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1. Introduction

Let F be a number field1. Let G be a quasisplit F -group, isomorphic to SL3 over F . Thus,
F is either SL3, or a quasisplit unitary group attached to some quadratic extension E/F. The
finite Galois form of G’s L-group is then PGL3(C) in the split case, or the semidirect product of
PGL3(C) with Gal(E/F ) in the nonsplit case. In either case we have an action of LG on PGL3(C)
by conjugation, which may be regarded as an action on GL3(C) which fixes the center. This then
induces an action on the Lie algebra sl3(C) which we denote Ad . Note that in the nonsplit case this
does not coincide with the definition of Ad in [H]. Rather, the nontrivial element Fr of Gal(E/F )
will act by X ↦ −tX, as this is the differential of its action on PGL3(C). Let Ad′ denote the

Date: June 13, 2017.
1It seems that most of these results should also hold in the function field case.
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representation of LG considered in [H]. Thus Ad′ = Ad in the split case, but in the nonsplit case it
is the representation of LG where GL3(C) acts by conjugation and Fr acts by X ↦ tX.

Let π be a globally generic irreducible cuspidal automorphic representation of G. Then we con-
sider the adjoint L function L(s, π,Ad). One would like understand the poles of this L function.
We discuss an attack based on the integral representation given in [G], [H] and a strengthening the
results of [GJ]. Our proof also applies to certain twisted L functions.

We briefly review the local zeta integral for L(s, π,Ad) presented in [G], [H]. First, one fixes
an embedding of G into the split exceptional group of type G2. Let P be the maximal standard
parabolic subgroup of G2, whose Levi contains the root subgroup attached to the short root. Let
f be a flat section of the family of induced representations attached to a family of characters of
P (F )/P (A), and EP be the corresponding Eisenstein series operator (these notions are reviewed
in sections 2.2 and 2.6).

One may then define

(1.1) I(s,ϕ, f) ∶= ∫
G(F )/G(A)

ϕ(g)EP .f(g, s)dg,

where s ∈ C, and ϕ is a generic cusp form G(F )/G(A)→ C. Both [G], and [H] present the argument
under the assumption that the characters are unramified, but the extension to the general case
is direct so we may regard the theorem as proved in the ramified case as well. The integral
I(s,ϕ, f) unfolds to a new integral I(s,Wϕ, f) where Wϕ is the Whittaker function attached to
ϕ. Assuming that Wϕ and f are factorizable, I(s,Wϕ, f) then factors as a product of local zeta
integrals I(s,Wv, fv).HereWv and fv are the local components at a place v ofWϕ and f respectively.
Moreover, if Wv, fv and χv are all unramified,2 and Wv and fv are normalized, then

I(s,Wv, fv) =
L(3s − 1, πv,Ad′⊗χv)

L(3s,χv)L(6s − 2, χ2
v)L(9s − 3, χ3

v)
. (See note3)

Hence,

(1.2) I(s,ϕ, f) = LS(3s − 1, π,Ad′⊗χ)
LS(3s,χ)LS(6s − 2, χ2)LS(9s − 3, χ3)∏v∈S

I(s,Wv, fv),

where S is a finite set of places, away from which Wv, fv and χv are unramified. Notice that
L(s, π,Ad) = L(s, π,Ad′) if G is split and L(s, π,Ad′⊗χE/F ), where χE/F is the quadratic character
attached to the extension E/F by class field theory if G is not split.

One expects that in general the L function L(s, π,Ad⊗χ) should be entire. Indeed, in the split
case L(s, π,Ad×χ) = L(s, π⊗χ× π̃)/L(s,χ), and it follows that the possible poles are precisely the
zeros of L(s,χ), unless χ is nontrivial and π⊗χ ≅ π̃, in which case there are additional simple poles
at s = 0 and s = 1. One expects that L(s, π ⊗ χ × π̃) is divisible by L(s,χ) and hence that the only
actual poles are the simple poles at s = 0 and s = 1 which occur when χ is nontrivial and π⊗χ ≅ π̃.
In the special case when π = ⊗′vπv and at least one component πv is supercuspidal, this was proved
by Flicker [F].

In the nonsplit case, one must replace L(s, π × π̃) with the Asai L function of the stable base
change lifting of π. One must also account for the image of certain theta liftings. Indeed, consider

(1.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

a b
t

c d

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≅ GL2(C) ×GL1(C) ⊂ GL3(C)

2We say Wv is unramified if it is the unramified vector in a Whittaker model attached to a character with trivial
conductor.

3 This corrects a typo which appears in [H]. In that paper, ζ(3s − 9) appears where ζ(9s − 3) would be correct.

2



This subgroup is stable under the outer automorphism which realizes the action of the nontrivial
Galois element of the L group. Thus we obtain a subgroup of the L group. This subgroup may
be realized as the image of an L-homomorphism from the L group of a product of smaller unitary
groups U1,1 × U1 (still attached to the same quadratic extension). See [R]. The above subgroup
clearly stabilizes the one dimensional subspace of sl3(C) spanned by diag(1,−2,1), and so does the

map X ↦ tX ∶= J tXJ, where J = ( 1
1

1
) . Thus we obtain a one dimensional space stable under

the restriction of the representation Ad′ to L(U1,1 × U1), so that L(s, π,Ad′) should have a pole
whenever π is a lift from U1,1 × U1. (In the split case, this issue does not arise: the group (1.3) is
the L group of a standard Levi, the corresponding “functorial lifting” is realized by formation of
Eisenstein series, and an element of its image can never be cuspidal).

An approach to controlling poles of twisted adjoint L functions, which is based on the study
of I(s,ϕ, f) and does not depend on any property of a local component of π was pioneered in
[GJ]. If I(s,ϕ, f) has a pole at s = s0 then each of its negative Laurent coefficients is a global
integral, similar to I(s,ϕ, f), but with the Eisenstein series replaced by its corresponding negative
Laurent coefficient. Thus, it suffices to show that the negative Laurent coefficients of the Eisenstein
series used in I(s,ϕ, f), when restricted to the subgroup G↪ G2 are “orthogonal”4 to cusp forms.
Following [GJ], this can be done by expressing such Laurent coefficients in terms of Eisenstein series
induced from characters of the other maximal parabolic subgroup of G2, and then checking that
the restrictions of these Eisenstein series are “orthogonal” to G-cuspforms. In [GJ], it is shown that
the Eisenstein series appearing in the construction of I(s,ϕ, f) for the case of trivial χ has only
two poles in Re(s) > 1

2 , with one being simple and the other double. The residue of the simple pole
is a constant function and thus obviously orthogonal to cusp forms. At the double pole, a “first
term identity” is proved, which expresses the leading term of the Laurent expansion in terms of an
Eisenstein series from the other parabolic. This rules out a double pole of the adjoint L function.
In order to rule out a simple pole by this method, one would need a “second term identity.” In
section 3.3 we prove an identity of this type. It is my understanding that such an identity was first
obtained by Jiang in unpublished work.

That being said, if the second pole of the Eisenstein series gave rise to a pole of the global
adjoint L function L(s, π,Ad), this pole would occur at s = 1. Such a pole is impossible, because
L(s, π,Ad) = L(s, π × π̃)/ζ(s), and L(s, π × π̃) and ζ(s) both have simple poles at s = 1.

In this paper we pursue the approach pioneered by Ginzburg and Jiang. First, we analyze the
poles of the Eisenstein series in the case of nontrivial χ. This allows us to deduce information
about the poles of the local zeta integral. We also prove a key vanishing result needed to deduce
holomorphy of L(s, π,Ad×χ) at Re(s) = 1

2 from (1.2). Then, we prove a weak result regarding
local zeta integrals at ramified and Archimedean primes. While preparing this manuscript, I have
learned that a stronger result– a local functional equation– has been obtained by Qing Zhang. The
weaker result proved here suffices for our application, permitting us to deduce that each pole of the
partial adjoint L function must be a pole of the global zeta integral for some choice of data.

Our main result is theorem 6.1, which states that, in the split case, every pole of L(s, π,Ad×χ)
in the half plane Re(s) ≥ 1

2 is simultaneously a zero of L(s,χ) and a pole of the finite product
over the ramified and Archimedean places. Using this result, together with knowledge of the form
of the Gamma factor and the zeros of the Riemann zeta function, Buttcane and Zhou were able
to show holomorphy of the complete adjoint L function (and hence also all partial L functions)
for an SL(3,Z) Maass form with trivial central character (such a form generates a representation
unramified at all finite places). Since then, Qing Zhang has been able to strengthen the main result
of this paper by treating ramified nonarchimedean places. Thus, one can take the finite product

4“Orthogonal” is in quotes because the residues need not be L2. But one can extend the inner product on
L2
(G(F )/G(A)) to allow pairing cusp forms with arbitrary smooth functions of moderate growth.

3



only over Archimedean places. This immediately gives an extension of the result of Buttcane and
Zhou to Maass forms with trivial central character attached to congruence subgroups.

1.1. Acknowledgements. Thanks to Richard Taylor for pointing out the problem with the defi-
nition of “Ad” in [H], to Sol Friedberg for pointing out the reference [F], to Dihua Jiang for helpful
explanation of [GJ], and for letting me know about his unpublished work, to Paul Garrett and
David Loeffler for helpful explanations on MathOverflow, and to Qing Zhang, Jack Buttcane, Fan
Zhou, and Dorian Goldfeld for stimulating discussions.

2. Induced representations, interwining operators, and their poles

2.1. Characters and degenerate induced representations. Let F be a number field as before.
If G is an F -group, write X(G) for the group of rational characters of G and XG for the complex
manifold of characters of G(A) trivial on G(F ). These are groups and we write them additively.
To reconcile with multiplicative notation for G(A) and C×, we use an exponential notation for
the characters: the value of χ ∈ XG at g ∈ G(A) is denoted gχ. A similar notation is used for
cocharacters. We identify χ ∈ X(G) with the character of G(F )/G(A) obtained by composing it
with the absolute value on A×. This extends to a mapping of X(G)⊗ZC into XG. The image is the
set of unramified characters, which we denote XG,un. Similarly we denote the complex manifold of
all characters of G(Fv) by XG,v and the image of X(G)⊗ZC in it by XG,v,un. We identify XGL1,un

with C using the map s→ ∣ ∣s. We denote the canonical pairing between characters and cocharacters
by ⟨ , ⟩. If ϕ∨ is a cocharacter, then ⟨ϕ∨, χ⟩ ∈ XGL1 .

We shall only require split connected reductive F -groups with simply connected derived groups.
We always assume that each is equipped with a choice of split torus and Borel containing it. The
torus is denoted T and the Borel B. Let G be such a group. For H a T -stable F -subgroup we
write Φ(T,H) for the roots of T in H. The Weyl group is denoted W. It is realized as a quotient
of the normalizer, NG(T ), of T in G. We also assume G equipped with a realization, i.e. a family
of isomorphisms {xα ∶ Ga → Uα}α∈Φ(G,T ), such that xα(1)x−α(−1)xα(1) ∈ NG(T ) for each α.
This product is then a representative for the simple reflection attached to α and one may select
representatives for other elements of the Weyl group using them.

Let M be a standard Levi. Then we may identify XM with {χ ∈ XT ∶ ⟨χ,α∨⟩ = 0, α ∈ Φ(T,M)}.
Likewise, we may identify XM,un with {χ ∈ XT,un ∶ ⟨χ,α∨⟩ = 0, α ∈ Φ(T,M)}. We would like to
choose a complement XG,0 to XG,un in XG. When G = GL1 this is done by taking the normalized
characters, i.e., those that are trivial on the multiplicative group of positive reals, embedded diag-
onally at all the infinite places. When G is a torus, it can be identified with several copies of GL1

by choosing a Z-basis for X(G) and the subgroup XG,0 thus obtained is independent of the choice.
If G = GderT where Gder is the derived group and T is a torus, then restriction gives an embedding
XG ↪ XT , and we may apply the decomposition XT = XT,un ⊕XT,0 to obtain the corresponding
decomposition of XG.

For archimedean local fields, we again define a character to be normalized if it is trivial on
the positive reals. For nonarchimedean fields, we first choose a uniformizer and then say that
a character is normalized if it is trivial on the uniformizer. This leads to similar decompostions
XG,v = XG,v,un ⊕XG,v,0 into unramified characters and normalized characters. For any character
χ, we define χun and χ0 to be the components relative to this decomposition. If χ = s + χ0 ∈ XGL1

(resp. XGL1,v) we define L(χ) to be the usual global (resp. local) L function L(s,χ0) (keeping in
mind that XGL1,un has been identified with C).

Take P a parabolic with Levi M and χ ∈ XM . Write ρP = 1
2 ∑α∈Φ(P,T )

α. We define IGP (χ) to

be the normalized K-finite induced representation of G(A) and IndGP (χ) to be the non-normalized
version. For χ ∈ XM,v we define IGP (χ) to be the normalized Kv-finite induced representation of

G(Fv) and IndGP (χ) the non-normalized version. In either case, IGP (χ) = IndGP (χ + ρP ), and is a
4



subset of IGB (χ+ρP −ρB). In the important special case when the Levi of P is rank one with unique

root α, this becomes IGB (χ − α
2 ).

2.2. Flat Sections. Fix a reductive group G and standard Levi M, and a normalized character
χ0 ∈ XM . We consider the family of induced representations IGP (χ) with χ in χ0 +XM,un. Denote

the family as a whole by IGP (χ0). By a section we mean a function

χ↦ fχ, (χ ∈ χ0 +XM,un)
such that

(1) fχ ∈ IGP (χ) for each χ ∈ χ0 +XM,un,
(2) f is smooth as a function XM ×G→ C.

We say that f is flat if f(χ0 + s, k) is independent of s ∈ XM,un for k ∈ K. (Here K is a fixed

maximal compact subgroup.) The set of flat sections of IGP (χ0) is a complex vector space. Denote
it Flat(χ0).

2.3. Coordinates on XT in the case of G2. Our main results deal with induced representations
on the split exceptional group G2. I write α for the short root and β for the long root. Unfortunately,
this is the opposite of the notation used in [GJ]. I write Uγ for the root subgroup attached to any
root γ. I assume G2 to be equipped with a choice of Borel and of maximal torus. These are B and
T. I write P = MU for the standard parabolic subgroup whose Levi contains Uα and Q = LV for
the one whose Levi contains Uβ. For χ1, χ2 ∈ XGL1 let [χ1, χ2] denote the element of XT which
satisfies

⟨[χ1, χ2], α∨⟩ = χ1, ⟨[χ1, χ2], β∨⟩ = χ2.

Thus $1 ∶= [1,0] and $2 ∶= [0,1] are the two fundamental weights. Note that [χ1, χ2] ∈ XM ⇐⇒
χ1 = 0 and [χ1, χ2] ∈ XL ⇐⇒ χ2 = 0.

2.4. Normalization and poles of intertwining operators: GL2 case. We study poles of
intertwining operators. The theory is fairly uniform for split groups, and reduces to the special
case of GL2. First we consider the case of GL2. Write BGL2 for the standard Borel of GL2 consisting
of upper triangular matrices. Take χ =∏v χv a character of BGL2(A). Let w be the unique nontrivial
element of the Weyl group, and α the unique positive root.

Lemma 2.1. The normalized local intertwining operator

M⋆

v (w,χv) ∶=
1

Lv(⟨χv, α∨⟩)
Mv(w,χ)

extends analytically to all of XT . When ⟨χv ○α∨⟩ is unramified IGL2
BGL2

(χv) has a normalized “spher-

ical”5 vector which we denote f○χv . Then

Mv(w,χv).f○χv =
L(⟨χv, α∨⟩)

L(⟨χv, α∨⟩ + 1)
f○wχv .

Proof. In the nonarchimedean case, both assertions can be verified by fairly direct computations.
Alternatively, the first assertion is a special case of a result of Winarsky, [Wi], and the second
assertion is a special case of the result in section 4 of Langlands, Euler products [L]. Over the
reals, both assertions can be deduced from proposition 2.6.3 of [B]. The second assertion is also
the simplest case of the formula of Gindikin and Karpalevic [GK], first proved for GLn by Bhanu
Murti [BM]. Over the complex numbers, both assertions follow from Lemma 7.23 of [Wa]. See also
[Ga] and additional references therein. The first assertion over either archimedean field also follows
from the generalization found on p. 110 of [Sh]. �

5By “spherical”, we mean fixed by the intersection of SL2(Fv) with the maximal compact subgroup.
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Consequently if f =∏v∉S f○χv∏v∈S fv is an element of the global induced space IGL2
BGL2

(χ), then

(2.2) M(w,χ).f = L(⟨χ,α∨⟩)
L(⟨χ,α∨⟩ + 1)∏v∉S

f○χv∏
v∈S

Lv(⟨χv, α∨⟩ + 1)M⋆

v (w,χv)fv.

We deduce that poles of M(w,χ) come in three classes

(1) Poles of ∏α>0, wα<0L(⟨χ,α∨⟩), which are not cancelled by poles of ∏α>0, wα<0L(⟨χ,α∨⟩+1),
These occur at ⟨χ,α∨⟩ = 1, and in particular do not occur unless ⟨χ,α∨⟩0 = 0.

(2) Zeros of L(⟨χ,α∨⟩ + 1). These are all in the strip −1 < Re⟨χ,α∨⟩un < 0.
(3) Poles of ∏v∈S Lv(⟨χv, α∨⟩ + 1). These are all in the half plane Re⟨χ,α∨⟩un ≤ −1.

2.5. Poles of intertwining operators on the principal series: general case. Now let G be a
general split reductive group, B its Borel, χ =∏v χv a character of B(A), and w any element of the
Weyl group. For each root α we have a map SL2 → G and can decompose the standard intertwining
operator M(w,χ) as a composite of intertwining operators indexed by {α > 0 ∶ wα < 0}. Poles of
the intertwining operator attached to a root α are of the same three types, along hyperplanes
⟨α∨, χ⟩ = c in the space XB,un defined using the corresponding coroot.

2.6. Eisenstein series. Now suppose that G is a reductive group and P a parabolic subgroup. We
fix a suitable maximal compact subgroupK =∏vKv ofG(A) and letA(G) denote the space of auto-
morphic forms (relative to K) G(A)→ C, that is, the space of smooth functions φ ∶ G(F )/G(A)→ C
of moderate growth which are finite under the action of K and the center, zG of the universal en-
veloping algebra of the Lie algebra of G(F∞).

Fix χ0 ∈ XM,0 and let Flat(χ0) denote the space of flat sections of IGP (χ0). For f ∈ Flat(χ0), we
define the Eisenstein series

EP .f ∶ G(A) × (χ0 +XM,un)→ C
by

EP .f(g,χ) = ∑
γ∈P (F )/G(F )

fχ(γg)

for values of χ such that this sum is convergent and by meromorphic continuation elsewhere.
Outside the domain of convergence, one encounters poles of finite order along a locally finite set
of root hyperplanes. For each χ away from the poles, f ↦ EP .f(⋅, χ) is an intertwining operator
IGP (χ)→ A(G). We denote it EP (χ).

2.7. Normalization of G2 Eisenstein series. We briefly recall the Eisenstein series which appear
in [G] and [H] and their normalization. The Eisenstein series in question are attached to the
parabolic P =MU as in section 3.2. In [G] and [H], unramified Eisenstein series are considered. The
space XM,un is one dimensional and can conveniently be identified with C using the mapping s↦ δsP .
Here δP is the modular quasicharacter. In the notation of section 3.2, δsP = [0,3s]. Equivalently,

the half-sum of the roots of P is ρP = [0, 3
2]. Thus IndGP (δsP ) = IGP ([0,3s − 3

2]) ⊂ I
G
B [−1,3s − 1]). In

order to generalize the construction of [G] and [H] to get L(s, π,Ad′ ×χ) for general χ, we would
use IGP ([0,3s − 3

2 + χ]),

2.8. Application to relevant intertwining operators for G2. We apply this to the intertwining

operators that appear in the constant term of our G2 Eisenstein series. Write c(u,χ0) = L(u,χ0)

L(u+1,χ0)
.

For χ ∈ XT and w ∈ W let c(w,χ) = ∏α>0, wα<0 c(⟨α∨, χ⟩). Then decomposing M(w,χ) as a
composite of operators attached simple reflections and letting M∗(w,χ) denote the corresponding
composite of normalized operators yields the generalization of (2.2):

M(w,χ).f = ∏
α>0, wα<0

( L(⟨χ,α∨⟩)
L(⟨χ,α∨⟩ + 1)∏v∈S

Lv(⟨χv, α∨⟩ + 1))∏
v∉S

f○χv∏
v∈S

M⋆

v (w,χv)fv.
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The constant term of our Eisenstein series may be expressed as a sum over w ∈W such that wα > 0.
Here α is the short simple root. There are six such w, one of each length from 0 to 5. We write wi
for the element of length i. If χ = [−1,3s − 1 + χ0] and

C ∶= (c(3s − 1, χ0), c(9s − 4, χ3
0), c(6s − 3, χ2

0), c(9s − 5, χ3
0), c(3s − 2, χ0)),

then c(wi, χ) = ∏ij=1 Cj . Recall that poles of the intertwining operators come in three classes. We
analyze each class.

(1) Poles which arise from the pole of the zeta function at 1 will occur at 2/3 and 1 if χ0 is
trivial; at 5/9 and 2/3 if χ3

0 is trivial, and at 2/3 if χ2
0 is trivial. If χ0 is trivial then the pole

at 2/3 can be a triple pole. Otherwise it is simple. The other poles are always simple.
(2) Poles which arise from zeros of a global L function are in the half plane Re(s) < 1

2 . For

example, c(9s − 5, χ3
0) could have poles as far right at Re(s) = 5/9 − ε, but it never occurs

without c(9s−4, χ3
0) so the zeros of the L function in its denominator are always cancelled.

We only get poles from the zeros of L(9s − 3, χ3
0), and these begin at 4/9.

(3) Poles which arise from local L functions are all in the half plane Re(s) ≤ 4/9.
It follows that the only possible poles of our Eisenstein series in the half plane Re(s) ≥ 1/2 are at
5/9,2/3 and 1, and can occur only if χ0 is trivial, quadratic, or cubic. Notice that the pole at 2/3
would correspond to a pole of L(s, π,Ad′ ×χ) at 1. More detailed information regarding the poles
of the intertwining operators in Re(s) ≥ 1

2 is recorded in the following table.

χ trivial nontrivial quadratic nontrivial cubic
w0 holomorphic holomorphic holomorphic
w1 2/3 holomorphic holomorphic
w2 2/3, 5/9 holomorphic 5/9
w3 2/3(double), 5/9 2/3 5/9
w4 2/3(triple), 5/9 2/3 2/3,5/9
w5 2/3(triple), 5/9, 1 2/3 2/3,5/9

2.9. Application to the constant term of our G2 Eisenstein series. Now, the poles of the
Eisenstein series (and their orders) are the same as the poles of the constant term (and their orders),
which is a sum of intertwining operators. Having determined the poles of the summands, and their
orders, the next step is to account for the possibility of cancellation in the sum. In the unramified
case this is done in [GJ].

Theorem 2.3 (Ginzburg-Jiang). Assume that χ0 is trivial. Then EP has a simple pole at s = 1,
and a double pole at s = 2/3. At s = 5/9 it is holomorphic.

We sketch a proof which is slightly different than the one given in [GJ]. The technique is similar
to [HM] and will be worked out in detail for the ramified case below. We consider the two terms
which have triple poles at s = 2/3. They correspond to the Weyl elements w4 and w5. We may write
M(w5, χ) =M(sβ,w4χ)M(w4, χ). Here, sβ is the simple reflection in the Weyl group attached to
the long root β (sα is defined similarly). We check that when χ0 is trivial, ⟨β∨,w4χ⟩ vanishes at the
point corresponding to s = 2/3 It follows from [K-Sh, proposition 6.3] that M(sβ,w4χ) is the scalar
operator −1 at this point. Hence M(w4, χ) +M(w5, χ) is equal to the composition of M(w4, χ)
and an operator which vanishes at s = 2/3. Similarly, the four terms which give poles at 5/9 form
two pairs such that the sum of each pair is holomorphic at s = 5/9.

Theorem 2.4. Assume that χ0 is nontrivial quadratic or cubic. Then EP has a simple pole at 2
3

and is otherwise holomorphic in Re(s) ≥ 1
2 .
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Proof. We have

M(w5, χ) =M(sβ,w4χ)M(sα,w3χ)M(sβ,w2χ)M(sα,w1χ)M(sβ, χ)
The corresponding expression for wi with i < 5 is obtained by taking only the rightmost operators
in this composite.

We tabulate key data. First, the spaces that the six operators map into

M(. . . , χ) Maps to IG2
B (. . . ) (s = 5/9,3χ0 = 0) (s = 2/3,3χ0 = 0) (s = 2/3,2χ0 = 0)

w0 [−1, χ0 + 3s − 1] [−1, χ0 + 2/3] [−1, χ0 + 1] [−1, χ0 + 1]
w1 [3χ0 + 9s − 4,−χ0 − 3s + 1 [1,−χ0 − 2/3] [2,−χ0 − 1] [χ0 + 2, χ0 − 1]]
w2 [−3χ0 − 9s + 4,2χ0 + 6s − 3] [−1,−χ0 + 1/3] [−2,−χ0 + 1] [χ0 − 2,1]
w3 [3χ0 + 9s − 5,−2χ0 − 6s + 3] [0, χ0 − 1/3] [1, χ0 − 1] [χ0 + 1,−1]
w4 [−3χ0 − 9s + 5, χ0 + 3s − 2] [0, χ0 − 1/3] [−1, χ0] [χ0 − 1, χ0]
w5 [−1,−χ0 − 3s + 2] [−1,−χ0 + 1/3] [−1,−χ0] [−1, χ0]

And next the elements of XGL1 which will determine the poles of the rank one operators.

pairing general (s = 5/9,3χ0 = 0) (s = 2/3,3χ0 = 0) (s = 2/3,2χ0 = 0)
⟨β∨, χ⟩ χ0 + 3s − 1 χ0 + 2/3 χ0 + 1 χ0 + 1

⟨α∨,w1χ⟩ 3χ0 + 9s − 4 1 2 χ0 + 2
⟨β∨,w2χ⟩ 2χ0 + 6s − 3 −χ0 + 1/3 −χ0 + 1 1
⟨α∨,w3χ⟩ 3χ0 + 9s − 5 0 1 χ0 + 1
⟨β∨,w4χ⟩ χ0 + 3s − 2 χ0 − 1/3 χ0 χ0

The key facts are the following: when the pairing is 1 the corresponding rank-one operator has
a pole. When it is zero, the corresponding rank-one operator is the scalar operator −1. When it
is −1 the corresponding rank-one operator has a kernel. Otherwise, the rank-one operator is an
isomorphism. From this we can see that M(wi, [−1, χ0 + 3s − 1]) has a pole at s = 2/3 if 2χ0 = 0
and i ≥ 3 or if 3χ0 = 0 and i ≥ 4. In either case, the operators M(wi, [−1, χ0 + 1]) all land in
different spaces. Hence there is no possibility of cancellation among them and the poles of the
individual intertwining operators are inherited by their sum (i.e., the constant term) and then by
the Eisenstein series itself.

We also see that M(wi, [−1, χ0 + 3s − 1]) has a simple pole at s = 5/9 if i ≥ 2 and 3χ0 = 0.
In this case we have two pairs of operators which land in the same space. To study them, set
u = 3s − 5/3 = 3(s − 5

9) so that 3s − 1 = u + 2
3 . Thus u is a convenient local coordinate in a

neighborhood of s = 5
9 . The first key point is that

⟨α∨,w3[−1, χ0 + 2/3]⟩ = 0 Ô⇒ M(sα,w3[−1, χ0 + u + 2/3]) = −1 +O(u).
Hence

M(w3, [−1, χ0+u+2/3])+M(w4, [−1, χ0+u+2/3]) = (1+M(sα,w3[−1, χ0+u+2/3]))○M(w3, [−1, χ0+u+2/3])
is the composite of an operator with a simple pole at u = 0 and an operator which vanishes at u = 0.
Thus, it is holomorphic at u = 0.

The second key point is that M(sβ,−sβχ) = M(sβ, χ)−1. (This is an identity of meromorphic
functions.) Hence

H(u) ∶=M(sβ, [−3u,χ0 + u − 1/3])M(sα, [3u,χ0 − 2u − 1/3])M(sβ, [−3u − 1,2u + 1/3 − χ0])
= (M(sβ, [0, χ0 − 1/3]) +O(u))(−1 +O(u))(M(sβ, [−1,1/3 − χ0]) +O(u))
= −1 +O(u).

But

M(w2, [−1, χ0 + u + 2/3]) +M(w5, [−1, χ0 + u + 2/3])s = (1 +H(u)) ○M(w2, [−1, χ0 + u + 2/3]).
8



Once again we have an operator with a simple pole composed with an operator that has a zero.
This completes the proof. �

Remark 2.5. The existence of the pole of EP at 2/3 in the cubic case can also be deduced from
the existence of a pole of the adjoint L function: cuspidal representations of GL3(A) satisfying
π ≅ π ⊗ χ exist by Theorem 2.4(iv) of [Cl]. Thanks to David Loeffler for explaining this to me.
For such a representation L(s, π,Ad⊗χ) = L(s, π × π̃ × χ)/L(s,χ) will have a pole at s = 1. As
local L functions are nonvanishing this pole will be inherited by the partial L function, and then,
by theorem 5.1 below by the global zeta integral. In the case when χ is nontrivial quadratic the
existence of a pole at s = 2/3 can also be deduced from theorem 3.4 below.

2.10. Key vanishing property of the Eisenstein series.

Proposition 2.6. Assume that 2χ0 = 0. Then EP ([−1,3s − 1 + χ0]) vanishes at s = 1
2 .

Proof. The proof is similar to that of theorem 2.4. Note that w5[−1, 1
2 +χ0] = [−1, 1

2 +χ0], w4[−1, 1
2 +

χ0] = w1[−1, 1
2 + χ0] and w3[−1, 1

2 + χ0] = w2[−1, 1
2 + χ0]. Write w4 = w4,1w1 and w3 = w3,2w2. As in

the proof of theorem 2.4 one readily checks that M(w5, [−1,3s−1+χ0]),M(w4,1,w1[−1,3s−1+χ0])
and M(w3,2,w2[−1,3s − 1 + χ0]) are all −1 +O(s − 1

2) at s = 1
2 . This time none of the intertwining

operators has a pole, so the sum vanishes at s = 1
2 .

Alternatively, having established that M(w5, [−1,3s − 1 + χ0]) = −1 +O(s − 1
2), We can deduce

vanishing of the Eisenstein series from the fact that it is holomorphic and satisfies the functional
equation

EP ([−1,3s − 1 + χ0]) = EP ([−1,2 − 3s + χ0]) ○M(w5, [−1,3s − 1 + χ0]).
�

3. Siegel-Weil type identities

In this section we prove identities relating degenerate Eisenstein series induced from the two
different parabolic subgroups of G2. Such identities are sometimes called Siegel-Weil nth term
identities. A conceptual explanation for their existence comes from embeddings of degenerate
induced representations into principal series representations induced from the Borel, together with
the symmetry of the principal series (see [J]. We first prove a technical result which extends this
philosophy to flat sections and Eisenstein series.

3.1. Surjectivity property of intertwining operators. In the next few sections we consider
an alternate normalization of the intertwining operator, which is different than the one considered
in section 2.

Take χ ∈ XM,v ⊂ XT,v. Then the standard intertwining operator M(wα, χ + α
2 ) maps IGB (χ + α

2 )
to IGP (χ) ⊂ IGB (χ− α

2 ). We sketch a proof that the map is surjective. Take any f ∈ IGP (χ) and let f○s
denote the spherical vector in IndGB(s+ 1

2)α. Then let f̃ ∶= f ⋅f○s , which lies in the space IGB (χ+ sα).
It follows immediately from the integral formula for the standard intertwining operator that

M(wα, χ + sα)f̃ = fM(wα, sα).f○s = f
ζ(2s)

ζ(2s + 1)
f○
−s.

But f○
−1/2 is just the constant function 1, so when s = 1/2 we obtain a nonzero scalar multiple of f.

In the global setting, this fails because ζ(2s) has a pole at s = 1/2. Let

M∗(wα, χ) = (⟨α∨, χ⟩un − 1)M(wα, χ).
(Recall that ⟨α∨, χ⟩un ∈ XGL1,un which has been identified with C.) Then M∗(wα, χ) has no poles

in Re(s) ≥ 0, and for ⟨χ,α∨⟩ = 0 maps IGB (χ + α
2 ) (global induced rep now) surjectively onto

IGP (χ) ⊂ IGB (χ − α/2).
9



Proposition 3.1. If Φ(T,M) = {±α} and f is a flat section of IGP (χ0), then there exists a flat

section f̃ of IGB (χ0) such that M∗(wα, χ + α
2 ).f̃χ+α2 = fχ for all χ ∈ χ0 +XM,un.

Proof. As before, we construct f̃ by taking the product of f and the normalized spherical vector
in IndGB(s + 1

2)α. (Note that XT,un = XM,un +Cα.) Then for χ ∈ XM and s ∈ C

M∗(wα, χ + sα).f̃χ+sα = fχ ⋅ (2s − 1) ⋅ ζ(2s)
ζ(2s + 1)

⋅ f−s.

Again, f−1/2 is the constant function 1, so we get a nonzero scalar multiple of fχ. �

Remark 3.2. For each fixed χ, the operator M∗(wα, χ+ α2 ) maps IGB (χ+ α2 ) onto IGP (χ) ⊂ IGB (χ− α2 ).
The key point is that this extends to a map from flat sections of IGB (χ0) to flat sections of IGP (χ0).

Proposition 3.3. Take P = MU with Φ(T,M) = {±α} and f a flat section of IGP (χ0). Assume

⟨α∨, χ0⟩ = 0. Choose f̃ a flat section of IGB (χ0) such that M∗(wα, χ + α
2 ).f̃ ∣χ0+XM,un = f. Define

Eα∗B f̃(g,χ) = (⟨χ,α∨⟩un − 1)EB.f̃(g,χ + α
2 ) Then

Eα∗B .f̃(g,χ) = EP .f(g,χ), (∀χ ∈ χ0 +XM,un, g ∈ G(A)).

Proof. The two sides have the same constant term, namely

∑
wα>0

M(w,χ − α
2
).M∗(wα, χ +

α

2
).f̃ = ∑

wα>0

M(w,χ − α
2
).f.

Hence their difference is both a cusp form and a linear combination of Eisenstein series. As such,
it is zero. �

3.2. An identity of ramified Eisenstein series on G2.

Theorem 3.4. Take η ∈ XGL1 , nontrivial quadratic, and f̃ a flat section of IGB [0, η]. Let f be

the flat section of IGP [0, η] determined by f̃ as in proposition 3.1. The standard intertwining

operator M(wαwβ, [1, η − 1]) is an isomorphism. Let h̃ be the flat section of IGB [η,0] satisfying

h̃[η,1] = M(wαwβ, [1, η − 1]).f̃[1,η−1]. Let h be the flat section of IGQ[η,0] determined by h̃ as in

proposition 3.1. Then EP .f has a pole at [0, η + 1
2], EQ.h has a pole at [η + 1

2 ,0], and the two
residues are the same.

Proof. Note that α = [2,−3] and β = [−1,2]. Note also that

wαwβ[0,1] = [−1,2] = β ≡$1 (mod 2), wβwαα = [0,1].

It follows that

wαwβ[0, s + η] + u
α

2
= [u + η,0] + sβ

2
.

Now,

EP [0, s+η].f = (u− 1

2
)EB([0, s+η]+uα

2
)f̃ ∣u= 1

2
, EQ[u+η,0].h = (s− 1

2
)EB([u+η,0]+sα

2
)h̃∣s= 1

2
,

and

EB([0, s + η] + uα
2
)f̃ = EB([u + η,0] + sα

2
)M(wαwβ, [0, s + η] + u

α

2
)f̃

= EB([u + η,0] + sα
2
)(h̃ + higher order terms.)

It follows that the residue of EP .f at s = 1
2 and that of EQ.h at u = 1

2 are two different expressions

for the value of the meromorphic continuation of (s− 1
2)(u−

1
2)EB([0, s+η]+uα2 ).f̃ to s = u = 1

2 . �
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3.3. An identity of unramified Eisenstein series on G2. In this section we prove an intriguing
identity between unramified G2 Eisenstein series. This identity is presumably related to the “second
term identity” obtained by D. Jiang in unpublished work.

Define [a, b] as before and write f○
[a,b] for the spherical vector in the corresponding induced

representation. Let c(s) = ζ(s)
ζ(s+1) . Identify XGL1,un with C as usual. Recall that

M(w, [a, b]).f○
[a,b] = ∏

α>0,wα<0

c([a, b] ○ α∨).f○w⋅[a,b]

Also, c(s) has a simple zero at s = −1 a simple pole at s = 1 and is holomorphic and nonvanishing
at each other integer. Write ci,j for the ith Laurent coefficient at j, so that

c(j + s) =
∞

∑
i=ordj(c)

ci,js
i, ordj(c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, j = −1,

−1, j = 1,

0, j ∈ Z ∖ {±1}.

Also c(s)c(−s) = 1 and c(0) = −1, which implies that

c1,−1 = −c−1
−1,1 c2,−1 = −

c0,1

c2
−1,1

c3,−1 =
c1,1

c2
−1,1

−
c2

0,1

c3
−1,1

c0,0 = −1, c2,0 = −
1

2
c2

1,0.

Theorem 3.5. The meromorphic function

EQf
○

[3u+2,−1] −
1

3
c(u)c(3u − 1)EP f○[−1,u+1]

vanishes identically at u = 0.

Remark 3.6. It would be interesting to make sense of this identity in terms of the functional
equations of the Eisenstein series EB.f

○, which are parametrized by the Weyl group of G2. However,
this is not so trivial, as [3u + 2,−1] is not in the same Weyl orbit as [−1, u + 1] for u ≠ 0.

Proof. It suffices to prove that the constant term vanishes. We compute the constant terms of
EQ.f

○

[3u+2,−1] and EP .f
○

[−1,u+1]. We have

(EQ.f○[3u+2,−1])B =f○
[3u+2,−1] + c(3u + 2)f○

[−2−3u,3u+1]+

+ c(3u + 1)c(3u + 2) (f○
[6u+1,−1−3u] + c(3u)c(3u − 1)c(6u + 1)f○

[1−3u,−1])

+ c(3u + 1)c(3u + 2)c(6u + 1) (f○
[−6u−1,3u] + c(3u)f

○

[3u−1,−3u])

(EP .f○[−1,u+1])B = f○
[−1,u+1] + c(u + 1)f○

[3u+2,−1−u]

+ c(u + 1)c(3u + 2)f○
[−3u−2,2u+1] + c(u + 1)c(3u + 2)c(2u + 1)f○

[3u+1,−2u−1]+

+ c(u + 1)c(3u + 2)c(2u + 1)c(3u + 1) (f○
[−3u−1,u] + c(u)f

○

[−1,−u])

The terms are grouped according to which T -eigenspace they reside in when u = 0. The proof is
by direct computation. For each T -eigenspace we consider the terms in the Laurent expansion up
to O(u). For example take the character [−1,1] of T. In (EQ.f○[3u+2,−1])B it does not appear. In

−1
3c(u)c(3u− 1)(EP .f○[−1,u+1])B the contribution is −1

3c(u)c(3u− 1)f○
[3u+2,−1], which nontrivial, but

vanishes at u = 0 because c(3u − 1) vanishes at u = 0 and none of the other terms has a pole at
u = 0. This is a fairly simple example.

We consider one additional example, which is a little more complex. Recall that

f○
[a,b](ntk) = ∣t$1 ∣a+1∣t$2 ∣b+1, (n ∈ N(A), t ∈ T (A), k ∈K),
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where N is the unipotent radical of B. Hence

f○
[a,b]+u[c,d](ntk) = f[a,b](ntk) ⋅ (

∞

∑
m=0

1

m!
[(log ∣t$1 ∣c + log ∣t$2 ∣d) ⋅ u]m) .

Write ⟨c, d⟩ for the mapping

(ntk)↦ log ∣t$1 ∣c + log ∣t$2 ∣d, (c, d ∈ Z, n ∈ N(A), t ∈ T (A), k ∈K).
Then we have

f○
[a,b]+u[c,d] = f

○

[a,b] ⋅
∞

∑
m=0

⟨c, d⟩m

m!
um.

Note that ⟨c1, d1⟩+⟨c2, d2⟩ = ⟨c1+c2, d1+d2⟩. We compare the contributions to the constant terms of
EQ.f

○

[3u+2,−1] and EP .f
○

[−1,u+1] which lie in the [1,−1] eigenspace when u = 0. The relevant portion

of 1
3c(u)c(3u − 1)(EP .f○[−1,u+1])B is

([1,-1],P)
1

3
c(u)c(3u − 1)c(u + 1)c(3u + 2)c(2u + 1)f○

[3u+1,−2u−1],

while the relevant portion of EQ.f
○

[s+2,−1] is

([1,-1],Q) c(s + 1)c(s + 2) (f○
[2s+1,−1−s] + c(s)c(s − 1)c(2s + 1)f○

[1−s,−1]) .

It makes sense to simplify ([1,-1],Q) before substituting s = 3u. However, notice that once this
substitution is made, the factor of c(3u + 2) appears in both ([1,-1],P) and [1,-1],Q. So, we may
omit it from both. We expand the remainder of ([1,-1],P).

(3.7)

1

3
c(u)c(3u − 1)c(u + 1)c(2u + 1)f○

[3u+1,−2u−1]

= 1

3
(−1 + c1,0u +O(u2))(− 3

c−1,1
u − 9

c0,1

c2
−1,1

u2 +O(u3))(
c−1,1

u
+ c0,1 +O(u))×

× (
c−1,1

2u
+ c0,1 +O(u))f○

[1,−1](1 + ⟨3,−2⟩u +O(u2))

= f○
[1,−1] (

c−1,1

2u
−
c−1,1c1,0

2
+ 3c0,1 +

c−1,1

2
⟨3,−2⟩ +O(u))

We simplify the expression in brackets in ([1,-1],Q)

f○
[2s+1,−1−s] + c(s)c(s − 1)c(2s + 1)f○

[1−s,−1]

= f○
[1,−1]

⎛
⎝

1 + s⟨2,−1⟩ + (−1 + c1,0s)(−
s

c−1,1
−
c0,1s

2

c2
−1,1

)(
c−1,1

2s
+ c0,1)(1 + ⟨−1,0⟩s) +O(s2)

⎞
⎠

= f○
[1,−1] (1 + s⟨2,−1⟩ + 1

2
(1 + s[−c1,0 +

3c0,1

c−1,1
+ ⟨−1,0⟩]))

= f○
[1,−1] (

3

2
+ s

2
(⟨3,−2⟩ − c1,0 +

3c0,1

c−1,1
))

Multiplying by c(s + 1) = (c−1,1/s + c0,1 +O(s)) yields

f○
[1,−1] (

3c−1,1

2s
+
c−1,1

2
(⟨3,−2⟩ − c1,0 +

3c0,1

c−1,1
) + 3

2
c0,1 +O(s))

= f○
[1,−1] (

3c−1,1

2s
+
c−1,1

2
⟨3,−2⟩ −

c1,0c−1,1

2
+ 3c0,1 +O(s)) ,

and now substituting s = 3u yields (3.7). The other eigenspaces are treated similarly. �
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4. Global zeta integral involving a Q-Eisenstein series

In this section we consider the degenerate Eisenstein series EQ.h on G2(A), where Q = LV is
the parabolic subgroup whose Levi contains the root subgroup attached to the long simple root.
We let Hρ be a quasisplit subgroup of G2 of type A2 defined as in [H]. Thus ρ ∈ F× and Hρ is
isomorphic to SL3 if ρ is a square, and a quasisplit unitary group attached to the corresponding
quadratic extension if F is ρ is a nonsquare. For any normalized character χ0 of L(F )/L(A) and

any flat section h of I = IG2
Q (χ0) the restriction of EP .h to Hρ(A) is a smooth function of moderate

growth on Hρ(F )/Hρ(A), so it may be integrated against a cuspform on Hρ. In the split case, this
integral is identically zero for all χ0, h, as shown in proposition 4.6 of [GJ]. We extend the same
idea to the general case.

First we need to analyze Q(F )/G2(F )/Hρ(F ). Following [H], we regard G2 as a subgroup of
(split) SO8 preserving the quadratic form x

¯
↦ tx

¯
⋅ x
¯
. Here t is the “other transpose” (as in [H]).

Then G2 is contained in the group SO7 preserving the subspace V0 ∶= {x
¯
= t [x1 . . . x8] ∶ x4 = x5}.

The group Hρ is the stablizer of vρ ∶= t [0 0 1 0 0 ρ 0 0] in G2. Thus G2(F )/Hρ(F ) may
be identified with the orbit Oρ ∶= G2(F ) ⋅ vρ, and Q(F )/G2(F )/Hρ(F ) can be identified with the
set of Q(F )-orbits in Oρ.

Lemma 4.1. The orbit Oρ is equal to {x
¯
∈ V0 ∶ tx

¯
⋅ x
¯
= 2ρ}. If ρ is not square it is a union of two

Q(F ) orbits namely

{x
¯
= [x1 . . . x8] ∈ Oρ ∶ x8 ≠ 0}, {x

¯
= [x1 . . . x8] ∈ Oρ ∶ x8 = 0}.

If ρ = a2 then {x
¯
= [x1 . . . x8] ∈ Oρ ∶ x8 ≠ 0} is still a single Q(F )-orbit, while

{x
¯
= [x1 . . . x8] ∈ Oρ ∶ x8 = 0}

is a union of three orbits, viz.

{x
¯
= [x1 . . . x8] ∈ Oρ ∶ x8 = 0,{x6, x7} ≠ {0}},

{[x1 x2 x3 a a 0 0 0]}, and {[x1 x2 x3 −a −a 0 0 0]}.

Proof. It’s clear that each element x
¯

of G2(F ) ⋅ vρ satisfies tx
¯
⋅ x
¯
= 2ρ. Let v′ρ = t [ρ 0 . . . 0 1] .

Then a suitable representative for sαsβsα maps vρ to v′ρ. One checks that the second, third, fourth,
sixth, and seventh elements of the last column of an element of the standard maximal unipotent
subgroup of G2(F ) can be chosen arbitrarily and it follows that the Q(F ) orbit of v′ρ (and also

of vρ) contains every element of {x
¯
= [x1 . . . x8] ∈ Oρ ∶ x8 ≠ 0}. On the other hand, this subset

is clearly Q(F )-stable, so it is the Q(F ) orbit of v′ρ. Likewise, a suitable representative of sβsα
maps vρ to v′′ρ =t [0 ρ 0 . . . 0 1 0] and the orbit of v′′ρ under the Borel of G2(F ) is readily
seen to be all x

¯
with tx

¯
⋅ x
¯
= 2ρ, x8 = 0, x7 ≠ 0. Clearly, each vector with x6, x7 not both zero is

Q(F )-equivalent to one with x7 ≠ 0. It follows that {x
¯
∶ tx

¯
⋅ x
¯
= 2ρ, x8 = 0,{x6, x7} ≠ 0} is the

Q(F ) orbit of v′′ρ . Recall that x
¯
∈ V0 forces x4 = x5. If x6 = x7 = x8 = 0 we get tx

¯
⋅ x
¯
= 2x2

4, so that

tx
¯
⋅ x
¯
= 2ρ Ô⇒ ρ = x2

4. If ρ is not a square this is impossible. It follows that the two Q(F ) orbits
already described exhaust all vectors with tx

¯
⋅ x
¯
= 2ρ. If ρ = a2 we have the two additional subsets

described. Each is readily seen to be a Q(F )-orbit. Let X−α be the matrix with a one at positions
(2,1), (4,3) and (5,3), a −1 at positions (8,7), (6,5) and (6,4), and zeros everywhere else. It spans
the root subspace for the root −α. Let x−α(r) = exp(rX−α). (This is a polynomial formula, because
X−α is nilpotent.) Then

x−α(±a) ⋅ va2 = t [0 0 1 ±a ±a 0 0 0] ,
which proves that our two additional Q(F )-orbits are still in the G2(F )-orbit of va2 . Clearly, the
four taken together exhaust {x

¯
∈ V0 ∶ tx

¯
⋅ x
¯
= 2ρ}. This completes the proof. �
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Corollary 4.2. If ρ is not a square, then {e, sαsβ} is a set of representatives forQ(F )/G2(F )/Hρ(F ).
If ρ = a2, then {e, sαsβ, x−10(a), x−10(−a)} is a set of representatives.

Proof. Let each element act on vρ and consider the explicit description of the Q(F )-orbits in Oρ. �

4.1. A certain period. Let ϕ32 ∶ SL2 → G2 be the mapping

(a b
c d

)↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a b
a b

1
1

1
1

c d
c d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The image is contained in Hρ for every ρ. (Cf. (2) on p. 195 of [H].) If we embed Hρ(F ) into
GL3(E) using the identification E3 with the six dimensional subspace of F 8 stabilized by Hρ as in
[H] remarks 2, then ϕ32 corresponds to the mapping

(a b
c d

)↦
⎛
⎜
⎝

a b
2τ

1
2τc d

⎞
⎟
⎠
,

where τ ∈ E satisfies τ2 = ρ. From this point of view, the image of ϕ32 is a smaller special unitary
group, and we denote in H ′

ρ. We consider the period

(4.3) P(ϕ) = ∫
H′
ρ(F )/H′

ρ(A)

ϕ(h)dh.

We say that an automorphic representation π is H ′

ρ-distinguished if P does not vanish identically
on it.

Proposition 4.4. Let h be a flat section of IG2
Q (χ0) and ϕ a cuspform defined on Hρ(A). Assume

that s ∈ XQ,un is not a pole of EQ. Then for a suitable measure on the space H ′

ρ(A)/Hρ(A) we have

(4.5) ∫
Hρ(F )/Hρ(A)

ϕ(g)EQ.h(g, s)dg = ∫
H′
ρ(A)/Hρ(A)

h(sαsβg, s)P(R(g).ϕ)dg.

(Here, R denotes right translation.) In particular, the integral vanishes identically on any cusp-
idal automorphic representation which is not H ′

ρ-distinguished. If Hρ is split, then no cuspidal

automorphic representation is H ′

ρ-distinguished, and the integral (4.5) is always zero.

Proof. For s in the domain of convergence for EQ, our integral is equal to

∑
γ∈Q(F )/G2(F )/Hρ(F )

∫
Hρ(F )∩γ−1Q(F )γ/Hρ(A)

h(γg, s)ϕ(g)dg.

If γ is the identity, or if ρ = a2 and γ = x−α(±a) then Hρ ∩ γ−1Qγ contains the unipotent radical of
the standard Borel subgroup of Hρ. Hence the function g ↦ h(γg, s) is invariant by this subgroup
on the left, and the integral over Hρ(F )∩γ−1Q(F )γ/Hρ(A) factors through the mapping that sends
ϕ to its constant term– which is zero. If γ = sαsβ, then Hρ ∩ γ−1Qγ =H ′

ρ, and γH ′

ργ
−1 is contained
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in the derived group of the Levi L of Q. Hence the function g ↦ f(sαsβg, s) is invariant by H ′

ρ(A)
on the right. We are reduced to showing that

∫
H′
ρ(F )/Hρ(A)

h(sαsβg, s)ϕ(g)dg = ∫
H′
ρ(A)/Hρ(A)

h(sαsβg1, s) ∫
H′
ρ(F )/H′

ρ(A)

ϕ(h′ρg1)dh′ρ dg1

for a suitable measure dg1. Here, dg and dh′ρ are the Haar measures on the respective groups. The
existence of a suitable invariant measure on each of the corresponding local homogeneous spaces
H ′

ρ(Fv)/Hρ(Fv) follows from proposition 4.3.5 of [B]. The existence of dg1 then follows easily from

expressing dg and dh′ρ in terms of the Haar measures on the local groups.

If Hρ is split, then H ′

ρ is a nonstandard Levi subgroup and is conjugate to a standard Levi
subgroup. It suffices to show that the period along the standard Levi subgroup vanishes. As noted
in [GJ] this follows easily from cuspidality. �

Remark 4.6. We may regard H ′

ρ as SU1,1 ⊂ U1,1 ⊂ U2,1 and one could enlarge our period P, to
an integral over U1,1(F )/U1,1(A) against a character. Such periods are considered in [GeRoSo1],
where they are used to characterize the image of the theta lifting. Recall that the Ad′ L function
of a representation in the image of this lifting should have a pole at s = 1. So, the emergence of the
H ′

ρ period as an obstruction to proving holomorphy in general makes perfect sense.

4.2. Conclusions regarding poles of global zeta integrals.

Theorem 4.7. Suppose that ϕ generates a cuspidal automorphic representation which is not H ′

ρ

distinguished. Then the global zeta integral I(s,ϕ, f) defined in (1.1) has no poles in the half plane
Re(s) ≥ 1

2 , except for a simple pole at s = 2
3 which can occur only when χ0 is cubic. Moreover, if

χ0 is quadratic, then I(1
2 , ϕ, f) = 0 for all ϕ and f.

Remark 4.8. In the split case, no cuspidal representation is H ′

ρ distinguished. For these purposes
the trivial character is both cubic and quadratic.

Proof. In the case when χ is unramified this is a slight refinement of proposition 4.6 of [GJ]. We
know from theorems 2.3 and 2.4 that the only possible poles in Re(s) ≥ 1

2 occur at s = 2
3 when χ0

is trivial, quadratic, or cubic, and at s = 1 when χ0 is trivial. When Hρ is split and χ0 is trivial,
the possibility of a pole at s = 1 or a double pole at s = 2/3 are ruled out by [GJ]. When χ0 is
quadratic, the possibility of a pole at 2

3 is ruled out by the same argument, using theorem 3.4 and

proposition 4.4. The vanishing at 1
2 when χ0 is quadratic follows from proposition 2.6. �

5. Nonvanishing of local zeta integrals

In this section we prove that for any fixed s0 ∈ C there is a choice of data such that the local
zeta integral for the adjoint L function is nonzero at s0. It then follows that any pole of the partial
adjoint L function would give rise to a pole of the global zeta integral, except possibly at poles
of the “normalizing factor” LS(3s,χ)LS(6s − 2, χ2)LS(9s − 3, χ). We take up some notations from
[H]: for fixed ρ ∈ F, Hρ is defined as in the previous section. We equip it with a choice of Borel
subgroup B = TN where T is a maximal torus and N is a maximal unipotent. (This departs from
our previous usage of B,T and N for corresponding subgroups of G2.) Also w2 is the second simple
reflection in G2 (attached to the long simple root; this departs from the usage of w2 in section 2.8),
and N2 is a two dimensional unipotent subgroup, with the property that Hρ ∩ w−1

2 Pw2 = N2Tsp,
where Tsp denotes the one dimensional maximal F -split torus contained in the standard Borel of
Hρ. Finally, ψN is a certain generic character of N. Details are found in [H]. It is convenient to
identify XM,un with C via the map s↦ δsP .
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For ρ ∈ F, π a irreducible admissible ψN -generic representation of Hρ, W in the ψN -Whittaker
model WψN (π) of π, and f ∈ Flat(χ0) we define

I(W,f ; s) = ∫
N2/Hρ

W (g)fs(w2g)dg.

Theorem 5.1. For any ρ ∈ F ×, any irreducible admissible generic representation π of Hρ, any
χ0 ∈ XM,0, and any fixed s0 ∈ C, there exist W ∈WψN (π) and f ∈ Flat(χ0) such that I(W,f ; s0) ≠ 0.

Proof. Expressing the Haar measure on Hρ as a suitable product measure on the open Bruhat cell
yields

I(W,f ; s) = ∫
N2/N

∫
T
∫
N−

W (ntn−)fs(wntn−)δ−1
B (t)dn− dt dn.

We may identify N2/N with the complementary subgroup

N ′

2 ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 r − r22
1 −r

1

⎞
⎟
⎠
∶ r ∈ F

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

which is Tsp-stable, and fix a fundamental domain [Tsp/T ] for Tsp in T, to express I(W,f ; s) as

∫
N ′

2

∫
Tsp
∫
[Tsp/T ]

∫
N−

W (ntspt′n−)fs(w2ntspt
′n−)δ−1

B (tspt′)dn− dt′ dtsp dn

= ∫
Tsp

tw2χ0+w2s−3γ
sp II(W,f ; tsp, s)dtsp,

where γ is the common restriction of the two simple roots of Hρ to Tsp (so that δ−1
B (tsp) = t−4γ

sp ) and

II(W,f ; tsp, s) ∶= ∫
N ′

2

∫
[Tsp/T ]

∫
N−

W (tspnt′n−)fs(w2nt
′n−)δ−1

B (t′)dn− dt′ dn.

Note that the function (n, t′, n−) ↦ Pw2nt
′n− is a continuous injection of N ′

2 × [Tsp/T ] ×N− into
P /G2. Now fix s0, and let φf(n, t′, n−) ∶= δB(t′)−1fs0(w2nt

′n−), which we view as a “test function”
on N ′

2 × [Tsp/T ] ×N−. First assume that F is nonarchimedean. Then for any smooth function φ1

of compact support defined on N ′

2 × [Tsp/T ] ×N− we can choose f so that φf = φ1. But then

I(W,f ; s0) = I ′(φf ∗W ; s0),
where ∗ denotes the action by convolution and I ′(W,s) is defined for W ∈WψN (π) and s ∈ C by

I ′(W,s) ∶= ∫
Tsp

W (tsp)tw2χ0+w2s−3γ
sp dtsp.

Hence I(W,f ; s0) vanishes for all f ∈ Flat(χ0),W ∈ WψN (π) if and only if I ′(W ; s0) vanishes for
all W ∈WψN (π).

But now let φ2 be a Schwartz function on F and x ∶ F → Hρ an embedding into N chosen so
that tspx(a)t−1

sp = x(tγspa) and ψN(x(a)) = ψ(a). Then

I ′((φ2 ○ x) ∗W,s) = ∫
Tsp
∫
F
W (tspx(a))tw2χ0+w2s−3γ

sp φ2(a)dadtsp

= ∫
Tsp
∫
F
W (tsp)tw2χ0+w2s−3γ

sp ψ(tγspa)φ2(a)dadtsp

= ∫
Tsp

W (tsp)tw2χ0+w2s−3γ
sp φ̂2(tγsp)dtsp.

Notice that φ̂2 is a Schwartz function which can be chosen arbitrarily. Clearly, we can now choose
W ∈WψN (π) which does not vanish identically on Tsp and then choose φ2 so that I ′((φ2○x)∗W,s0) ≠
0.
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This completes the proof in the nonarchimedean case. In the archimedean case, the same ar-
gument shows that the mapping (W,f) ↦ I(W,f ; s0) does not vanish identically on WψN (π) ×
SIGP (χ0 + s0), where SI denotes smooth induction, as opposed to K-finite induction. But since
the space of K-finite vectors is dense in the smooth induced representation, it then follows that
(W,f) ↦ I(W,f ; s0) can not vanish identically on WψN (π) × IndGP (χ0 + s0) either, completing the
proof in this case. �

6. Application to poles of the adjoint L function

Theorem 6.1. Assume that G is split, and let S be a finite set of places, including all archimedean
places and all places where either πv or χv is ramified. Then the partial twisted adjoint L function
LS(s, π,Ad⊗χ) has no poles in the half-plane Re(s) ≥ 1

2 , except possibly for a simple pole at
Re(s) = 1 when χ is nontrivial and π ≅ π ⊗ χ (which forces χ to be cubic). If this pole is present,
then it is inherited by the complete L function L(s, π,Ad×χ). Every other pole of L(s, π,Ad×χ)
in Re(s) ≥ 1

2 is a zero of the Hecke L function L(s,χ), and a pole of ∏v∈S Lv(s, πv,Ad×χv).

Proof. According to the results which we have proved so far, the global zeta integral I(s,ϕ, f) has
no poles in Re(s) ≥ 1

2 except possibly for a simple pole at Re(s) = 2
3 which can occur only when χ is

nontrivial cubic. By theorem 5.1, these properties are inherited by the ratio of partial L functions
6

LS(3s − 1, π,Ad′⊗χ)
LS(3s,χ)LS(6s − 2, χ2)LS(9s − 3, χ3)

,

and then, since local L functions are nonvanishing meromorphic functions, by

LS(3s − 1, π,Ad′⊗χ)
L(3s,χ)L(6s − 2, χ2)L(9s − 3, χ3)

.

The product L(3s,χ)L(6s−2, χ2)L(9s−3, χ3) has no poles in Re(s) ≥ 1
2 except for the simple pole

of L(6s − 2, χ2) at s = 1
2 which occurs only if χ2 is trivial. But we have seen that I(1

2 , ϕ, f) = 0
when χ is quadratic.

This completes the proof of our assertions regarding the partial L function. Since local L func-
tions are meromorphic but nonvanishing, passing from the partial to the completed L function may
introduce additional poles, but will not cancel the pole at 1 in the case when it occurs. On the other
hand, it follows immediately from the definitions that L(s, π,Ad×χ) = L(s, (π ⊗ χ) × π̃)/L(s,χ).
By a result of Moeglin and Waldspurger [MW, Corollaire, p. 667], the numerator has at most two
simple poles, which occur at 0 and 1 and occur if and only if π ≅ π ⊗ χ. Thus, any other poles
which appear must be zeros of the denominator. �

Remark 6.3. The expression L(s, π,Ad) = L(s, π × π̃)/ζ(s) also gives us a shorter proof that
L(s, π,Ad) is holomorphic and nonvanishing at s = 1, without appealing to theorem 3.5 and proposi-
tion 4.4. The functional equations of the global Rankin-Selberg L-function and the global Dedekind
zeta function give a functional equation of L(s, π,Ad). By the functional equation, the set of poles
of L(s, π,Ad) is symmetric as s↦ 1 − s.

6The particularly careful reader may have noticed that the equality

(6.2) I(s,Wv, fv) =
Lv(3s − 1, π,Ad′⊗χ)

Lv(3s,χ)Lv(6s − 2, χ2)Lv(9s − 3, χ3)

is only attained by taking normalized spherical vectors if ψN,v is unramified, in addition to πv and χv. We remark
briefly on the places where πv and χv are unramified and ψN,v is not. The form of the global character ψN emerges
from the unfolding in [G], [H] ensures that when ψN,v is ramified, its orbit under the maximal Fv-split torus contains
an element which is unramified. Then Wv(g) = W

′

v(tg), where W ′

v is in the Whittaker model attached to this
unramified additive character, and t is a suitable element of the torus. Making a change of variables in the integral
we find that (6.2) holds up to an exponential factor.
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In the nonsplit case, the same argument gives the following result.

Theorem 6.4. Assume that G is nonsplit, and let S be a finite set of places, including all
archimedean places such that πv and χv are unramified for v ∉ S. Then the partial twisted L
function LS(s, π,Ad′⊗χ) has no poles in the half-plane Re(s) ≥ 1

2 , except possibly at s = 1. The
pole at s = 1 can occur only when χ is trivial, quadratic, or cubic. If a pole occurs when χ is trivial
or quadratic, then π is H ′

ρ-distinguished. The pole at s = 1 is at most a double pole when χ is
trivial, and at most a simple pole when χ is nontrivial quadratic or cubic.

Remark 6.5. In the nonsplit case we have L(s, π,Ad′ ×χ) = L(s, sbc(π),Asai×χ)/L(s,χ), where
sbc denotes the stable base change lifting from U2,1 to ResE/F GL3, constructed in [KK1], and
Asai is the Asai representation. In the important special case χ = χE/F this becomes L(s, π,Ad) =
L(s, sbc(π),Asai×χE/F )/L(s,χE/F ). It is proved in [KK1], that L(s, sbc(π),Asai) will have a sim-
ple pole at s = 1 if sbc(π) is cuspidal, but also that sbc(π) need not be cuspidal. Arguing as on
p. 22 of [GRS], we may deduce that L(s, sbc(π),Asai×χE/F ) is holomorphic and nonvanishing at
s = 1, and deduce that L(s, π,Ad) has the same property, still provided that sbc(π) is cuspidal.
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