2" Buyffalo Wireless Day
2020

Introduction

What is missing data problem?

e Missing Data - Gaps in the observed /acquired data
or data loss due to data delivery:.

e Data acquisition and delivery processes are affected
by sensor faults, connection errors in sensor networks,
physical acquisition constraints, security attacks, en-
vironmental factors, and so on ...

Applications:

e Imaging Applications : MRI, CT, Remote Sensing,
Seismic Imaging.

o Internet of Things (IoT) : Data fusion in healthcare
monitoring, Internet of Vehicles (IoV).

e Social Media : Recommender Systems, Sentiment
Analysis, Social Network Analysis.

Impact:

e Imaging Applications : Incomplete data scanning
leads to distorted, artifact-induced, low-resolution

medical or geological imaging, not acceptable; Expen-
sive and time consuming data acquisition schemes.

e Internet of Things : Can adversely affect the protocol
implementation which plays a crucial role in remote,
energy dependent sensor networks.

e Social Media : Loss of correlation information be-
tween features; Can lead to learning of incorrect
models for data analysis which can further lead to
incorrect biases and interpretations.

Main Contributions

® This study proposes a low-rank kernel scheme for
reconstructing data on manifolds which comes in
handy to impute the missing values encountered
in data acquisition processes.

® This scheme is novel for its incorporation of kernel
functions designed not only for real valued data
but also complex valued data acquired commonly
in imaging applications.

® T'his scheme proposes a data model based on clas-
sical kernel arguments and employs a bi-linear
model which avoids the need for a pre-imaging
process and the need for choosing an optimal ker-
nel function which can vary in accordance to data.

o The framework doesn’t rely on the availability of a
fully-observed training data (unlike deep learning
schemes) rather uses the partially observed data
itself to learn a data model from which the missing
values can be filled.

® T'he data model can be applied to various health-
care, social media and lo'l" applications.

0 The eflicacy of the study is validated for the MRI
application where good quality medical images are

cenerated from partially observed scanner data.

@ This study outperforms other state-of-the-art re-
construction schemes for the dMRI recovery prob-
lem.
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Main ldea

e Consider y; = Measured time series data at time ¢.

e Non-linearly map all y; to feature space where the
similarity between the data points is exploited via
kernel function k(-, -).

e Based on the assumption feature maps lie on the
smooth low-dimensional manifold learn the com-
pressed latent representations for the same.

e Latent Representations - Use the concept of tangent
space to locally and affinely combine the neighboring
points to describe each point on the manitold.

e Compression imposes low-rank structure to the data
model, highly desirable in reconstruction problems.

e Reconstruct the high dimensional data point from
latent representations.
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Figure: Low-dimensional Manifold embedded in the feature space
on which the feature maps lie
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Mathematical Formulation: The Dynamic-MRI Case

e MR scanner time series data: Y.
o AMRI Image series: X = F YY) re-
lated by inverse 2D Fourier Transform.

o Partially observed S(Y) = Dis-
torted, aliased, artitact induced X.

o F;(+): 1D Fourier Transform along tem-

Scanner

poral axis.
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Figure: Visual Representation of the data acquisition process

e Kernel Dictionary {K}Y, generated from heavily sampled area of the sensor data (Gaussian & Polynomial).

e Compressed Kernel Dictionary {K}*, using robust sparse embedding in t

he feature space.

e Kernel Dictionary: Formulation allows for a data ada

btive kernel expressec

range of kernels (no need to tune for optimal kernels)

e Modeling: X = Zf\il DZ-IA{Z-BZ-; Shorthand Notation:

X = DKB

as an afhne combination of a wide

Inverse Problem Formulation
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Numerical Results
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(a) Ground Truth and Measured Data

Figure: The efficacy of the proposed scheme (KRIM), in the multi-kernel [M] and single kernel [S] setting is validated against various state-of-the-art
techniques. The reconstructions are achieved for the MRXCAT phantom simulating and acceleration rate of 8x. The red markings highlight the

distortions in reconstructions of the competitive methods.

e Validation Numeric Metrics: NRMSE (voxel reconstruction error), HF

(b) Comparisons across state-of-the-art techniques

Validation

(sharpness measure) and SSIM (structural similarity).

e Quantitatively, the proposed kernel schemes present the best numbers when compared to the state-of-the-art

methods.

e Qualitatively, the proposed scheme produces image reconstructions which are high-resolution, distortion-iree,
aliasing-free, artifact free and are very similar to the gold standard in regards to contrast and image structure.

e The proposed scheme consistently outperforms the other schemes for increasing number of missing values in the

scanner data (acceleration rate).
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Figure: NRMSE values vs. acceleration rates

NRMSE SSIM HFEN M1 M2
KRIM[M] 0.0372 0.9052 0.1058 37.95 1.5 x 106
KRIM[S] 0.0407  0.8869 0.1198 37.65 1.4 x 10°
BiLMDM 0.0438  0.8697 0.1314 28.69 1.1 x 10°

KLR  0.0744  0.6704 0.1580 34.98 1.4 x 10°
FRIST 0.3055  0.4572 0.7006 13.50 7.7 x 10°
SToRM 0.0644  0.7743 10.2478 131.06 1.5 x 10°
PS-Sparse 0.0449  0.8864 0.1338 30.66 1.2 x 10°

Table: Quantitative Performance Analysis for

EN (edge reconstruction error), M1 & M2

MRXCAT Phantom (Acceleration Rate: 8x)
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