POSSIBLE EXAM 2 TOPICS
Exam 1: 19 October, 2016 7:00PM

SURVEY RESEARCH

- Generalizability
- Wordings
 - Double barreled questions
 - Loaded or leading questions
 - Negative wording
 - Yay-saying, nay-saying
- Responses
 - Closed questions
 - Open-ended questions
 - Scales
 - Graphic
 - Nonverbal
 - Semantic
- Sampling
 - Haphazard sampling
 - Purposive sampling
 - Quota sampling
 - Random sampling
 - Which one is most ideal? Which one actually happens at a research university?

BASIC EXPERIMENTAL DESIGN

- IV and DV
- Reliability, VALIDITY
- Between-Subjects Design
 - Posttest only
 - Easier to do
 - Lillard & Peterson (2011)
 - Hypothetical Smoking
 - Cessation experiment
 - Pretest-posttest
 - Stronger construct validity
 - How did Lillard & Peterson try to make their experiment more like a pretest-posttest design experiment?
- Experimental Group
- Control Group
 - Null IV works kind of like a control group
PSY250H
Fall 2016

- Latane’s smoke-in-the-room experiment
- Asch’s conformity experiment
- Schacter’s affiliation experiment

- Within-Subjects Design
 - Counterbalancing
- Confounding variables (confounds)

HOW TO CONDUCT AN EXPERIMENT

- Straightforward manipulation
 - Godden & Baddeley (1975): Scuba diving word memorization!
 - Context-dependent memory
- Staged manipulation
 - Morse & Gergen (1970): Mr. Clean / Mr. Dirty
 - Confederate
- Placebo
 - Eich et al. (1975): Reefer madness
 - State-dependent memory
- Double-blind procedure
- Types of dependent measures
 - Self-report
 - Participant has most control over response
 - High reactivity
 - Behavioral
 - Participant has some control over response
 - Medium reactivity
 - Physiological
 - Participant has no control over response
 - Low reactivity
- Sensitivity
 - Ceiling & Floor effects

ADVANCED EXPERIMENTAL DESIGN

- Variables can be related to each other in
 - Simple ways
 - Complex ways
- Factorial design
“Factor”
- Combinations of IVs: **Your professor is a hot male.**
- Design matrices
 - 2x2
 - 2x3
 - 3x3
 - 2x2x2
 - You should be able to understand any matrix!
- How many _________ in a 2x2 design?
 - Groups? (assume this was between-subjects)
 - Factors?
 - Levels?
 - People in the experiment if there were 20 per group
 - People per group if there were 80 in the experiment
 - Be prepared to figure this out for any design
- Notation
 - How many factors? How many levels?
 - How many between-subject factors? Levels?
 - How many within-subject factors? Levels?
 - Reporting
- Main effects and interactions
 - Effect
 - Main effect
 - Interaction
 - How to tell in a table
 - How to tell on a graph

<table>
<thead>
<tr>
<th></th>
<th>2 sec</th>
<th>4 sec</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagery</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Rote</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Overall</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

![Graph](image-url)
PSY250H
Fall 2016

<table>
<thead>
<tr>
<th></th>
<th>2 sec</th>
<th>4 sec</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagery</td>
<td>14</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>Rote</td>
<td>14</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>Overall</td>
<td>14</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2 sec</th>
<th>4 sec</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagery</td>
<td>18</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Rote</td>
<td>14</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>Overall</td>
<td>16</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2 sec</th>
<th>4 sec</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagery</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Rote</td>
<td>12</td>
<td>28</td>
<td>20</td>
</tr>
<tr>
<td>Overall</td>
<td>20</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>