Prop. 5.3(iv)], the restriction of θ(f)NE to ME lies in the span of two
automorphic characters of ME(A). Since this is the case for any f ∈ ΠE , we see that θ(f)NE

is left-invariant under Uα(A), and thus under UE(A).

Now consider the other terms in the Fourier expansion of θ(f)
U

(1)
E

. If ψa is the character
associated to (a, 0, 0, 0) ∈ ΩE(F ) with a 1= 0, then Uα(A) normalizes NE(A) and fixes the
character ψa. Thus the Fourier coefficient θ(f)NE ,ψa is left-invariant under Uα(A) (we have
used the local analog of this fact in the proof of Prop. 3.4.1). Hence θ(f)NE ,ψa is also
left-invariant under UE(A). Hence we have:

∫

QE(F )U
(1)
E (A)\GE(A)

Φs(g) · ϕ
U

(1)
E

(g) ·
(

∑

a∈F

θ(f)NE ,ψa(g)

)
dg

=
∫

LE(F )UE(A)\GE(A)
Φs(g) ·

(
∑

a∈F

θ(f)NE,ψa(g)

)
·
(∫

UE(F )\UE(A)
ϕ(ug) du

)
dg

= 0

since ϕ is cuspidal. This proves the lemma when E is a field.
13



When E is not a field, there will be more terms intervening in the Fourier expansion of
θ(f)

U (1)
E

. Thankfully, there are also more F -rational standard parabolics in GE . These other
terms in the Fourier expansion ultimately lead to the constant terms of ϕ along these other
parabolics. We omit the details.

"

On the other hand, the non-trivial characters of U (1)
E (A) in the second term are permuted

transitively by QE(F ). If we let χ0 denote the character which is trivial on Uβ0 and non-
trivial on Uβ0−α0 , then the stabilizer of χ0 in QE(F ) is the subgroup AEVE where AE is the
3-dimensional torus in TE such that

X∗(AE) = 〈µ1 − µ0, µ2 − µ0, µ3 − µ0〉.

In view of this, we have:

ZE(ϕ,Φ, f, s)

=
∫

QE(F )U (1)
E (A)\GE(A)

Φs(g) ·




∑

γ∈AE(F )VE(F )\QE(F )

ϕ
U (1)

E ,χ0
(γg) · θ(f)

U (1)
E ,χ0

(γg)



 dg

=
∫

AE(F )VE(F )U (1)
E (A)\GE(A)

Φs(g) · ϕ
U (1)

E ,χ0
(g) · θ(f)

U (1)
E ,χ0

(g) dg

=
∫

AE(F )Uα(F )NE(A)\GE(A)
Φs(g) ·

(∫

NE(F )U (1)
E (A)\NE(A)

ϕ
U (1)

E ,χ0
(ng) · θ(f)

U (1)
E ,χ0

(ng)

)

dg

By Prop. 3.3.1(i), we see that

θ(f)
U

(1)
E ,χ0

(g) =
∑

x∈E

θ(f)NE ,ψx(g).

Here ψx corresponds to the element

(N(x), x#, x, 1) ∈ ΩE(F ).

Moreover, the group Uα(F ) ∼= E acts simply transitively on the set {ψx : x ∈ E}. Note that
if x = 0, then ψ0 is simply the trivial extension of χ0 from U (1)

E to NE. Thus,

ZE(ϕ,Φ, f, s) =
∫

AE(F )Uα(F )NE(A)\GE(A)
Φs(g) ·

(
∑

x∈E

ϕNE ,ψx(g) · θ(f)NE ,ψx(g)

)
dg

=
∫

AE(F )NE(A)\GE(A)
Φs(g) · ϕNE ,ψ0(g) · θ(f)NE ,ψ0(g) dg

Now consider the Fourier expansion of ϕNE ,ψ0 along U−α. Because ϕ is cuspidal, this takes
the form:

ϕNE ,ψ0(g) =
∑

γ∈AE(F )

ϕV ′
E ,ψ(γg),

where ψ is a generic character of V ′
E . Substituting this into the last expression for our

Rankin-Selberg integral, and using the fact that θ(f)NE ,ψ0 is left-invariant under U−α(A), we
14



obtain:

ZE(ϕ,Φ, f, s)

=
∫

AE(F )NE(A)\GE(A)
Φs(g) · θ(f)NE ,ψ0(g) ·




∑

γ∈AE(F )

ϕV ′
E ,ψ(γg)



 dg

=
∫

NE(A)\GE(A)
Φs(g) · θ(f)NE ,ψ0(g) · ϕV ′

E ,ψ(g) dg

=
∫

V ′
E(A)\GE(A)

θ(f)NE ,ψ0(g) ·
(∫

U−α(A)
ϕV ′

E ,ψ(ug) · Φs(ug) du

)

dg

=
∫

V ′
E(A)\GE(A)

θ(f)NE ,ψ0(g) · ϕV ′
E ,ψ(g) · Φ̂s(g) dg.

Theorem 4.0.2 is proved. "

5. Local Zeta Integral

After Theorem 4.0.2, we see that

ZE(ϕ,Φ, f, s) =
∏

v

Zv(ϕv,Φv, fv, s)

where
Zv(ϕv ,Φv, fv, s) =

∫

V ′
E(Fv)\GE(Fv)

WV ′
E ,ψ(g · ϕv) · Lχ0(g · fv) · Φ̂s,v(g) dg.

This integral converges when s ∈ ΩR (cf. (2.6)) for R . 0, as we shall show in Prop.
9.1.3. The rest of the paper is devoted to the study of this local zeta integral. In particular,
we shall compute the local zeta integral explicitly when all the data involved are unramified.
The purpose of this section is to provide explicit formulas for the 3 functions appearing in
the local integral in the unramified setting.

Assume henceforth that all the data involved in Zv are unramified. Then by the Iwasawa
decomposition, we have

Zv(ϕv ,Φv, fv, s) =
∫

SEv (Fv)
WV ′

E ,ψ(t · ϕv) · Lχ0(t · fv) · Φ̂s,v(t) · δB′
E
(t)−1 dt

where SEv ⊂ TEv is the maximal Fv-split torus.

Henceforth, since the setting is entirely local, we shall suppress v from the notations.

5.1. A change of system of simple roots. Because we are looking at the Whittaker
functional relative to the Borel subgroup B′

E , it is useful to use the corresponding system of
simple roots:

α′
0 = β0 − α0, α′

i = −αi, for i = 1,2 and 3.
For this new system of simple roots, the highest root is still

β0 = 2α′
0 + α′

1 + α′
2 + α′

3

and the modulus character of B′
E is given by

δB′
E

= |6(α′
1 + α′

2 + α′
3) + 10α′

0|.
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The associated fundamental coweights are given by:

µ′
0 = µ0 µ′

i = µ0 − µi for i = 1, 2 and 3.

As above, let SE ⊂ TE denote the maximal F -split torus. We consider the 3 different
cases:

• if E = F × F × F , then SE = TE . An element of SE(F ) is of the form

t = µ′
0(t0) · µ′

1(t1) · µ′
2(t2) · µ′

3(t3), with ti ∈ F×.

We shall sometimes write this element as t = (t0, t1, t2, t3).

• if E = F × K with K a quadratic field, then

X∗(SE) = 〈µ′
0, µ

′
1, µ

′
2 + µ′

3〉.

An element of SE(F ) is of the form

t = µ′
0(t0) · µ′

1(t1) · (µ′
2µ

′
3)(t23).

We shall write this element as t = (t0, t1, t23).

• if E is a cubic field, then

X∗(SE) = 〈µ′
0, µ

′
1 + µ′

2 + µ′
3〉.

An element of SE(F ) is of the form

t = µ′
0(t0) · (µ′

1µ
′
2µ

′
3)(t123).

We shall write this element as t = (t0, t123).

5.2. Casselman-Shalika formula. For the value of the Whittaker functional WV ′
E ,ψ on

SE(F ), one has the well-known Casselman-Shalika formula. Let us state this precisely since
it is slightly more subtle when the group GE is not split. To the best of our knowledge,
the first discussion about the interpretation of the Casselman-Shalika formula in terms of
an appropriate dual group in non-split cases is due to Tamir [T]. Our description below is
somewhat cleaner than that in [T], since the relative root system involved here is reduced.
The description in [T] works for all relative root systems; indeed the case needed in [T] is
that of the quasi-split unitary groups whose relative root system is of type BCn.

For t ∈ SE(F ), WV ′
E ,ψ(t · ϕ) is zero unless |ti| ≤ 1 for all entries ti of t, in which case it

depends only on the valuation of the ti’s. If we write ti = 1ki with ki ≥ 0, then we denote
the corresponding torus element by

t = t(k) = t(k0, k1, k2, k3) or t(k0, k1, k23) or t(k0, k)

in the three respective cases.

Now we need to examine the notion of Satake parameter for a general quasi-split group
with reduced relative root system. The Satake parameter tπ which was used in the definition
of the Spin L-function is a G∨

E-conjugacy class in the quotient G∨
E ! Gal(Fur/F ) of the L-

group LGE , where Fur is the maximal unramified extension of F in F . In fact, tπ lies in the
coset G∨

E · Frob of the Frobenius element Frob. Thus we may write

tπ = (sπ,Frob) ∈ G∨
E ! Gal(Fur/F )
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where now sπ is well-defined up to Frob-conjugacy as an element of G∨
E . Under Frob-

conjugation, we may assume further that

sπ ∈ H ′
E := (G∨

E)Gal(Fur/F ),

in which case sπ is well-defined up to conjugacy in H ′
E. Note that

H ′
E =






Spin8(C), if E = F 3;
Spin7(C), if E = F × K;
G2(C), if E is a field.

However, the Casselman-Shalika formula is not interpreted in terms of the element tπ or
the element sπ. Rather, the group GE contains a connected F -split subgroup HE whose
root system is equal to the relative root system of GE and whose maximal split torus is the
maximal F -split subtorus SE of TE . In our case,

HE =






GE , if E = F 3;
SO7, if E = F × K;
G2, if E is a field,

so that its dual group is

H∨
E =






Spin8(C), if E = F 3;
Sp6(C), if E = F × K;
G2(C), if E is a field.

From the diagram of inclusions
SE −−−−→ HE

ι

6
6

TE −−−−→ GE

we obtain on the dual side:

T∨
E −−−−→ G∨

E

ι∗
6

S∨
E −−−−→ H∨

E

where the horizontal arrows are inclusions but ι∗ is surjective. Indeed, ι∗ restricts to an
isogeny

(T∨
E )Gal(Fur/F ) −→ S∨

E.

As explained by Borel in [Bo, §6], the map ι∗ induces a bijection

{semisimple Frob-conjugacy classes in G∨
E} ↔ {semisimple conjugacy classes in H∨

E}
We set

sπ = ι∗(sπ).
It is the element sπ which intervenes in the Casselman-Shalika formula.

More precisely, the element t = t(k) corresponds to an element of X∗(SE) ∼= X∗(S∨
E) in

the dominant chamber and thus gives rise to an irreducible representation Vk of H∨
E. The

Casselman-Shalika formula says:
17



Proposition 5.2.1. With the notations introduced above,

δB′
E
(t(k))−1/2 · WV ′

E ,ψ(t(k) · ϕ) = Tr(sπ|Vk).

In our unramified computations in the following sections, we shall state more precisely
what the representation Vk is for each given k.

5.3. The map ι∗. For the purpose of calculation, we need to understand the map ι∗ more
explicitly. When E = F 3, there is nothing to do, since ι is the identity map and sπ = sπ. We
examine the other two cases in turn. Since

X∗(T∨
E ) = X∗(TE) =

3⊕

i=0

Zα′
i,

the element sπ ∈ T∨
E is of the form

sπ =
3∏

i=0

α′
i(ti).

Indeed, if sπ is assumed to lie in (T∨
E )Gal(Fur/F ), then we further have t2 = t3 (respectively,

t1 = t2 = t3) when E = F × K (respectively when E is a field). On the other hand,

X∗(S∨
E) = X∗(SE) ∼=

{
X∗(TE)/〈α′

2 − α′
3〉, if E = F × K;

X∗(TE)/〈α′
1 − α′

2,α
′
2 − α′

3〉, if E is a field.

If we let α′
i denote the image of α′

i in the quotient lattice above, then a basis of X∗(S∨
E) is

{
{α′

0,α
′
1,α

′
2}, if E = F × K;

{α′
0,α

′
1}, if E is a field.

Now we have:

• when E = F × K,

ι∗ : α0(t0) · α′
1(t1) · α′

2(t2) · α′
3(t3) +→ α′

0(t0) · α′
1(t1) · α′

2(t2t3)

• when E is a field,

ι∗ : α0(t0) · α′
1(t1) · α′

2(t2) · α′
3(t3) +→ α′

0(t0) · α′
1(t1t2t3)

5.4. Formula for Lχ0(t · f). On the other hand, Prop. 3.4.1 gives an explicit formula for
Lχ0(t · f). For ease of reference, we restate it here:

• when E = F 3,

Lχ0(t(k0, k1, k2, k3) · f) = |β0(t)| · (ord(α′
0(t)) + 1) = q−(2k0+k1+k2+k3) · (k0 + 1).

• when E = F × K,

Lχ0(t(k0, k1, k23) · f) = (−1)k1 · q−(2k0+k1+2k23) · ε2(k0 + 1).

• when E is a field,

Lχ0(t(k0, k123) · f) = q−(2k0+3k123) · ε3(k0 + 1).
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5.5. Formula for Φ̂s(t). Finally, we need a formula for Φ̂s(t). We first note the following
simple lemma, whose proof we leave to the reader.

Lemma 5.5.1. Suppose that Φ is the unramified vector in IndSL2
B χs (unnormalized induc-

tion), where
χs(α∨(t)) = |t|1+s

and α is the positive root of SL2. Then
∫

Fv

Φ(x−α(r)) · ψ(tr) dr =
ζ(s)

ζ(s + 1) · ζ((ord(t) + 1)s)
.

With this lemma, we can calculate Φ̂s(t). We shall do so assuming that E = F 3 is split.
The other cases are similarly handled. Let

t =
3∏

i=0

µ′
i(ti).

Then

Φ̂s(t)

=
∫

F 3
v

Φs(x−α1(r1)x−α2(r2)x−α3(r3)t) · ψ(r1 + r2 + r3) dr1 dr2 dr3

=
∫

F 3
v

Φs(t · (
3∏

i=1

x−αi(t
−1
i ri)) · ψ(r1 + r2 + r3) dr1 dr2 dr3

=|t1|s1+1|t2|s2+1|t3|s3+1|t0|s1+s2+s3+3 ·
∫

F 3
v

Φs(
3∏

i=1

x−αi(t
−1
i ri)) · ψ(r1 + r2 + r3) dr1 dr2 dr3

=|t1|s1+2|t2|s2+2|t3|s3+2|t0|s1+s2+s3+3·

·
∫

F 3
v

Φs(
3∏

i=1

x−αi(ri)) · ψ(t1r1) · ψ(t2r2) · ψ(t3r3) dr1 dr2 dr3

Now, observing that
Φs(α∨

1 (t)) = |t|1+s2+s3−s1 and so on,
and appealing to Lemma 5.5.1, we obtain the following proposition.

Proposition 5.5.2. (i) When E = F 3,

Φ̂s(t) =

|t1|s1+2|t2|s2+2|t3|s3+2|t0|s1+s2+s3+3·
ζ(s2 + s3 − s1)

ζ(s2 + s3 − s1 + 1) · ζ((ord(t1) + 1)(s2 + s3 − s1))
·

ζ(s3 + s1 − s2)
ζ(s3 + s1 − s2 + 1) · ζ((ord(t2) + 1)(s3 + s1 − s2))

·

ζ(s1 + s2 − s3)
ζ(s1 + s2 − s3 + 1) · ζ((ord(t3) + 1)(s1 + s2 − s3))

.

(ii) When E = F × K,
Φ̂s(t) =
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|t1|s1+2|t23|2s23+4|t0|s1+2s23+3·

ζ(2s23 − s1)
ζ(2s23 − s1 + 1) · ζ((ord(t1) + 1)(2s23 − s1))

·

ζK(s1)
ζK(s1 + 1) · ζK((ord(t23) + 1)s1)

.

(iii) When E is a field,

Φ̂s(t) = |t123|3s+6|t0|3s+3 · ζE(s)
ζE(s + 1) · ζE((ord(t123) + 1)s)

.

We are now ready to begin the unramified computation, Here is the main local theorem
to be proved:

Theorem 5.5.3. Set

Z∗(ϕ,Φ, f, s) = ζ̂E(s + 1) · ζ(|s|) · Z(ϕ,Φ, f, s).

Then

Z∗(ϕ,Φ, f, s) =
L(s,π, VE,Spin)

ζE(2s)
.

Before diving into the computation, we would like to point out the three main steps in the
computation. Hopefully this will make the structure of the computations more transparent.

(i) (Separation of Variables). Both sides of the identities are functions in the vector s,
but on the RHS, one clearly has a separation of variables. Thus, our first step is to
prove that the LHS also has separation of variables. This is the most complicated
step and uses the results of [BKW] regarding the decomposition of tensor products
of representations of classical groups. Obviously, this step is not necessary if E is a
field.

(ii) (Replacing sπ by sπ). Observe that the LHS is expressed in terms of sπ via the
Casselman-Shalika formula, but the RHS is in terms of sπ. Thus, the second step is
to interpret the RHS in terms of sπ. Obviously, this step is not necessary if E = F 3.

(iii) (Comparison) The final step is the comparision of the two sides. This also requires
knowledge of decomposition of the tensor product of two representations. However,
one of the representations will be fairly small, and so one can appeal to a more direct
technique, such as Brauer’s method, as opposed to using [BKW].

6. Unramified Computation: E a field.

As might be expected, once the subtleties of non-split groups are understood, the compu-
tation there turns out to be simpler than the split case. Thus we begin with the case when
E is a field.
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6.1. Zeta integral side. Recall that we have the two versions of Satake parameter:

sπ ∈ H ′
E
∼= G2(C) and sπ ∈ H∨

E
∼= G2(C).

If we set
x = q−3s,

then the LHS of Theorem 5.5.3 is equal to:

(1 − x)−1 ·
∑

k0,k

ε3(k0 + 1) · Tr(sπ|V
H∨

E
k0,k) · x

k0+k · 1 − xk+1

1 − x

= (1 − x)−1 ·
∑

k0,k

k∑

l=0

ε3(k0 + 1) · Tr(sπ|V
H∨

E
k0,k) · x

l+k0+k.

Here, Vk0,k is the irreducible representation of H∨
E with highest weight (k0, k), where (1, 0)

stands for the fundamental weight attached to the 7-dim representation of H∨
E and (0, 1) that

of the adjoint representation.

6.2. L-function side. On the other hand, to explicate the other side of the main theorem,
which involves the Spin L-function, we consider the restriction of VE,Spin to the subgroup
H ′

E × Gal(F/F ). This decomposes as:

VE,Spin
∼= (V H′

E
1,0 ⊕ 1) ! (1 ⊕ χE ⊕ χ−1

E )

where V
H′

E
1,0 is the 7-dimensional fundamental representation of H ′

E
∼= G2(C). Since tπ =

(sπ,Frob) with sπ ∈ H ′
E, we see that

det(1 − q−stπ|VE,Spin) = (1 − q−3s) · det(1 − q−3ssπ|V
H′

E
1,0 ).

Thus the RHS of the identity in Theorem 5.5.3 is equal to

L(s,π, VE,Spin)
ζE(2s) · ζ(3s)

=(1 − q−6s) · (1 − q−3s)−1 · det(1 − q−3ss3
π|V

H′
E

1,0 )−1

=(1 − x)−1 · (1 − x2) ·
∑

n

xn · Tr(s3
π|Symn(V H′

E
1,0 ))

=(1 − x)−1 ·
∑

n

Tr(s3
π|V

H′
E

n,0 ) · xn.

In the last equality above, we have used the fact that

Symn(V1,0) ∼= Symn−2(V1,0) ⊕ Vn,0.

For this fact, see the table on [Br, Pg. 13].

6.3. Comparison. We can now attempt to compare the two sides. Unfortunately, one side
of the identity is expressed in terms of sπ while the other in terms of sπ. Thus, we need to
express the trace of s3

π on V
H′

E
n,0 in terms of the trace of sπ on some representation of H∨

E.
Using the explicit description of the map ι∗ in (5.3) and the Weyl character formula, we
obtain:

21



Lemma 6.3.1.

Tr(sπ|V
H′

E
n,0 ) =

Tr(sπ|V
H∨

E
2,n )

Tr(sπ|V
H∨

E
2,0 )

.

If we cancel the factor (1 − x)−1 from both sides of the desired identity and compare the
coefficient of xn, we see that to complete the proof of Theorem 5.5.3 in this case, we need to
prove:

Proposition 6.3.2.

Tr(sπ|V2,n)
Tr(sπ|V2,0)

=
∑

k+k0≤n≤2k+k0

ε3(k0 + 1) · Tr(sπ|Vk0,k).

The rest of this section is devoted to the proof of this proposition.

6.4. Reduction to SL3. The long root subgroups of G2(C) generate a subgroup of G2

isomorphic to SL3(C), sharing the same maximal torus S∨
E . The roots {β, 3α + β} of G2

form a system of simple roots for SL3, whose fundamental weights are
{
ω1 = 2α + β

ω2 = α + β.

We write Wa,b for the irreducible representation of SL3(C) with highest weight aω1 + bω2

and let χa,b be its character. Henceforth, we shall use the coordinates given by the weights
ω1 and ω2 of SL3.

Using the Weyl character formula, one checks that

Tr(s|Va,b) =
Tr(s|Wa+b+1,b) − Tr(s|Wb,a+b+1)

Tr(s|W1,0) − Tr(s|W0,1)
.

Thus the identity of Prop. 6.3.2 is:

(6.4.1) (χn+3,n − χn,n+3) (χ1,0 − χ0,1)

=




∑

k+k0≤n≤2k+k0

ε3(k0 + 1) · (χk+k0+1,k − χk,k+k0+1)



 (χ3,0 − χ0,3) .

We use Brauer’s method, which for these purposes is conveniently stated as follows. Let ξ
be any virtual character of SL3(C), given by

ξ(t) =
∑

ν

m(ν)tν ,

with the sum being over the weight lattice, m(ν) ∈ Z for each ν, and m(ν) = 0 for almost all
ν. Note also that, since χ is a virtual character, m(wν) = m(ν) for any weight ν and any w
in the Weyl group. For λ any weight, let

Aλ(t) =
∑

w∈WSL3

sgn(w)twλ,
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and let χλ = Aλ+ρ/Aρ. Then

(6.4.2) ξχλ =
∑

ν

m(ν)χλ+ν .

Observe that χλ, so defined, is equal to the character of the irreducible representation with
highest weight λ when λ is dominant, and is zero when λ + ρ has a stabilizer in the Weyl
group, and that χλ + χµ = 0 whenever λ + ρ and µ + ρ are related by a simple reflection.

We apply (6.4.2) to both sides of (6.4.1), and summarize the answer by a picture of the
weight lattice where each node τ is labeled with the multiplicity of the corresponding χτ . As
it turns out all multiplicities are 0,1 or -1, and 0’s are omitted. The application to the left
hand side, with ξ = χ1,0 − χ0,1, is straightforward, and for n ≥ 1 yields two hexagons of side
1, centered at (n + 3, n) and (n, n + 3) (here, and throughout, weights are expressed in terms
of the basis of fundamental weights) with alternating signs. See Figure 1.

(n,n+3) (n+3,n)+

+

++

+

+ - -

--

- -

Figure 1. the LHS of (6.4.1).

Next we apply (6.4.2) to the right hand side of (6.4.1) with ξ = χ3,0−χ0,3. The representa-
tions W3,0 and W0,3 have nine weights each, but six of them are common to both, and cancel,
leaving a hexagon with sides of length three, and signs alternating. As may be expected, the
details are a bit different for the first few values of n. We give an argument which works
for n ≥ 6. The reader may find it an enjoyable diversion to work out the remaining cases.
Alternatively, one could use the computer package LiE to verify the cases n < 6.

Now, we note that
∑

k+k0≤n≤2k+k0

ε3(k0 + 1) · (χk+k0+1,k − χk,k+k0+1)

=
∑

0≤b<a≤n+1≤a+b

ε3(a − b)χa,b −
∑

0≤a<b≤n+1≤a+b

ε3(b − a)χa,b

=
∑

0≤a,b≤n+1≤a+b

ε3(a − b)χa,b.
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b=
0a=0

b=
n+
1 a=n+1

a+b=n+1

Figure 2

The sum is now over the lattice points contained in the triangle with vertices (n+1, 0), (0, n+1)
and (n + 1, n + 1). Let us denote this triangle by ∆n+1.

We now multiply the above sum by ξ, using (6.4.2) on each term. It’s clear that χτ appears
in the product with nonzero multiplicity only if τ lies in one of the six translates of ∆n+1 by
the weights ν such that m(ν) 1= 0. Setting

ε3(τ) = ε3(a − b) for τ = (a, b),

observe that
ε3(τ) = ε3(τ + ν) for each such ν.

Figure 2 shows ∆n+1, along with its six translates, visualized as pointing straight up. With
things drawn this way, χ(τ) is constant on vertical lines, and ρ points straight up. The
multiplicity with which χτ = χa,b appears in the product is

ε3(τ)
∑

ν:τ−ν∈∆n+1

m(ν).

Now, we must analyze the cancellation coming from the overlap of the six translates of this
triangle.

This is displayed in Figure 3: we first see how many of the translates with m(ν) = 1 each
point lies in, and then how many of the ones with m(ν) = −1. Subtracting, we see that the
only weights which contribute lie in six rhombi with side 2, one on each side of each vertex
of our triangle. (The precise picture is only valid for n at least 6 but the reader will find that
this description holds for n as small as 2. )

We consider the two rhombi near the vertex (n+1, n+1). As we see in Figure 4, the points
on the long diagonals of our two rhombi do not contribute because ε3(a− b) is zero on these
lines. The remaining points give precisely the two hexagons of side 1 we saw before, and the
signs match.

Next we turn to the four rhombi at the vertices (n + 1, 0) and (0, n + 1). In Figure 5 one
of these rhombi is displayed in grey, while its translate by ρ is shown in black. We see that,
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1

1

!1

!1

!1 0

0 0
0

0

00

00

0

! =2

1

1

1

3

1
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1

1

1

3

1

11 2

2

Figure 3. Positive and negative translates of ∆n+1 cancel almost completely.

00 0-1 -1 -1 -11 1 1 1

+-
(n,n+3) (n+3,n)+

+

++

+

+ - -

--

- -

Figure 4. grey numbers indicate ε3; black signs indicate m(ν); cf Fig. 1.

upon translation by ρ, the three points on the short diagonal are taken to points which are
stabilized by an elementary reflection, so their contributions vanish. The remaining six points
are related by this elementary reflection, so their contributions cancel. This last statement
relies on the fact that the values of ε3(a − b) at corresponding points are equal, which may
also be observed from Figure 5.

A similar consideration shows the desired vanishing for the other 3 rhombi. Proposition
6.3.2 is proved.

7. Unramified Computation: E = F × K

Now we come to the case when E = F × K. In this case, the element t of SE(F ) is of the
form

t = µ′
0(t0)µ

′
1(t1)(µ

′
2µ

′
3)(t23) = µ′

0(1
k0)µ′

1(1
k1)(µ′

2µ
′
3)(1

k23).
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Figure 5

We recall the Casselman-Shalika formula:

δB′
E
(t)−1/2WV ′

E ,ψ(t · ϕ) = Tr(sπ|V
H∨

E
k1,k0,k23

).

Here, V
H∨

E
k1,k0,k23

denotes the irreducible representation of H∨
E

∼= Sp6(C) with highest weight
k1ν1 + k0ν2 + k23ν3 where ν1, ν2, ν3 are the fundamental weights of Sp6(C) numbered such
that ν1 corresponds to the standard representation.

7.1. Zeta integral side. Let x = q−s1 and y = q−2s23 . Then the LHS of Theorem 5.5.3 is:

(1−xy)−1 ·
∞∑

ki=0

xk0+k1yk0+k23ε2(k0 +1) · (−1)k1 · 1 − (x−1y)k1+1

1 − x−1y

1 − x2(k23+1)

1 − x2
Tr(sπ|V Sp6

k1,k0,k23
).

Next we have the following crucial lemma, which gives a separation of variables in the
above sum:

Lemma 7.1.1. The LHS of Theorem 5.5.3 is equal to:
( ∞∑

k=0

(−x)kTr(sπ|V Sp6
k,0,0)

) 


∞∑

,,m=0

y,+m(−1),Tr(sπ|V Sp6
,,0,m)



 .

So as not to disrupt the flow of the argument, we defer the proof of the lemma to the end
of the section.

7.2. L-function side. Now we consider the L-function side of the main theorem, which is a
priori expressed in terms of tπ ∈ LGE . We know that VE,Spin is reducible as a representation
of LGE : it decomposes as:

VE,Spin = Vµ1

⊕
(Vµ2 ⊕ Vµ3).

As in the previous section, we consider the restriction of VE,Spin to the subgroup

H ′
E × Gal(F/F ) = Spin7(C) × Gal(F/F ).

It is not difficult to see that:

Vµ1
∼= (V H′

E
1,0,0 ! χK)

⊕
(1 ! 1),

where V
H′

E
1,0,0 is the 7-dimensional standard representation of Spin7, and

Vµ2 ⊕ Vµ3
∼= V

H′
E

0,0,1 ! (1 ⊕ χK),
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where V
H′

E
0,0,1 is the 8-dimensional Spin representation of Spin7. Thus, we obtain:

L(s,π, VE,Spin) =
1

(1 − q−s1)
· 1
det(1 + q−s1sπ|V Spin7

1,0,0 )
· 1
det(1 − q−2s23s2

π|V
Spin7
0,0,1 )

.

Next we need to express the above in terms of sπ rather than sπ. For this, we need to
know explicitly the map

ι∗ : T∨
E −→ S∨

E .

The maximal torus T∨
E of Spin8(C) is conveniently parametrized by five complex variables

(u, t1, t2, t3, t4) subject to the relation t1t2t3t4 = u2. With this parametrization, the map to
the maximal torus S∨

E of Sp6(C) is simply

(u, t1, t2, t3, t4) +→ (t1, t2, t3).

From this, it is not hard to see that

det(1 + q−s1sπ|V Spin7
1,0,0 ) = (1 + q−s1) · det(1 + q−s1sπ|V Sp6

1,0,0),

where V Sp6
1,0,0 is the 6-dimensional standard representation of Sp6(C). Thus, we have:

1
(1 + q−s1)

· 1
det(1 + q−s1sπ|V Spin7

1,0,0 )

=ζ(2s1) ·
∞∑

k=0

Tr(sπ|SymkV Sp6
1,0,0) · (−1)k · q−ks1

=ζ(2s1) ·
∞∑

k=0

Tr(sπ|V Sp6
k,0,0) · (−1)k · q−ks1,

where for the last equality, we have used the well-known fact that

Symn(V Sp6
1,0,0) = V Sp6

n,0,0

which can be found in the table on [Br, Pg. 13].

On the other hand, by [Br, Pg. 13] again, we see that

det(1 − q−2s23s2
π|V

Spin7
0,0,1 )−1 = ζK(2s23)

∞∑

n=0

q−2ns23Tr(s2
π|V

Spin7
0,0,n ),

where V Spin7
0,0,n denotes the irreducible representation of Spin7 with highest weight equal to n

times the third fundamental weight. We claim:

Lemma 7.2.1.

Tr(s2
π|V

Spin7
0,0,n ) =

Tr(sπ|V Sp6
1,1,n)

Tr(sπ|V Sp6
1,1,0)

.

Proof. Let us view sπ = (u, t1, t2, t3, t4) as above. The fact that sπ actually lies in the
maximal torus of H ′

E
∼= Spin7(C) implies that t4 = 1. The coordinates of s2

π are then
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(t1t2t3, t21, t22, t23, 1). Let s(t) = t − t−1. Then the Weyl character formula can be given quite
nicely in terms of determinants in this case:

Tr(s2
π|V

Spin7
0,0,n ) =

∣∣∣∣∣∣

s(tn+5
1 ) s(tn+5

2 ) s(tn+5
3 )

s(tn+3
1 ) s(tn+3

2 ) s(tn+3
3 )

s(tn+1
1 ) s(tn+1

2 ) s(tn+1
3 )

∣∣∣∣∣∣
∣∣∣∣∣∣

s(t51) s(t52) s(t53)
s(t31) s(t32) s(t33)
s(t11) s(t12) s(t13)

∣∣∣∣∣∣

A similar formula holds for the characters of Sp6(C):

Tr(sπ|V Sp6
k1,k2,k3

) =

∣∣∣∣∣∣

s(tk1+k2+k3+3
1 ) s(tk1+k2+k3+3

2 ) s(tk1+k2+k3+3
3 )

s(tk2+k3+2
1 ) s(tk2+k3+2

2 ) s(tk2+k3+2
3 )

s(tk3+1
1 ) s(tk3+1

2 ) s(tk3+1
3 )

∣∣∣∣∣∣
∣∣∣∣∣∣

s(t31) s(t32) s(t33)
s(t21) s(t22) s(t23)
s(t11) s(t12) s(t13)

∣∣∣∣∣∣

.

So we see that

Tr(s2
π|V

Spin7
0,0,n ) =

Tr(sπ|V Sp6
1,1,n)

Tr(sπ|V Sp6
1,1,0)

as desired. "

7.3. Comparison. Summarizing, we have shown that:

L(s1,π, Vµ1)
ζ(2s1)

=

( ∞∑

k=0

(−x)kTr(sπ|V Sp6
k,0,0)

)

and
L(s23,π, Vµ2 ⊕ Vµ3)

ζK(2s23)
=

( ∞∑

n=0

yn ·
Tr(sπ|V Sp6

1,1,n)

Tr(sπ|V Sp6
1,1,0)

)

.

Thus the RHS of the identity in Theorem 5.5.3 is:
( ∞∑

k=0

(−x)kTr(sπ|V Sp6
k,0,0)

)
·
( ∞∑

n=0

yn ·
Tr(sπ|V Sp6

1,1,n)

Tr(sπ|V Sp6
1,1,0)

)
.

Comparing this with Lemma 7.1.1, we see that it remains to prove:

Proposition 7.3.1.

Tr(s|V Sp6
1,1,n)

Tr(s|V Sp6
1,1,0)

=
n∑

,=0

(−1), · Tr(s|V Sp6
,,0,n−,).

Proof. This can be proved using Brauer’s method, as in Prop. 6.3.2, but is harder to explain
in this case since we will be working in 3-dimensional space. We give a proof using the
expression of the characters in determinantal form.
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The identity to be proven can be restated as




n∑

m=0

(−1)n−m

∣∣∣∣∣∣

s(tn+3
1 ) s(tn+3

2 ) s(tn+3
3 )

s(tm+2
1 ) s(tm+2

2 ) s(tm+2
3 )

s(tm+1
1 ) s(tm+1

2 ) s(tm+1
3 )

∣∣∣∣∣∣





∣∣∣∣∣∣

s(t51) s(t52) s(t53)
s(t31) s(t32) s(t33)
s(t11) s(t12) s(t13)

∣∣∣∣∣∣
∣∣∣∣∣∣

s(t31) s(t32) s(t33)
s(t21) s(t22) s(t23)
s(t11) s(t12) s(t13)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

s(tn+5
1 ) s(tn+5

2 ) s(tn+5
3 )

s(tn+3
1 ) s(tn+3

2 ) s(tn+3
3 )

s(tn+1
1 ) s(tn+1

2 ) s(tn+1
3 )

∣∣∣∣∣∣
.

We first check that

∆(t) :=

∣∣∣∣∣∣

s(t51) s(t52) s(t53)
s(t31) s(t32) s(t33)
s(t11) s(t12) s(t13)

∣∣∣∣∣∣
∣∣∣∣∣∣

s(t31) s(t32) s(t33)
s(t21) s(t22) s(t23)
s(t11) s(t12) s(t13)

∣∣∣∣∣∣

= (t−1
1 + t−1

2 )(t−1
1 + t−1

3 )(t−1
2 + t−1

3 )(1 + t1t2)(1 + t1t3)(1 + t2t3).

Next we note that

(7.3.2)

∣∣∣∣∣∣

s(tn+3
1 ) s(tn+3

2 ) s(tn+3
3 )

s(tm+2
1 ) s(tm+2

2 ) s(tm+2
3 )

s(tm+1
1 ) s(tm+1

2 ) s(tm+1
3 )

∣∣∣∣∣∣
=

∑

ε∈{±1}3

∣∣∣∣∣∣∣

ε1t
ε1(n+3)
1 ε2t

ε2(n+3)
2 ε3t

ε3(n+3)
3

ε1t
ε1(m+2)
1 ε2t

ε2(m+2)
2 ε3t

ε3(m+2)
3

ε1t
ε1(m+1)
1 ε2t

ε2(m+1)
2 ε3t

ε3(m+1)
3

∣∣∣∣∣∣∣
.

Now expand each of these determinants by minors on the first row, we see that this is equal
to

∑

ε∈{±1}3

∑

i∈Z/3Z
εit

εi·(n+3)
i ·

∣∣∣∣∣
εi+1t

εi+1(m+2)
i+1 εi+2t

εi+2(m+2)
i+2

εi+1t
εi+1(m+1)
i+1 εi+2t

εi+2(m+1)
i+2

∣∣∣∣∣

=
∑

ε∈{±1}3

∑

i∈Z/3Z
εit

εi·(n+3)
i ·

∣∣∣∣
εi+1t

2εi+1
i+1 εi+2t

2εi+2
i+2

εi+1t
εi+1
i+1 εi+2t

εi+2
i+2

∣∣∣∣ · t
εi+1m
i+1 tεi+2m

i+2

Now summing over m, we see that

n∑

m=0

(−1)n−m ·

∣∣∣∣∣∣

s(tn+3
1 ) s(tn+3

2 ) s(tn+3
3 )

s(tm+2
1 ) s(tm+2

2 ) s(tm+2
3 )

s(tm+1
1 ) s(tm+1

2 ) s(tm+1
3 )

∣∣∣∣∣∣

=
∑

ε∈{±1}3

∑

i∈Z/3Z
(−1)n · ε1ε2ε3 · t(n+3)εi

i tεi+1
i+1 tεi+2

i+2 · (tεi+1
i+1 − tεi+2

i+2 ) ·
1 − (−tεi+1

i+1 tεi+2
i+2 )n+1

1 + tεi+1
i+1 tεi+2

i+2

.

(7.3.3)

If we let Ti = tni , then this last expression is a linear combination T εi
i and T ε1

1 T ε2
2 T ε3

3 with co-
efficients given by rational functions of ti’s essentially independent of n (the only dependence
on n being the factor (−1)n).
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Similarly, we expand the RHS of the desired identity in a manner analogous to (7.3.2). It
is equal to:

∑

ε∈{±1}3

ε1ε2ε3T
ε1
1 T ε2

2 T ε3
3 ·

∣∣∣∣∣∣

t5ε11 t5ε22 t5ε33

t3ε11 t3ε22 t3ε33
tε11 tε22 tε33

∣∣∣∣∣∣
.

Treat both sides of the desired identity as polynomials in T1, T2, T3, T
−1
1 , T−1

2 , T−1
3 , with

coefficients in C(t1, t2, t3). Then we need to show:

- the coefficient of T εi
i on the LHS vanishes. By symmetry, it suffices to show

∑

ε∈{±1}2

ε1ε2t
ε1
1 tε22 · (tε11 − tε22 )
1 + tε11 tε22

= 0.

This is immediately verifiable by hand.

- the coefficient of T ε1
1 T ε2

2 T ε3
3 on both sides agree. By symmetry again, it suffices to

verify:
(

t31t
2
2t

2
3(t2 − t3)

1 + t2t3
+

t32t
2
3t

2
1(t3 − t1)

1 + t3t1
+

t33t
2
1t

2
2(t1 − t2)

1 + t1t2

)
· ∆(t) =

∣∣∣∣∣∣

t51 t52 t53
t31 t32 t33
t11 t12 t13

∣∣∣∣∣∣
.

Again, this is easily verified by hand.

The proposition is proved.
"

7.4. Proof of Lemma 7.1.1. Finally, we need to give the proof of Lemma 7.1.1.

For this, we use a formula which goes back to Murnaghan and Littlewood, and has been
given a nice interpretation in terms of “universal characters” in [Ko] and [K-T]. This is
discussed in greater detail in the appendix. We state it in the notation of the appendix. We
associate the highest weight of V Sp6

k1,k2,k3
with the partition (k1 + k2 + k3, k2 + k3, k3), and for

λ a partition with at most 3 parts, let χSp6(λ) denote the character of the representation
with the corresponding highest weight. We consider also finite formal sums of partitions, and
extend χSp6 to these by Z-linearity.

Thus, the right hand side of the identity is

(7.4.1) (1 − xy)

( ∞∑

k=0

(−x)kχSp6(k)

) 


∑

0≤µ2≤µ1

yµ1(−1)µ1−µ2χSp6(µ1µ
2
2)



 .

On the set of all partitions, we define operations · and / by

λ · µ =
∑

ν

LRν
λ,µν

and
λ/µ =

∑

ν

LRλ
µ,νν,

where the Littlewood-Richardson coefficient LRλ
µ,ν counts the number of ways to add the

boxes that make up the Young diagram of µ to the diagram of ν in order to obtain that of
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λ subject to certain constraints (see [F-H, p.455-56]), and so each of these sums is actually
finite.

The formula may be stated as

(7.4.2) χSp6(λ)χSp6(µ) = πSp6




∑

ζ

χSp((λ/ζ) · (µ/ζ))



 ,

where χSp(ν) is a certain “universal character,” which is defined for all partitions ν (while
χSp6 is defined only for those with ≤ 3 parts) and extended to finite formal sums by Z-
linearity, and πSp6 is a projection from the ring of universal characters to that of characters
of Sp6. In our case, by the interpretation of the Littlewood-Richardson coefficients in terms
of adding boxes to the Young diagram, we get

χSp6(k)χSp6(µ1µ
2
2) =

∑

ν,κ

πSp6(χSp(ν)),

where the sum is over partitions ν and κ satisfying

0 = κ4 ≤ ν4 ≤ κ3 ≤ ν3 ≤ µ2 = κ2 ≤ ν2 ≤ κ1 ≤ ν1, µ1

and
µ1 + µ2 + ν1 + ν2 + ν3 + ν4 + ν5 − 2κ1 − κ3 = k.

For ν having 3 or fewer parts, we have

πSp6(χSp(ν)) = χSp6(ν).
For ν having exactly 4 parts, it is zero. So we find that (7.4.1) is equal to
(7.4.3)

(1 − xy)
∑

0≤ν3≤ν2≤ν1

χSp6(ν)
ν3∑

κ3=0

ν2∑

µ2=ν3

ν1∑

κ1=ν2

∞∑

µ1=κ1

xµ1+ν1+ν2+ν3−2κ1−2κ3(−1)µ2+ν1+ν2+ν3yµ1 .

Now,
∞∑

µ1=κ1

(xy)µ1 = (xy)κ1(1 − xy)−1.

and
ν2∑

µ2=ν3

(−1)µ2 = (−1)ν3 · ε2(ν2 − ν3 + 1).

Plugging these in, we obtain

(7.4.4)
∑

0≤ν3≤ν2≤ν1

χSp6(ν)ε2(ν2 − ν3 + 1)
ν3∑

κ3=0

ν1∑

κ1=ν2

xν1+ν2+ν3−κ1−2κ3yκ1(−1)ν1+ν2 .

Summing over κ1 yields

(x−1y)ν2
1 − (x−1y)ν1−ν2+1

1 − x−1y
.

We then write ν3 − 2κ3 = −ν3 + 2r3, where r3 = ν3 − κ3, and sum r3 from 0 to ν3 obtaining

1 − x2(ν3+1)

1 − x2
.

We now have
∑

0≤ν3≤ν2≤ν1

χSp6(ν)ε2(ν2 − ν3 + 1)xν1−ν3yν2(−1)ν1−ν2
1 − x2(ν3+1)

1 − x2

1 − (x−1y)ν1−ν2+1

1 − x−1y
.
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Translating this back to the other notation via the correspondence

χSp6(ν1, ν2, ν3) = Tr(·|V Sp6
ν1−ν2,ν2−ν3,ν3

),

and plugging in sπ, we obtain the desired result. Lemma 7.1.1 is proved.

8. Unramified Computation: E = F 3

Finally, we come to the split case. This case is the most complicated of the three, because
it involves decomposing the tensor product of 3 representations of Spin8(C).

8.1. The identity. Let us set

xi = q−si for i = 1, 2 or 3.

Then the LHS of the identity in Theorem 5.5.3 is:

(1 − x1x2x3)−1 ·
∞∑

ki=0

(k0 + 1) · Vk0,k1,k2,k3x
k0+k1
1 xk0+k2

2 xk0+k3
3 ×

1 − (x−1
1 x2x3)k1+1

1 − (x−1
1 x2x3)

1 − (x−1
2 x1x3)k2+1

1 − (x−1
2 x1x3)

1 − (x−1
3 x1x2)k3+1

1 − (x−1
3 x1x2)

.

On the other hand, the RHS of the identity is:

3∏

i=1

1 − x2
i

det(1 − xisπ|Vµi)
.

Using the fact that (cf. [Br, Pg. 13])

Symn(Vµi) = Symn−2(Vµi) ⊕ Vnµi ,

this is equal to
∞∑

,i=0

V0,,1,0,0 ⊗ V0,0,,2,0 ⊗ V0,0,0,,3x
,1
1 x,2

2 x,3
3 .

Thus the identity we wish to prove is:

∞∑

,i=0

V0,,1,0,0 ⊗ V0,0,,2,0 ⊗ V0,0,0,,3x
,1
1 x,2

2 x,3
3

=
1

1 − x1x2x3

∞∑

ki=0

(k0 + 1)Vk0,k1,k2,k3x
k0+k1
1 xk0+k2

2 xk0+k3
3

1 − (x−1
1 x2x3)k1+1

1 − (x−1
1 x2x3)

1 − (x−1
2 x1x3)k2+1

1 − (x−1
2 x1x3)

1 − (x−1
3 x1x2)k3+1

1 − (x−1
3 x1x2)

.
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8.2. Decomposition of tensor products. We make use of the fact (cf [GH, Lemma 3.3])
that

V0,0,,2,0 ⊗ V0,0,0,,3 =
min(,2,,3)⊕

k=0

V0,k,,2−k,,3−k,

to rewrite the identity as
∞∑

,,mi=0

V0,,,0,0 ⊗ V0,m1,m2,m3x
,
1x

m1+m2
2 xm1+m3

3

=
1

1 − x1x2x3

∞∑

ki=0

(k0 + 1)Vk0,k1,k2,k3x
k0+k1
1 xk0+k2

2 xk0+k3
3

(8.2.1)
1 − (x−1

1 x2x3)k1+1

1 − (x−1
1 x2x3)

1 − (x−1
2 x1x3)k2+1

1 − (x−1
2 x1x3)

1 − (x−1
3 x1x2)k3+1

1 − (x−1
3 x1x2)

.

We will be using a method of evaluating tensor products which is due to Black, King,
and Wybourne [B-K-W]. They make use of an identification of certain weights of Spin8

with partitions. Specifically, we identify the highest weight of Vk0,k1,k2,k3 with the quadruple
(k0 + k1 + k2+k3

2 , k0 + k2+k3
2 , k2+k3

2 , k3−k2
2 ) which, if k3 − k2 is even and non-negative, is then

identified with a partition by dropping any terminal zeros. We could, of course, have made
such an identification in five other ways, and picking this one in particular privileges the eight
dimensional representation V0,1,0,0 over the other two, and fixes one particular identification
of the representation ring of SO8 with a subring of that of Spin8. For µ a dominant weight,
let χSpin8(µ) denote the character of the representation with highest weight µ. If µ consists
of integers, then this representation factors through V0,1,0,0 and we may also write χSO8.

Let ι denote the involution of Spin8 which reverses the last two fundamental weights.
Then the set of dominant weights is the union of the sets {µ, µ + (1

2)4, µι, (µ + (1
2 )4)ι}, where

µ ranges over partitions. The union is disjoint, but if µ has fewer than 4 parts, then µ = µι.
Hence the character of the LHS of (8.2.1) is given by

∑

,,µ

χSO8(7)x
,
1

(
χSO8(µ)xµ1−µ4

2 xµ1+µ4
3 + χSO8(µ

ι)xµ1+µ4
2 xµ1−µ4

3 +

(8.2.2) χSpin8(µ + (
1
2
)4)xµ1−µ4

2 xµ1+µ4+1
3 + χSpin8((µ + (

1
2
)4)ι)xµ1+µ4+1

2 xµ1−µ4
3

)

−
∑

,,µ:µ4=0

χSO8(7)χSO8(µ)x,
1(x2x3)µ1 ,

where 7 is summed over Z≥0 and µ is summed over partitions satisfying µ2 = µ3.

We describe the method of computing the necessary products of characters in brief here,
and more completely in the appendix. First, the computation of the product of characters
of Spin8 is reduced to one of characters of GL4, which are indexed by pairs of partitions
having at most four total parts. Such a pair of partitions also gives a character of GLn for
each n > 4. Each character is expressed as a determinant involving elementary symmetric
polynomials and an identity in these determinantal expressions gives the product for all n
sufficiently large or, as we prefer, in a suitably defined projective limit. We thus obtain a
finite sum of “universal characters” χGL(τ̄ ; ν). (We follow [B-K-W] in writing (τ̄ ; ν), rather
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than (τ, ν)). We then must analyze the contribution of each of these universal characters to
the original product under projection.

We now write down a formula for the sum of universal characters that must be considered
(cf. formula (11.4.4) in the appendix). Since one of our highest weights is the one-part
partition 7, the formula is a bit simpler than in the general case. It is:

(8.2.3)
∑

η,ζ

χGL(η̄; (7/(η · ζ)) · µ)).

Here ζ and η are summed over all partitions, but we only get contributions when each is a
single integer and their sum does not exceed 7. Making further use of the interpretation of
the Littlewood-Richardson coefficients in terms of adding boxes to the Young diagram, we
obtain ∑

ν,κ

χGL(7′(µ, ν,κ, 7); ν),

where the sum is over ν and κ partitions satisfying

ν5 ≤ κ4 ≤ µ4, ν4 ≤ κ3 ≤ ν3 ≤ µ3 = κ2 = µ2 ≤ ν2 ≤ κ1 ≤ µ1, ν1,

and subject to the condition that

7′(µ, ν,κ, 7) := 7 + 2κ1 + 2κ3 + 2κ4 − µ1 − µ4 − ν1 − ν2 − ν3 − ν4 − ν5

is non-negative. The precise manner in which a term χGL(7′; ν) contributes to the product
depends on the precise relationship between the highest weight of our second representation
and the partition µ. This is the topic of the next subsection. For now, we prove a formula for

(8.2.4)
∑

µ,,

x,yµ1−µ4zµ1+µ4
∑

ν,κ

χGL(7′(µ, ν,κ, 7); ν),

where the sum in ν and κ is as above. Let

D(n3, n4;x, z) = (1 − x2n3)(1 − (xz−1)n4) − (xz)n3(1 − x2n4)(1 − (xz−1)n3).

Then we prove

Proposition 8.2.5. The sum (8.2.4) is equal to

F (x, y, z)−1
∑

,′,ν

χGL(7̄′; ν)x,′c(ν;x, y, z)

with
F (x, y, z) = (1 − xy)(1 − x−1y)(1 − xz)(1 − xz−1)(1 − x2)

and

c(ν;x, y, z) = xν1−ν3+ν5yν2zν4(ν2 − ν3 + 1)(1− (x−1y)ν1−ν2+1)D(ν3 − ν4 + 1, ν4 − ν5 + 1;x, z).

Proof. We first bring the sum over 7 inside, and get
∑

ν,,′

χGL(7̄′; ν)x,′
∑

µ

yµ1zµ4P (µ, ν;x1),

where
P (µ, ν;x) =

∑

κ

xµ1+µ4+ν1+ν2+ν3+ν4+ν5−2κ1−2κ3−2κ4.

Observe that
P (µ, ν;x) = P1(µ1, ν1, ν2;x)P2(µ4, ν3, ν4, ν5;x)
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where

P1(µ1, ν1, ν2;x) =
min(µ1,ν1)∑

κ1=ν2

xµ1+ν1+ν2−2κ1

and

P2(µ4, ν3, ν4, ν5;x) =
min(µ4,ν4)∑

κ4=ν5

ν3∑

κ3=max(µ4,ν4)

xµ4+ν3+ν4+ν5−2κ4−2κ3.

Now, let

Q1(ν1, ν2;x, y) =
∞∑

µ1=ν2

P1(µ1, ν1, ν2;x)yµ1 =
ν1∑

κ1=ν2

∞∑

µ1=κ1

xν1+ν2+µ1−2κ1yµ1 ,

and let

Q2(ν3, ν4, ν5;x, z) =
ν3∑

µ4=ν5

P2(µ4, ν3, ν4, ν5;x)zµ4 =
ν4∑

κ4=ν5

ν3∑

κ3=ν4

κ3∑

µ4=κ4

xµ4+ν3+ν4+ν5−2κ4−2κ3zµ4 .

Then we have

c(ν;x, y, z) = (ν2 − ν3 + 1)Q1(ν1, ν2;x, y)Q2(ν3, ν4, ν5;x, z).

The (ν2 −ν3 +1) comes because in original sum we had a free variable (say, µ3) ranging from
ν3 to ν2. The Qi can be evaluated explicitly:

Q1(ν1, ν2;x, y) = (1 − xy)−1(1 − x−1y)−1xν1yν2(1 − (x−1y)ν1−ν2+1).

and
Q2(ν3, ν4, ν5;x, z) = (1 − xz)−1(1 − xz−1)−1(1 − x2)−1zν4x−ν3+ν5

(
(1 − x2(ν3−ν4+1))(1 − (xz−1)ν4−ν5+1) − (xz)ν3−ν4+1(1 − x2(ν4−ν5+1))(1 − (xz−1)ν3−ν4+1)

)
.

The result follows. "

In the next subsection, we describe how each χGL(7̄′; ν) gives a contribution to the product

χSO8(7)χSpin8(ξ), with ξ = (µ + ε4) or (µ + ε4)ι and ε = 0 or
1
2
.

Just as the precise contribution depends on ε and the presence or absence of ι, so too does
the polynomial which will accompany it in (8.2.2). As may be seen from (8.2.2), and the fact
that F (x, y, z) = F (x, y, z−1), this will be

F (x1, x2x3, x2x
−1
3 )−1x,′

1 ×






c(ν;x1, x2x3, x
−1
2 x3) for µ;

c(ν;x1, x2x3, x2x
−1
3 ) for µι;

x3c(ν;x1, x2x3, x
−1
2 x3) for µ + (1

2 );
x2c(ν;x1, x2x3, x2x

−1
3 ) for (µ + (1

2 ))ι.

.

We also record for later use the analogous statement for the smaller sum being subtracted at
the end of (8.2.2). The proof is easily obtained by adapting that of the previous proposition:

Lemma 8.2.6. We have
∑

,,µ:µ4=0

x,
1(x2x3)µ1χGL(7′(µ, ν,κ, 7); ν) =

∑

,′,ν

χGL(7̄′; ν)x,′
1 c′(ν;x1, x2x3)
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where ν can have at most four parts, and

c′(ν;x1, x2x3) =
(ν2 − ν3 + 1)xν1−ν3+ν4

1 (x2x3)ν2(1 − (x−1
1 x2x3)ν1−ν2+1)(1 − x2(ν3−ν4+1)

1 )
(1 − x1x2x3)(1 − x−1

1 x2x3)(1 − x2
1)

.

8.3. From χGL’s to χSpin8’s. Now, we briefly describe the contribution of χGL(7̄′; ν) to
χSO8(7)χSpin8(µ+ε4). The answer is always zero or ±χSpin8(ξ) for some weight ξ. The corre-
sponding contribution to χSO8(7)χSpin8((µ + ε4)ι) would then be zero or ±χSpin8(ξι). First,
there is a projection from universal characters to characters of GL4 which sends χGL(τ̄ ; ν)
either to 0 or to ±χGL4(τ̄◦; ν◦) for a pair of partitions (τ̄◦; ν◦) with at most four total parts.
In our case, τ = 7′, and ν can have at most five parts. Among such pairs, the only ones
which have more than four total parts, (recall that 7′ = 0 gives the empty partition having
no parts) and are not killed are those of the form (1̄;σ1), where σ1 is the partition obtained
by appending a 1 to the partition σ having exactly four parts. The projection of χGL(1̄;σ1)
is −χGL4(0;σ). If the total number of parts is already less than four, then χGL(7̄′; ν) projects
to χGL4(7̄′; ν).

The parametrization of representations by pairs of partitions is such that χGL4(7̄′; ν) is
the character of the representation whose highest weight ω is ν if 7′ = 0 and (ν1, ν2, ν3,−7′)
otherwise. (Here we append terminal zeros to ν if it has fewer than 3 parts.) Now, we must
add ε4 to ω. The contribution to χSO8(7)χSpin8(µ + ε4) is as follows:

(8.3.1)






χSpin8(ν + ε4), if 7′ = 0
0, if ω + ε4 + ρ has a nontrivial stabilizer in the Weyl group of Spin8,

sgn(w)χSpin8(ξ), if ω + ε4 + ρ = w(ξ + ρ) for ξ dominant.

Here ρ is half the sum of the positive roots of Spin8, which corresponds to the quadruple
(3, 2, 1, 0). The last case will produce a weight of the form (σ + ε4)ι, with σ a partition.
Indeed, (σ + ε4)ι arises directly as the weight corresponding to (σ4 + 2ε;σ1,σ2,σ3) and the
weights corresponding to the three other pairs:

(σ3 + 1 + 2ε;σ1,σ2,σ4−1), (σ2 + 2 + 2ε;σ1,σ3−1,σ4−1), (σ1 + 3 + 2ε;σ2−1,σ3−1,σ4−1)

are related to it by Weyl elements w with signs −,+ and − respectively, provided σ has four
parts. Hence these terms in the sum for (µ + ε4)ι contribute to (σ + ε4).

8.4. Completion of proof. We now fix a partition σ and compute the coefficient of χSpin8(σ+
ε4) in (8.2.2). Since χSpin8(σ + ε4) is the character of Vσ2−σ3,σ1−σ2,σ3−σ4,σ3+σ4+2ε, we should
get

F (x1, x2x3, x2x
−1
3 )−1(1 − x2

1)(σ2 − σ3 + 1)xσ1−σ3
1 σσ2−σ4

2 xσ2+σ4+2ε
3

(1 − (x−1
1 x2x3)σ1−σ2+1)(1 − (x1x

−1
2 x3)σ3−σ4+1)(1 − (x1x2x

−1
3 )σ3+σ4+2ε+1).

Furthermore, once we check this, we are done, since both sides of (8.2.1) are symmetric if we
replace the subscript 2 everywhere by 3 and vice versa.

Clearing denominators, we just need to check some identities of polynomials. As will be
evident from the discussion above, there are fewer terms if σ has fewer than four parts.
However, if we append zeros to σ, the case σ4 = 0 is recovered from the general case. For
example, the term corresponding to (σ3 + 1 + 2ε;σ1,σ2,σ4−1) should not be there, but there
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is no harm in including it, because D(n3, 0;x, z) is equal to zero anyway. Thus, there are
only two identities to check.

First, we perform a simplification that is relevant to both; namely one shows that

xσ1−σ3+σ4
1 xσ2

2 xσ2
3 (σ2 − σ3 + 1)(1 − (x−1

1 x2x3)σ1−σ2+1)D(σ3 + 1, 1;x1, x2x
−1
3 )

−xσ1+σ3−σ4+2
1 xσ2

2 xσ2
3 (σ2 − σ4 + 2)(1 − (x−1

1 x2x3)σ1−σ2+1)D(σ4, 1;x1, x2x
−1
3 )

+xσ1+σ2−σ4+3
1 xσ3−1

2 xσ3−1
3 (σ3 − σ4 + 1)(1 − (x−1

1 x2x3)σ1−σ3+2)D(σ4, 1;x1, x2x
−1
3 )

−xσ1+σ2−σ4+3
1 xσ3−1

2 xσ3−1
3 (σ3 − σ4 + 1)(1 − (x−1

1 x2x3)σ2−σ3+1)D(σ4, 1;x1, x2x
−1
3 )

is equal to

(σ2 − σ3 + 1)xσ1−σ3+σ4
1 (x2x3)σ2(1 − (x−1

1 x2x3)σ1−σ2+1)

(D(σ3 + 1, 1;x1, x2x
−1
3 ) − x2(σ3−σ4+1)

1 D(σ4, 1;x1, x2x
−1
3 )).

Canceling from both sides of (8.2.1) the expression

(σ2 − σ3 + 1)xσ1−σ3
1 xσ2−σ4

2 xσ2+σ4+2ε
3 (1 − (x−1

1 x2x3)σ1−σ2+1),

which appears in c(σ;x1, x2x3, x
−1
2 x3), c(σ1;x1, x2x3, x

−1
2 x3) and c′(σ;x1, x2x3, x2x

−1
3 ) (when

ε = 0), and making use of (8.3.1), the identities to be checked boil down to:

(i) corresponding to ε = 0,

D(σ3 − σ4 + 1,σ4 + 1;x1, x
−1
2 x3) − x2

1D(σ3 − σ4 + 1,σ4;x1, x
−1
2 x3) + (x1x2x

−1
3 )σ4

(D(σ3+1, 1;x1, x2x
−1
3 )−x2(σ3−σ4+1)

1 D(σ4, 1;x1, x2x
−1
3 )−(1−x1x

−1
2 x3)(1−x1x2x

−1
3 )(1−x2(σ3−σ4+1)

1 ))

= (1 − (x1x
−1
2 x3)σ3−σ4+1)(1 − (x1x

−1
2 x−1

3 )σ3+σ4+1)(1 − x2
1)

(ii) corresponding to ε = 1
2 ,

D(σ3 − σ4 + 1,σ4 + 1;x1, x
−1
2 x3) − x2

1D(σ3 − σ4 + 1,σ4;x1, x
−1
2 x3)

+(x1x2x
−1
3 )σ4+1(D(σ3 + 1, 1;x1, x2x

−1
3 ) − x2(σ3−σ4+1)

1 D(σ4, 1;x1, x2x
−1
3 ))

= (1 − (x1x
−1
2 x3)σ3−σ4+1)(1 − (x1x

−1
2 x3)σ3+σ4+2)(1 − x2

1).

Each of these may be checked by hand.

This completes the proof of Theorem 5.5.3 in the split case.

9. Ramified Factors

Finally, we shall address the analytic properties of the local zeta factor at a ramified place
v ∈ S. Thus, we continue to work locally and suppress v from the notations.
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9.1. The local zeta integral. Recall that:

Z(ϕ,Φ, f, s) =
∫

V ′
E(F )\GE(F )

WV ′
E ,ψ(g · ϕ) · Lχ0(g · f) · Φ̂s(g) dg

=
∫

V ′
E(F )\GE(F )

∫

U−α(F )
WV ′

E ,ψ(g · ϕ) · Lχ0(g · f) · ψ(u) · Φs(ug) du dg(9.1.1)

=
∫

SE

∫

K

∫

U−α

WV ′
E ,ψ(tk · ϕ) · Lχ0(tk · f) · ψ(u) · Φs(utk) · δB′

E
(t)−1 du dk dt.(9.1.2)

In this section, by the local zeta integral Z(ϕ,Φ, f, s), we mean this last integral (9.1.2).

Assuming absolute convergence of (9.1.2), the manipulations above would be justified and
we can collapse the two integrals in (9.1.1) to get:

Z(ϕ,Φ, f, s)

=
∫

NE(F )\GE(F )
WV ′

E ,ψ(g · ϕ) · Lχ0(g · f) · Φs(g) dg

=
∫

VE(F )\GE(F )
Φs(g) ·

(∫

Uα

WV ′
E ,ψ(ug · ϕ) · Lχ0(ug · f) du

)
dg

=
∫

K
Φ(k)

(∫

SE

χs(t) · δBE (t)−1 ·
∫

Uα

WV ′
E ,ψ(utk · ϕ) · Lχ0(utk · f)du dt

)
dk.

Setting Y (ϕ, f, s, k) to be the inner integral, we would have

Z(ϕ,Φ, f, s) =
∫

K
Φ(k) · Y (ϕ, f, s, k) dk

.

The above formal manipulation is justified by the following proposition, which is the main
result of this section:

Proposition 9.1.3. (i) The local zeta integral Z(ϕ,Φ, f, s) (i.e. the integral (9.1.2)) con-
verges absolutely for s ∈ ΩR (cf. (2.6)) when R is sufficiently large. In particular, Y (ϕ, f, s, k)
converges absolutely in ΩR as well, and we have

Z(ϕ,Φ, f, s) =
∫

K
Φ(k) · Y (ϕ, f, s, k) dk

for s ∈ ΩR.

(ii) Both Y (ϕ, f, s,−) and Z(ϕ,Φ, f, s) admit meromorphic continuation to the whole of
Cr−1 where r = rankF (GE).

(iii) For a fixed s0 ∈ Cr−1, there is a choice of ϕ, Φ and f such that Z(ϕ,Φ, f, s) is
holomorphic at s0 and non-zero there.

As a consequence, we have:

Corollary 9.1.4. The partial Spin L-function LS(s,π, VSpin,E) admits meromorphic contin-
uation to Cr−1.

The rest of this section is devoted to the proof of the proposition.
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9.2. Asymptotics of functions. With r = rankF (GE), we identify SE(F ) with (F×)r using
the fundamental coweights {µ′

i} as described in (5.1). We first note the following lemmas:

Lemma 9.2.1. There are finitely many finite functions ξi on (F×)r such that for any ϕ ∈ π,
one can find Schwarz-Bruhat functions ϕi (depending on ϕ) on F r × K satisfying

WV ′
E ,ψ(tk · ϕ) =

∑

i

ϕi(t, k) · ξi(t).

This lemma is well-known. See [JS, §4, Props. 1 and 3] and [S, §4, Thm. 1]. We have a
similar lemma for the asymptotics of the linear functional Lχ0 on the minimal representation.

Lemma 9.2.2. There are finitely many finite functions ηi on (F×)r such that given any
f ∈ ΠE, one can find Schwarz-Bruhat functions fi on F × K satisfying

Lχ0(tk · f) =
∑

i

fi(t0, k) · ηi(t).

Proof. This follows from the construction of the linear functional Lχ0 described in the proof of
Prop. 3.4.1. Indeed, if L′

EU ′
E is the 3-step parabolic containing B′

E, then Lχ0 was described
as the composition of an U ′

E-invariant map to a representation σ of L′
E followed by the

Whittaker functional on σ. Thus the lemma follows by the analog of the previous lemma for
Whittaker functions on LE . "

9.3. Proof of Prop. 9.1.3(i). We are now ready to prove Prop. 9.1.3(i), i.e. that the
integral

∫

K

∫

SE

∫

U−α

|WV ′
E ,ψ(tk · ϕ)| · |Lχ0(tk · f)| · |Φs(utk)| · δB′

E
(t)−1 du dt dk

converges when s ∈ ΩR with R . 0.

If we commute t across u in the above integral and change variables in u, as we did in the
calculation before Prop. 5.5.2, we see that we need to prove the convergence of

∫

K

∫

SE

|WV ′
E ,ψ(tk · ϕ)| · |Lχ0(tk · f)| · δs(t)−1 ·

(∫

U−α

|Φs(uk)| du

)
dt dk

where δs is an explicit character of t which can be read off from the computation before Prop.
5.5.2.

Now the integral over U−α is a standard intertwining operator which converges in ΩR for
R . 0 and defines a smooth function of k. On the other hand, the convergence of the
integrals over SE and K follows from Lemmas 9.2.1 and 9.2.2. This proves Prop. 9.1.3(i).

9.4. Proof of Prop. 9.1.3(ii). To prove meromorphic continuation, we first note:

Lemma 9.4.1. (i) When s ∈ ΩR with R . 0, the integral defining Φ̂s(g) converges absolutely.

(ii) It admits a holomorphic continuation to Cr−1.

(iii) Moreover, there are finitely many finite functions χs,i on (F×)r depending holomor-
phically on s such that for any flat section Φs, one can find Schwartz-Bruhat functions φ,s,i

on (F×)r−1 × K depending holomorphically on s satisfying

Φ̂s(t) =
∑

i

φs,i(t1, ..., tr−1, k) · χs,i(t).

The finite functions χs,i are precisely those which appear in Proposition 5.5.2.
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Proof. (i) The absolute convergence of the integral defining Φ̂s has been addressed in the
proof of Prop. 9.1.3(i) above.

(ii) Observe that the value Φ̂s(g) is obtained by restricting g · Φs to ME , thus obtaining
a section in a family of principal series of ME , followed by applying the Jacquet integral for
this family of principal series (which is a Whittaker functional). The desired holomorphic
continuation was shown in Jacquet’s thesis [J1].

(iii) This follows by an analog of Lemma 9.2.1 with parameters. Such a result is proved in
[S, §4, Thm. 4], as well as in the recent article [J2]. "

As a consequence of Lemmas 9.2.1, 9.2.2 and 9.4.1, the local zeta integral is equal (for
s ∈ ΩR) to a sum of various integrals over SE × K of finite functions ξi on SE against
Schwarz-Bruhat functions φi on F r × K. If the Schwarz functions φi are independent of s,
the meromorphic continuation of this type of integrals is well-known (cf. [JS, §3]). Indeed,
in the p-adic case, the integral is easily seen to be equal to a rational function in q−si . For
a general local field, it was shown in [JS, §3] that the resulting meromorphic function is the
product of various abelian L-functions (which are independent of the φi’s) and an entire
function depending on the φi’s.

Now in our case, the Schwarz functions φi do depend holomorphically on s (via Lemma
9.4.1). The meromorphic continuation of our integrals then follows from the case discussed
in the previous paragraph and [J2, Lemma 1, Pg. 377]. This proves the meromorphic
continuation of Z(ϕ,Φ, f, s). The same argument gives the meromorphic continuation of the
integral Y ; one simply omits the integration over K. This proves Prop. 9.1.3(ii).

9.5. Proof of Prop. 9.1.3(iii). Recall that

Z(ϕ,Φ, f, s) =
∫

K
Φ(k) · Y (ϕ, f, s, k) dk.

The function Φ is an arbitrary smooth function on K subject to the condition that

Φ(lk) = Φ(k) for all l ∈ K ∩ QE(F ).

The function Y (ϕ, f, s, k) on K is easily seen to be left invariant under K ∩UE(F ). Thus to
show that data can be chosen to ensure the non-vanishing of Z(ϕ,Φ, f, s) at s = s0, we need
to show that the integral

Y ′(ϕ, f, s) =
∫

K∩LE(F )
Y (ϕ, f, s, l) dl

is non-zero for some choices of f and ϕ. Note that since Y has meromorphic continuation to
Cr−1, so does the integral Y ′.
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Now we are going to massage the expression for Y ′ as follows:

Y ′(ϕ, f, s)

=
∫

K∩LE

(∫

SE

∫

Uα

χs(t) · δBE (t)−1 · WV ′
E ,ψ(utk · ϕ) · Lχ0(utk · f) du dt

)
dk

=
∫

Uβ\LE

∫

Uα

χs(l) · δQE (l)−1 · WV ′
E ,ψ(ul · ϕ) · Lχ0(ul · f) du dl

=
∫

TE

∫

U−β

∫

Uα

χs(t) · δQE(t)−1 · WV ′
E ,ψ(uαu−βt · ϕ) · Lχ0(uαu−βt · f)duα du−β dt.

In the above, to obtain the second equality, we have used the Iwasawa decomposition for
LE, and to obtain the last equality, we have used the Bruhat decomposition to replace the
integral over Uβ\LE by the integral over the open dense subset U−β · TE.

Now the above manipulations are initially valid for s ∈ ΩR (with R . 0), where the
integral on the RHS of the last equality converges absolutely. However, we shall presently
show that for suitable choices of f , this integral admits meromorphic continuation to Cr−1.

Let us write the torus TE as T0 × T1, where T0
∼= F× via the coweight µ′

0, and T1
∼= E×

via the coweights {µ′
1, µ

′
2, µ

′
3}. Correspondingly, we shall write the torus element t as t0t1. If

we conjugate t1 to the left across uαu−β, and change variables, we see that

Y ′(ϕ, f, s) =
∫

T0

∫

T1

∫

Uα×U−β

µs(t0t1)·WV ′
E ,ψ(t1uαu−βt0·ϕ)·Lχ0(t1uαu−βt0 · f) duα du−β dt0 dt1,

where µs is the resulting character of TE after these manipulations.

At this point, we need the following lemma which gives an alternative construction of the
functional Lχ0 on the minimal representation ΠE .

Lemma 9.5.1. Let P ′′ = M ′′N ′′ be the Heisenberg parabolic subgroup of GE so that the
center of N ′′ is Z ′′ = Uα′

0
= U3α+β . Let P ′′

ss = M ′′
ssN

′′ be the derived group of P ′′. The
unique irreducible representation of the Heisenberg group N ′′ with central character ψ can be
realized on S(Uα × U−β) = S(E × F ) and this representation extends uniquely to the Weil
representation ωψ of P ′′

ss.

(i) There is a P ′′-equivariant injective map

ι : ΠE −→ IndP ′′
P ′′

ss
ωψ.

(ii) We may realize the latter induced representation on the space of smooth functions on
T0

∼= F× taking values in S(Uα × U−β). Thus a function in this space may be denoted by
φ(t0;uα, u−β). Moreover, the image of ι contains S(T0) ⊗ S(Uα × U−β).

(iii) The linear functional Lχ0 is given by

Lχ0(f) = ι(f)(1; 0, 0)

for f ∈ ΠE. Thus, we have:

Lχ0(t1uαu−βt0 · f) = χ(t1) · ι(f)(t0;uα, u−β),

where χ is a character of T1 which we will not make explicit here.
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Proof. We shall give a sketch of the proof. The statements (i) and (ii) follow from the very
construction of the minimal representation (cf. [K] and [GS]). To deduce (iii), we observe
that via Frobenius reciprocity, ι gives a P ′′

ss-equivariant map (the local Fourier-Jacobi map)

FJψ : ΠE −→ S(Uα × U−β).

This is explicitly described by

FJψ(f)(uα, u−β) = ι(f)(1;uα, u−β).

In the p-adic case, this is in fact the unique such map, since (ΠE)Z′′,ψ
∼= ωψ. If we let

R = 〈Z ′′, U3α+2β , U2α+β , Uα+β〉 ⊂ NE,

then the composition of FJψ with evaluation at (0, 0) gives a linear functional l on ΠE

satisfying
l(r · f) = χ0(r) · l(f).

In the p-adic case, we have (ωψ)R,χ0
∼= C, so that

(ΠE)R,χ0
∼= C.

Thus, l = Lχ0 up to scaling. The archimedean case can be finessed from this by a global
argument using weak approximation; we omit the details. "

In view of the lemma, we have

(9.5.2) Y ′(ϕ, f, s) =
∫

T0

∫

Uα×U−β

ι(f)(t0;uα, u−β) · µs(t0) · Y ′′(uαu−βt0 · ϕ, s) duα du−β dt0,

where
Y ′′(ϕ, s) =

∫

T1

µs(t1) · χ(t1) · WV ′
E ,ψ(t1 · ϕ) dt1.

Now as we noted in the proof of Prop. 9.1.3(ii) (after the proof of Lemma 9.4.1), an integral
of the type defining Y ′′(ϕ, s) (i.e. the Mellin transform of a Whittaker function) admits
meromorphic continuation to Cr−1 (cf. [JS, §3]). Further, at a point s0 of holomorphy, one can
show that the linear functional ϕ +→ Y ′′(ϕ, s0) is continuous. Thus the map (t0, uα, u−β) +→
Y ′′(t0uαu−β · ϕ, s) defines a smooth function.

Now by Lemma 9.5.1(ii), we may take f so that

ι(f)(t0;uα, u−β) = f0(t0) · f1(uα, u−β)

for arbitrary f0 ∈ C∞
c (T0) and f1 ∈ C∞

c (Uα×U−β). Thus, the integrals over T0 and Uα×U−β

converges absolutely and the equation (9.5.2) gives the meromorphic continuation of Y ′.

By the above discussion, we see that if Y ′(ϕ, f, s) vanishes for all choices of f , then Y ′′(ϕ, s)
vanishes for all choices of ϕ. We are thus reduced to showing that there exists ϕ such that

∫

T1

WV ′
E ,ψ(t1 · ϕ) · µs(t1) · χ(t1) dt1

is absolutely convergent for all s and non-zero for a particular s. For this, we take φ ∈
S(U−α) = S(E) and replace ϕ by

φ ∗ ϕ =
∫

U−α

φ(u) · π(u)ϕ du.

Then
WV ′

E ,ψ(t1 · (φ ∗ ϕ)) = φ̂(t1) · WV ′
E ,ψ(t1 · ϕ)
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where φ̂ is the Fourier transform of φ. We may choose φ so that φ̂ is an arbitrary compactly
supported function. Then, for a suitable choice of such a φ, the integral over T1 converges
absolutely for all s and can be arranged to be non-zero for any given s0.

This completes the proof of Prop. 9.1.3(iii).

10. Polynomial Invariants

In the case of split groups, Ginzburg has observed that all L-functions L(s,π, ρ) which
are known to be representable by some Rankin-Selberg integrals have the property that
the representation (ρ, V ) of LG has the property that C[V ]LG is a polynomial ring. This
observation appears, for example, in [GH2] (where the word “split” was mistakenly omitted).
Ginzburg has confirmed in private communication that his observation does not address the
non-split cases.

In any case, the referee of this paper suggested that we investigate if Ginzburg’s observation
remains valid in our case. Thus, we shall describe briefly the algebras of LG0- and LG-
invariant polynomials on

VSpin = Vµ1 ⊕ Vµ2 ⊕ Vµ3 .

For each i, there is a (unique up to scaling) nondegenerate quadratic form Qi on Vµi which
is fixed by LG0. We may normalize these so that the action of S3 permutes them. It is
well-known that

C[Vµi ]
LG

0

= C[Qi].
In addition, there is an LG0-invariant trilinear linear form R (unique up to scaling) on Vµ1 ×
Vµ2 × Vµ3 . In fact, one can show that C[VSpin]

LG0 is the polynomial algebra generated by
these four elements, as may be deduced from the local computations when E = F × F × F .

In fact, using the geometric description of VSpin in (2.8), one can write down the above
invariants easily. If (x1, x2, x3) ∈ VSpin = O3, then for i = 1, 2, 3, we have:

Qi(x1, x2, x3) = N(xi) and R(x1, x2, x3) = Tr(x1x2x3).

From this description, it is easy to verify that the Qi’s are permuted by S3 whereas R is fixed
by S3. For example, when σ is the transposition such that

σ : (x1, x2, x3) +→ (x2, x1, x3),

then
R(σ(x1, x2, x3)) = Tr(x2x1x3) = Tr(x3x1x2) = R(x1, x2, x3).

So for example,
C[VSpin]Spin8 !S3 = C[Σ1,Σ2,Σ3, R]

where the Σi’s are the elementary symmetric functions in the Qi’s.

There are thus four possibilities for C[VSpin]
LG corresponding to the four possibilities for

the image of the Galois group in S3:

• when E = F × F × F ,

C[VSpin]
LG = C[Q1, Q2, Q3, R].

• when E = F × K,

C[VSpin]
LG = C[Q1, Q2 + Q3, Q2Q3, R].
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• when E is Galois cubic,

C[VSpin]
LG = C[Q1, Q2, Q3]A3 [R],

where C[Qi]A3 is the direct sum of the symmetric and skew-symmetric polynomials
in the Qi’s.

• when E is non-Galois cubic,

C[VSpin]
LG = C[Σ1,Σ2,Σ3, R].

Observe that C[VSpin]LG is a polynomial ring except when E is Galois cubic. This suggests
that, if Ginzburg’s observation were to extend to the non-split case, it is the LG0-invariants,
rather than the LG-invariants, that should play a role.

11. Appendix: Tensor Products and Universal Characters

In this section, all groups are over C, so the “C”’s are suppressed throughout. Thus
GLn means GLn(C), etc. For G a connected reductive Lie group, let R(G) denote the
representation ring of G. Our primary goal here is to give an exposition of some of the
results in [B-K-W] from a point of view akin to that of [K-T].

It is perhaps worthwhile to comment on a potential source of confusion: the relationship
between highest weights and partitions (i.e., nonincreasing sequences of integers of finite
length). For classical groups there is a natural identification between a subset of the set
of partitions (those with a number of parts bounded suitably in terms of the group) and a
subset of the set of weights (for example, for Spin2n+1, the weights which factor through the
projection to SO2n+1). Greek letters, λ, µ, ν, etc., are hence used for both partitions and
weights. One must therefore be a bit careful about what “λ” is in any given sentence: is it
a partition, which may have too many parts, and hence not be a weight, or is it a weight,
which may not lie in the subset parametrized by partitions?

For G = GLn, we consider the subring R+(G) of “polynomial representations,” i.e., rep-
resentations whose characters are polynomials in the coordinates of an element of the torus.
(The character of a general representation being the product of one of these times a power
of the inverse of the determinant.) The highest weight of an element of R+(G) is a partition
with at most n parts, λ, the value at diag(t1, . . . , tn) being

∏n
i=1 tλi

i . Here, if λ has fewer
than n parts, we add terminal zeros.

Since the map that sends a representation to its character is injective, we shall generally
speak in terms of characters, rather than representations. We introduce a little more general
notation. For G as above, and λ a dominant weight of G we let ΓG(λ) denote the irreducible
finite dimensional representation of G with highest weight λ, and χG(λ) its character.

11.1. Review and Summary. We review the method of universal characters as discussed
in [K-T]. For each n, let Λn = R+(GLn) = Z[t1, . . . , tn]Sn . For m > n, let ρ̃m,n : Λm → Λn

be the ring homomorphism that sends ti to ti if i ≤ n and 0 if i > n. Then (Λn, ρ̃m,n) is
a projective system. The projective limit (in the category of Z≥0-graded algebras), Λ, with
maps ρ̃n to each Λn, was defined by MacDonald [M] and is called the universal character
ring.
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For each n, we define the elementary symmetric polynomials, en
k(t) by

n∏

i=1

(1 + tix) =
∞∑

k=−∞
en
k (t)xk.

In particular, en
k(t) = 0 if k < 0 or k > n. Then Z[t1, . . . , tn]Sn = Z[en

1 , . . . , en
n]. Clearly

ρ̃m,n(em
k ) = en

k , so we get elements ek of Λ. Similarly, we consider pn
i defined by

n∏

i=1

(1 − xti)−1 =
∞∑

i=−∞
pn

i (t)xi,

so that pn
i = 0 for i < 0 but not for i large. Then ρ̃m,n(pm

i ) = pn
i , and so once again we get

elements of Λ.

We have the classical determinantal expressions

(11.1.1) χGLn(λ) = |pn
λi+i−j| = |en

λ′
i+i−j|.

Here and throughout |f(i, j)| denotes the determinant of the square matrix whose i, j entry
is f(i, j), and λ′ is the transpose of the partition λ. Note that in each expression, the only
dependence of n is the superscripts on the pi’s (resp. ei’s). In particular, the size of the
determinant is equal to the number of nonzero parts of λ (resp. λ′) and does not depend on
n. Making use of these, together with the elements pi, ei ∈ Λ above, we define χGL(λ) ∈ Λ.
For each n we have the natural projection πn : Λ → Λn. Then clearly πn(χGL(λ)) = χGLn(λ)
if λ has at most n parts. What is more, if λ has more than n parts, then the top row of the
second determinantal expression in (11.1.1) is all zeros, so that πn(χGL(λ)) = 0.

The universal characters χGL(λ) are a Z-basis for Λ, and the corresponding structure
constants are the Littlewood-Richardson coefficients LRλ

µ,ν . See [F-H, p. 455-56]. Thus,

χGL(µ)χGL(ν) =
∑

λ

LRλ
µ,νχGL(λ),

where the sum is over all partitions λ, whereas

χGLn(µ)χGLn(ν) =
∑

λ

LRλ
µ,νχGLn(λ),

where now the sum is only over those partitions with at most n parts.

We turn now to Sp2n. Highest weights are once again naturally identified with partitions
of length ≤ n. We have

χSp2n(λ) = |p2n
λi+i−j + δj,1p

2n
λi−i−j+2|,

where δi,j is a Kronecker δ and p2n
i has been restricted from the torus of GL2n to that

of Sp2n. Once again this is nearly independent of n and allows us to define χSp(λ) ∈ Λ.
However, it is no longer true that the determinant simply vanishes when λ has more than
n parts. The universal characters χSp(λ) give a second Z-basis for Λ. The corresponding
structure constants may be given in terms of the Littlewood-Richardson coefficients, as in
[Ko], Theorem 7.5. This has a nice expression if we adopt one of the notational innovations
in [B-K-W], namely the definition

(11.1.2) λ/ζ :=
∑

ξ

LRλ
ζ,ξξ.
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Let z, x and 7 denote the sums of the parts of ζ, ξ and λ respectively. The coefficient LRλ
ζ,ξ

counts the number of ways to add the z boxes to the Young diagram of ξ (or x to that of
ζ) so as to obtain the Young diagram of λ, subject to certain conditions. In particular, it is
zero for x + z 1= 7, so the above sum is effectively finite, and zero for almost all ζ. With this
notation, we have

(11.1.3) χSp(λ)χSp(µ) =
∑

ζ

χSp((λ/ζ) · (µ/ζ)),

where the interior product is given by the Littlewood-Richardson rule. Here we extend the
definition of χSp to finite sums of partitions by Z-linearity. Hence

(11.1.4) χSp2n(λ)χSp2n(µ) = πSp2n




∑

ζ

χSp((λ/ζ) · (µ/ζ))



 .

Here πSp2n is the projection from Λ to R(Sp2n) obtained by projecting to Λ2n ⊂ R(GL2n)
and then restricting to Sp2n. This formula essentially goes back to Littlewood and Newell.
Only the interpretation in terms of universal characters is new.

As noted above, it is not the case that πSp2n gives the naive projection onto the set of
partitions with at most n parts. A nice description of the projection and its kernel is given
in [Ko, Section 9]. For purposes of our application to Sp6, we only need to know that

πSp6(χSp(λ)) =

{
χSp6(λ) if λ has at most 3 parts;
0, if λ has exactly 4 parts.

11.2. New Material. We turn now to the formulae in section 7 of [B-K-W]. These are
derived by similar means, but in contrast to the above, they relate characters of representa-
tions of classical groups to those of general linear groups not by restricting, say, from GL2n

to SO2n, but rather by restricting from SO2n to GLn embedded as the Levi factor of the
Siegel parabolic. The symplectic and odd orthogonal cases are also considered in section
7 of [B-K-W], but it is only the even orthogonal case where the method there really offers
substantial improvement over the method of section 5 of that paper and the previous section
of these notes.

It is convenient to think of SO2n as a subset of GL2n, with the maximal torus of diagonal
elements t = diag(t1, . . . , tn, t−1

n , . . . , t1), and identify the partition λ with the map t +→
∏

i t
λi
i .

Indeed, we have already done so in referring to “the Siegel parabolic.” Of course, there
is another identification which works just as well (using the other parabolic) and in the
case n = 4, which is our primary interest here, there are still more possibilities arising
from the additional symmetry of the Dynkin diagram. We fix once and for all one of these
identifications. When n 1= 4, the highest weight of the unique projection to SO2n is identified
with the partition 1 having one part. When n = 4, we will also refer to the representation
whose highest weight has been identified with this partition as “the” projection. Because of
our choice of identification, it is no longer on equal footing with the other two.

There are three matters which must be addressed.
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(i) The first is that the restriction of a representation of SO2n to GLn will not be contained
in Λn = R+(GLn). Hence we can anticipate the need for some larger “universal” ring which
covers all of R(GLn).

(ii) The second is that we are not satisfied with R(SO2n), but want all of R(Spin2n). It will
turn out that for the cases we need here this second issue may to a certain extent be ducked.
We must replace GLn by its inverse image in Spin2n, which is a double cover G̃Ln, but as we
shall see later, the double cover enters the computation only in a trivial way. Alternatively,
everything could be phrased in terms of the Lie algebras.

(iii) The third issue is that, while the product of two elements of R(G̃Ln), each of which
is a restriction from R(Spin2n) is certainly the restriction of something, we need a way to
recognize what element of R(Spin2n) it is a restriction of. This is handled by the following
Lemma, akin to Brauer’s method, which is very pretty in its own right. (It will be applied
with G = Spin2n and H = G̃Ln the Levi subgroup of the Siegel parabolic.) It is due to King
[Ki].

To state the lemma we need some notation, as before, let G be a connected reductive Lie
group. Fix maximal torus T and a choice of positive roots, and let H be a standard Levi
(there is a more general formulation, but restricting to standard Levi subgroups is sufficient
for our purposes here and simplifies certain things a bit). Then we obtain a set of positive
roots for H with respect to T , and the notions of G-dominance and H-dominance for elements
of the lattice L of weights. Let L+

G denote the set of G-dominant weights and L+
H the set of

H-dominant ones. Then L+
G ⊂ L+

H since G-dominance is more restrictive than H-dominance.

For λ ∈ L and t ∈ T , let
AG
λ (t) =

∑

w∈WG

sgn(w)twλ

and
χG(λ) = Aλ+ρG/AρG .

For λ G-dominant, this agrees with the previous definition as the character of ΓG(λ). For λ
not G-dominant, it is equal to sgn(w)χτ if τ = w(λ + ρG) − ρG is G-dominant, and is zero
otherwise.

Lemma 11.2.1. With this notation, we have

χG(λ)χG(µ) =
∑

τ∈L+
H

(
∑

η

nλ
ηc(H)τη,µ

)
χG(τ),

where nλ
η is the multiplicity of ΓH(η) in the restriction ΓG(λ) to H, and c(H)τλ,µ is the

multiplicity of ΓH(τ) in ΓH(λ) ⊗ ΓH(µ).

Note that this decomposition is in terms of χG’s, but the τ ’s are only H-dominant. Before
we proceed to the proof, let us note that

χG(λ)χH(µ) =
∑

τ∈L+
H

(
∑

η

nλ
ηc(H)τη,µ

)

χH(τ),

as is immediate from the definitions. So the lemma may be interpreted as follows. Suppose we
have a formula for the restriction from G to H and a method of computing tensor products of
representations of H. Then we may compute the product of two irreducible representations

47



of G as follows: restrict one of them to H, take the product of this restriction with the
irreducible representation of H that has the same highest weight as the other, and then
simply replace each of the ΓH ’s in the answer by the corresponding ΓG. This is precisely the
method employed in [B-K-W] section 7, the requisite branching rules having been obtained
in earlier work.

We now remark why it is possible to essentially duck the issue of the difference between
R(SO2n) and R(Spin2n) in the cases we are dealing with. This is because we never need to
compute a product where both of the characters involved are in R(Spin2n)−R(SO2n). When
one of them is, we make the corresponding weight “µ” rather than“λ.” Suppose λ is a weight
of Spin2n, but not of SO2n. Then either it is of the form (1

2 , . . . , 1
2 , 1

2) + p with p a partition,
or it is associated to a weight of this form by the automorphism that reverses the last two
fundamental weights. It is enough to consider the case when λ = (1

2 , . . . , 1
2 , 1

2) + p. It is not
a weight of GLn, but of the double cover G̃Ln. But since

χgGLn
((

1
2
, . . . ,

1
2
,
1
2
) + p) = det

1
2χGLn(p),

the double cover comes in only in a trivial way.

Proof of Lemma 11.2.1: Let ρG denote half the sum of the positive roots of G and ρH

half the sum of the positive roots in H. Let WG denote the Weyl group of G with respect to
T . Note that the Weyl group WH of H is naturally identified with a subgroup of the Weyl
group WG of G, and that ρG − ρH is WH-stable.

Let mG
λ (ν) denote the multiplicity of the weight ν in ΓG(λ), and define mH

λ (ν) similarly.
Then

(11.2.2) χG(λ)χG(µ) =
∑

ν

mG
λ (ν)χG(ν + µ) =

∑

η

∑

ν

nλ
ηm

H
η (ν)χG(ν + µ).

For ν a weight we define |ν|G and ν
|ν|G as follows. If the stabilizer of ν + ρG in WG is trivial,

then |ν|G is the unique dominant weight τ such that τ + ρG = w(ν + ρG) for some w ∈ WG

and ν
|ν|G is the sign of this w. If the stabilizer of ν + ρG in WG is not trivial, then ν

|ν|G = 0,
and it does not matter what |ν|G is (since it is multiplied by zero).

Then from the first equality above, we obtain

c(G)τλ,µ =
∑

|ν+µ|G=τ

mG
λ (ν)

ν + µ

|ν + µ|G
=

∑

w∈WG

sgn(w)mG
λ (w(τ + ρG) − µ − ρG).

Similarly,

c(H)τµ,η =




∑

ν:|µ+ν|H=τ

mH
η (ν)

µ + ν

|µ + ν|H



 .

Now |µ + ν|H = τ means that w(µ + ν + ρH) = τ + ρH for some w ∈ WH in which case
w(µ + ν + ρG) = τ + ρG, since ρG − ρH is WH -stable. Thus (11.2.2) equals

∑

τ∈L+
H

∑

η∈L

nλ
η

∑

ν:|µ+ν|H=τ

mH
η (ν)

µ + ν

|µ + ν|H
χG(τ),

and the result follows. #
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Remark: One can, and King does, formulate and prove a more general result applicable
to the case G = G2,H = SL3. In this case ρG − ρH is no longer WH-stable, so the expression
is more complicated:

χG(λ)χG(µ) =
∑

τ∈L+
H

∑

η∈L

nλ
ηc(H)τµ+ρG−ρH ,ηχG(τ − ρG + ρH).

11.3. An analog of Λ. As noted above, in order to place the branching rule method of King
and his collaborators within a framework analogous to that of [K-T], we need an analog of Λ
that surjects onto all of R(GLn) for each n, not only R+(GLn).

Let Rn = Z[t1, . . . , tn, u1, . . . , un]Sn×Sn , where Sn is the symmetric group, the first acting
by permuting the t-indices and the second permutes the u-indices. Let πn be the map Rn →
R(GLn), defined by ui +→ t−1

i . Also, for m > n there is a surjective map ρm,n : Rm → Rn

defined by ti +→ ti, ui +→ ui, i ≤ n and ti +→ 0, ui +→ 0, i > n. Clearly, πn ◦ ρm,n does not
factor through πm. However, (Rn, ρm,n) forms a projective system. We let R denote the
projective limit in the category of Z≥0 × Z≥0 graded algebras, and let ρn denote the natural
map R → Rn.

We denote the n-tuples (t1, . . . , tn), (u1, . . . , un), (t−1
1 , . . . , t−1

n ) etc., more briefly by t, u, t−1,
etc.

Lemma 11.3.1. For each n, we have Rn = Z[en
1 (t), . . . , en

n(t), en
1 (u), . . . , en

n(u)].

From this it is clear that the map πn is surjective, since R(GLn) is generated by en
i (t), i =

1, . . . , n and det−1 = πn(en
n(u)).

Proof: This is clear: Z[t1, . . . , tn]Sn = Z[en
1 (t), . . . , en

n(t)] (likewise with u’s) and

Rn = Z[t1, . . . , tn]Sn ⊗Z Z[u1, . . . , un]Sn .

#

Since ρm,n(em
k (t)) = en

k (t) (likewise with u), we obtain elements of R, which we denote by
ek,+ and ek,−, such that ρn(ek,+) = en

k(t), and ρn(ek,−) = en
k(u) for each n. The notation

ek,− is, of course, motivated by the fact that πn ◦ ρn(ek,−) = en
k(t−1).

It follows from Lemma 11.3.1 that R = Z[{ek,±}].

Lemma 11.3.2. For every element χ of R, there is an N such that if n > N , then χ is not
in the kernel of πn ◦ ρn.

Proof: Clearly, for each n, the map ρn is injective on Z[{ek,± : k ≤ n}]. The kernel of πn

is generated by {en
n(t)en

i (u) − en
n−i(t) : i = 0, . . . , n}. Given χ ∈ R, we define K1 to be the

largest k such that ek,+ appears in the expression of χ in terms of the ei,±, and K2 to be the
largest k such that ek,− appears. Then N = K1 + K2 + 1 is sufficient. #

Next, we wish to define an element of R associated to any pair of partitions λ and µ. This
is given in terms of the transpose partitions λ′ and µ′, and it will be convenient to denote
λ1, which is equal to the number of parts in λ′, more briefly by r. Similarly, we let µ1 = s.
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Then, let

χGL(µ̄;λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eµ′
s,− . . . eµ′

s−r−s+1,−
... . . . ...

eµ′
1+s−1,− . . . eµ′

1−r,−
eλ′

1−s,+ . . . eλ′
1+r−1,+

... . . . ...
eλ′

r−r−s+1,+ . . . eλ′
r ,+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Let n be at least λ′1 + µ′
1. Then, making use of the identity det−1(t)en

k (t) = en−k(t−1), it
is easy to check that

πn ◦ ρn (χGL(µ̄;λ)) = det−sχGLn(τ(λ, µ)),

where τ is the partition such that τ(λ, µ)′ = (n − µ′
s, . . . , n − µ′

1,λ
′
1, . . . ,λ

′
r). (This τ(λ, µ)

may be visualized as follows: start with the Young diagram of λ. Add µ1 columns of length
n at the left side. Then take the Young diagram of µ, rotate it 180 degrees, and subtract it
from the n × µ1 rectangle.) So, πn ◦ ρn maps {χGL(µ̄;λ)|λ′1 + µ′

1 ≤ n} bijectively onto the
set of characters of irreducible representations of GLn.

Observe that Λ is naturally identified with a subring of R, Λn with a subring of Rn, and
the restriction of ρm,n is ρ̃m,n for each m,n. Also, when µ is the empty partition, χGL(µ̄;λ)
is precisely the universal character χGL(λ) ∈ Λ defined above.

We may now offer a remark about why we do not simply generate R(GLn) by {en
i :

i = 1, . . . , n} and det−1 . Let λ be a partition. The expression for χSO2n(λ) as a sum of
characters of GLn is stable (in the sense that it is independent of n sufficiently large) when
these characters are expressed as πn◦ρnχGL(µ̄; ν). On the other hand, the expression in terms
of det−sχGLn(τ(ν, µ)) does not stabilize as n → ∞. Indeed, the partition τ(ν, µ) is different
for each value of n.

11.4. A review of our application. With the background established, let us go back over
the application to the local computations when E = F×F×F. We must compute the product
of two characters. One of them is the character of a representation whose highest weight not
only is a partition, but is one with strictly less than n parts. Let us call this partition λ.

We first need a formula for the restriction of χSO2n(λ) from SO2n to GLn. Once again the
“/” notation of (11.1.2) allows for a nice formulation. The relevant formula, which appears
in [B-K-W] as (A4) on p. 1586 is, in our notation:

(11.4.1) χSO2n(λ) =
∑

ξ,β

πn ◦ ρn
(
χGLn(ξ̄;λ/(ξ · β))

)
,

where λ has at most n parts, ξ is summed over all partitions, and β is summed only over
partitions such that each part appears with even multiplicity. This is a finite sum, since there
are only finitely many pairs (ξ,β) such that λ/(ξ ·β) is nonzero. But note that this holds only
for those λ which (a) are partitions, as not all weights of SO2n, much less those of Spin2n

are, and (b) as partitions, have strictly fewer than n parts,

Next, we take the product of (11.4.1) with the character of G̃Ln which has the same highest
weight as our other representation of Spin2n. Let us assume that this weight is µ+(ε, . . . , ε, ε),
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where µ is a partition, and ε = 0 or 1
2 . Then this character is χGLn(µ) det ε. So, we obtain

(11.4.2) χSO2n(λ)χgGLn
(µ + εn) = det επn ◦ ρn




∑

ξ,β

χGL(ξ̄;λ/(ξ · β))χGL(µ)



 .

We now need to evaluate these products of characters of GLn, which we wish to do in R and
then project. The product in R is described by formula (5.2) p. 1571 of [B-K-W]. In our
notation:

χGL(µ̄;λ)χGL(κ̄; ν) =
∑

σ,τ

χGL((µ/σ) · (κ/τ); (λ/τ) · (ν/σ)).

Plugging this into (11.4.2) we get

χSO2n(λ)χgGLn
(µ + εn) = det ε

∑

η,ζ,β

πn ◦ ρn(χGL(η̄; (λ/(ζηβ)) · (µ/ζ))),

where we have extended χGL to pairs of finite formal sums of partitions by Z-linearity. Let
us now define, for each n a map TgGLn→Spin2n

from R(G̃Ln) to R(Spin2n) which is Z-linear
and sends χgGLn

(λ) to χSpin2n(λ) for each weight λ. Then we get

(11.4.3) χSO2n(λ)χSpin2n(µ + εn) =
∑

ξ,β

TgGLn→Spin2n

(
det εχGLn(ξ̄;λ/(ξ · β))χGLn(µ)

)

(11.4.4) =
∑

η,ζ,β

TgGLn→Spin2n
(det επn ◦ ρn(χGL(η̄; (λ/(ζηβ)) · (µ/ζ)))) ,

All that is needed now to compute χSO2n(λ)χGLn(µ) is an efficient algorithm for reducing
χGL modulo the kernel of πn ◦ ρn. This is given in the next subsection. The answer is always
either 0 or ±χGLn(τ̄◦; ν◦) for a single pair of partitions τ◦, ν◦ with at most n total parts.

11.5. Reduction Modulo Ker(πn ◦ ρn). In this section we show how, for any pair of
partitions (µ̄;λ) with any numbers of parts, to reduce χGL(µ̄;λ) modulo the kernel of
πn ◦ ρn, obtaining either zero, or a pair (µ̄◦;λ◦) with at most n total parts, such that
πn ◦ ρn(χGL(µ̄;λ)) = ±χGLn(µ̄◦;λ◦), with an explicit description of the sign. This corre-
sponds to the Un, SUn modification rule in Table 3 of [B-K-W], although it may be necessary
to apply that rule more than once to obtain the answer we describe below. By contrast,
the modification rules in Tables 4 and 5 correspond to finding the dominant weight |ν|G
associated to ν by the action of the Weyl group, shifted by ρG.

For any infinite sequence a = a1, a2, . . . , am, . . . of integers with the property that am =
1−m for m > N , we define E(a) to be the N ×N determinant whose (i, j) entry is eai+j−1,
and define En(a) analogously with en’s. Observe that this definition is independent of the
choice of specific N having the requisite property. If 7 is an infinite sequence of integers such
that 7m = 0 for all m sufficiently large, we follow [Ko] in defining the associated β-sequence
β(7) by β(7)m = 7m + 1−m. Observe that if λ is a partition, then χGL(λ) = E(β(λ′)), where
we have identified the partition λ′ with the infinite sequence obtained by appending zeros at
the end.

We now consider πn ◦ρn(χGLn(µ̄;λ)). Making use of the identity ei
n(t−1) = en

n(t)−1en
n−i(t),

we find that
πn ◦ ρn(χGLn(µ̄;λ)) = (en

n)−sEn(β(a(λ, µ))),
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where
a(λ, µ) = (n − µ′

s, . . . , n − µ′
1,λ

′
1, . . . ,λ

′
r).

Here, we have once again denoted λ1 and µ1 by r and s, as is convenient to do when they
show up as the number of parts of the transpose partitions λ′ and µ′. When n−µ′

1 ≥ λ′1 this
expresses πn ◦ ρn(χGLn(µ̄;λ) as the character of a polynomial representation of GLn times a
power of det−1 .

Now suppose that a(λ, µ) is not a nonincreasing sequence (i.e., that µ′
1 + λ′1 > n.) Denote

β(a(λ, µ)) more briefly by β. If there exists i 1= j such that βi = βj, then E(β) = 0. Otherwise,
we may rearrange the terms to obtain a sequence β̂ which is strictly decreasing such that
E(β̂) = ±E(β), with the sign depending on the number of order reversals. We observe that
if β̂1 > n, then E(β̂) = 0. Furthermore, if β̂1 = n, then the initial en

n is the only nonzero
entry in the first row of the determinant defining E(β̂) and so we may express it as en

n times
the lower right minor. In this way, we see that

E(β̂) = (en
n)kE(β◦)

for some k ∈ Z≥0 and β◦ a strictly decreasing sequence of integers, such that β◦
m = 1−m for

m sufficiently large and β◦
1 < n. We may then recover two partitions λ◦ and µ◦ such that

(λ◦)′1 + (µ◦)′1 ≤ n, µ◦
1 = s − k

and
β(a(λ◦, µ◦)) = β◦.

Thus we have
χGLn(µ̄;λ) = ±χGLn(µ̄◦;λ◦)

with the sign being the one obtained from the order reversals to get β̂ from β.

11.6. Dictionary. Now, for the reader familiar with [B-K-W] or interested in consulting it
now, we offer a partial dictionary to translate from our notation to theirs.

The translation is not precise since the notion of a projective limit does not appear in
[B-K-W], only various identities which “stabilize” once n is sufficiently large and hence are
ripe for interpretation in terms of this notion. In the text of this appendix, we have used
λ and µ both for partitions (which might not be weights) and for weights (which might not
be partitions); throughout this table, λ and µ are partitions, while other Greek letters are
weights. Some of the notations depend on the number of parts of the partitions. These will
be denoted by p and q respectively. We subdivide into three parts: notations common in
the majority of [B-K-W], notations appearing mainly in section 6, and then a few logical
equivalencies. We remark that [λ]± and [∆;λ]± are also defined for p > n. For a “universal
character” interpretation, see [Ko]. Note that [∅̄;λ]± and [∆; ∅̄;λ]± are not equal to [λ]± and
[∆;λ]± for p > n.
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Our notation Their notation
det ε
LRν

λ,µ mν
λµ

πn ◦ ρn(χGL(µ̄;λ)) {µ̄;λ}
ρ̃n(χGL(λ)) = πn ◦ ρn(χGL(∅̄;λ)) {λ}
πn ◦ ρn(χGL(µ̄; ∅)) {µ̄}
πSp2n(χSp(λ)) 〈λ〉
ι † or · · · ]+ → · · · ]−
χSO2n(λ) [λ]+ if p ≤ n
χSO2n(λ) + χSO2n(λι) [λ] if p = n
χSO2n(λ) = χSO2n(λι) [λ] = [λ]+ = [λ]− if p < n
χSpin2n(λ + (1

2)n) [∆;λ]+ if p ≤ n
χSpin2n(λ + (1

2)n) + χSO2n((λ + (1
2 )n)ι) [∆;λ] if p ≤ n

χSpin2n(λ + 1n) [";λ]+ if p ≤ n
χSpin2n(λ + 1n) + χSpin2n((λ + 1n)ι) [";λ] if p ≤ n
TgGLn→Spin2n

◦ πn ◦ ρn(χGL(µ̄;λ)) [µ̄;λ]+
TgGLn→Spin2n

(det
1
2πn ◦ ρn(χGL(µ̄;λ))) [∆; µ̄;λ]+

χG(ν) (ν)G (alternate notation of section 6.)
ρG δG

c(H)τσ,ν+ρG−ρH
KτH

σH ,νG+δG−δH

nν
η BηH

νG

mG
ν (σ) MσT

νG

Equation (11.4.3) Equations (7.1a) & (7.1b)
Equation (11.4.4) Equations (7.5a) & (7.5b)
(µ̄;λ) +→ ±(µ̄◦;λ◦) Un, SUn Modification rule of Table 3

(possibly applied more than once)
χG(ν) +→ ν

|nu|GχG(|ν|G) Modification rule for G in Tables 4 &5
(possibly applied more than once)

53



References

[B] D. Bump, Lie groups, Graduate Texts in Math. 225, Springer-Verlag, New York, (2004).
[B-K-W] G.R.E. Black, R.C. King, and B.G. Wybourne, Kronecker products for compact semisimple Lie

groups, J. Phys. A 16 (1983), no.8, 1555-1589.
[Bo] A. Borel, Automorphic L-functions, in Automorphic forms, representations and L-functions, Proc. Sym-

pos. Pure Math., XXXIII, Part II, Amer. Math. Soc., Providence, R.I. (1977), 27-61.
[Br] M. Brion, Invariants d’un sous-groupe unipotent maximal d’un groupe semi-simple, Ann. Inst. Fourier

(Grenoble) 33 (1983), no. 1, 1–27.
[F-H] W. Fulton and J. Harris, Representation Theory: A First Course, Graduate Text in Math. 129, Springer-

Verlag, New York, 1991.
[G] D. Ginzburg, On the standard L-function for G2, Duke Math. J. 69, no. 2 (1993), 315-333.
[GGJ] W. T. Gan, N. Gurevich and D. H. Jiang, Cubic unipotent Arthur parameters and multiplicities of

square-integrable automorphic forms, Invent. Math. 149 (2002), 225-265.
[GH] D. Ginzburg and J. Hundley, Multivariable Rankin-Selberg integrals for orthogonal groups, Int. Math.

Res. Not. 2004, no. 58, 3097–3119.
[GH2] D. Ginzburg, J. Hundley, A New Tower of Rankin-Selberg integrals, Electron. Res. Announc. Amer.

Math. Soc. 12 (2006), 56-62.
[GS] W. T. Gan and G. Savin, On minimal representations: definitions and properties, Representation Theory

Vol 9 (2005), 46-93.
[Gr] B. H. Gross, Groups over Z, Invent. Math. 124 (1996), no. 1-3, 263–279.
[J1] H. Jacquet, Fonctions de Whittaker associes aux groupes de Chevalley, Bull. Soc. Math. France 95 (1967),

243–309.
[J2] H. Jacquet, Integral representation of Whittaker functions, in Contributions to automorphic forms, ge-

ometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, 373-419.
[JS] H. Jacquet and J. Shalika, Exterior square L-functions in Automorphic forms, Shimura varieties, and

L-functions, Vol. II (Ann Arbor, MI, 1988), Perspect. Math., 11, Academic Press, Boston, MA, 1990,
143-226.

[K] D. Kazhdan, The minimal representation of D4, in Operator algebras, unitary representations, enveloping
algebras, and invariant theory, Progr. Math., 92, Birkhuser, Boston (1990), 125-158.

[KP] D. Kazhdan and A. Polishchuk, Minimal representations: spherical vectors and automorphic functionals,
in Algebraic groups and arithmetic, Tata Inst. Fund. Res., Mumbai (2004), 127-198.

[Ki] King, R.C., Kronecker products of representations of exceptional Lie groups, J. Phys. A: Math. Gen.
14(1981) 77-93

[Ko] K. Koike, Representations of spinor groups and the difference characters of SO(2n), Adv. Math. 128
(1997), no. 1, 40–81.

[K-T] K. Koike, I. Terada, Young-diagrammatic methods for the representation theory of the classical groups
of type Bn, Cn, Dn, J. Algebra 107 (1987), no. 2, 466–511.

[M] I.G. MacDonald, Symmetric Functions and Hall polynomials, Oxford University Press, Oxford, 1979.
[S] D. Soudry, On the Archimedean theory of Rankin-Selberg convolutions for SO2l+1 × GLn, Ann. Sci. cole

Norm. Sup. (4) 28 (1995), no. 2, 161–224.
[T] B. Tamir, On L-functions and intertwining operators for unitary groups, Israel J. Math. 73 (1991), no. 2,

161–188.

Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La
Jolla, CA 92093, U.S.A.

E-mail address: wgan@math.ucsd.edu

Department of MAthematics, Penn State University, University Park, State College, PA
16802, U.S.A.

E-mail address: hundley@math.psu.edu

54


