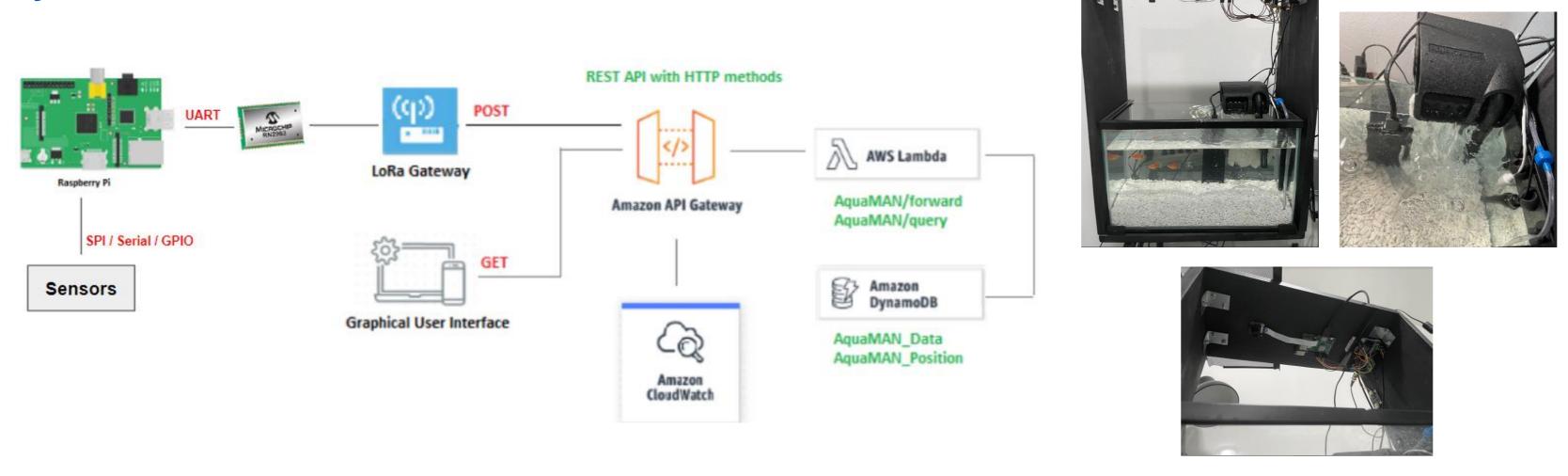
AquaMAN: Aquafarming Management Analysis Network

Jianxing Feng, Chencheng Lu

Introduction

Global harvest of aquatic species through aquafarming has shown increased popularity. The key to maintain high production rate and efficient use of resource is to provide an controlled and optimal environment. AquaMAN is an automated IoT solution for aquafarming using Long Range (LoRa) technology.


Data Acquisition

All the sensors are interfaced with Raspberry Pi 3. Communication protocols include SPI, Serial, and direct GPIO.

- Temperature DS18B20
 temperature sensor (GPIO)
- pH level PH0-14 value detect sensor module and pH electrode probe BNC (SPI)
- Total dissolved solid TDS meter probe (SPI)
- Video 5MP OV5647 Sensor (CSI-2)

System Overview

Data Processing

RN2903 module is a Class A LoRa device and have strict data rate limitation. It has maximum data rate of 4 which corresponds to Spreading Factor 8, 12.5k bps, and maximum payload size of 242 bytes. The captured frames are reduced to several coordinates prior transmitting to LoRa gateway.

RGB to HSV

$$H = \begin{cases} 0^{\circ} & \Delta = 0\\ 60^{\circ} \times \left(\frac{G' - B'}{\Delta} mod 6\right), C_{max} = R'\\ 60^{\circ} \times \left(\frac{B' - R'}{\Delta} + 2\right), C_{max} = G'\\ 60^{\circ} \times \left(\frac{R' - G'}{\Delta} + 4\right), C_{max} = B' \end{cases}$$

$$S = \begin{cases} 0, C_{max} = 0\\ \frac{\Delta}{C_{max}}, C_{max} \neq 0 \end{cases}$$

V = Cmax

Masking –

Lower bound $HSV \leq Image \leq Higher bound HSV$

K-Means –

$$S_i^{(t)} = \{x_p : \left\| x_p - m_i^{(t)} \right\|^2 \le \left\| x_p - m_j^{(t)} \right\|^2 \ \forall j, 1 \le j \le k$$

$$m_i^{(i+1)} = \frac{1}{|s_i^{(t)}|} \sum_{x_j \in S_i^{(t)}} x_j$$

The centroids from the k-means algorithm can be used to represent the observed targets position.

Frames Concatenation –

Positions	T D S	T e m p	p H
(2 * # of targets * # of frames) Bits	12	8	12
	(Bits)	

The rate of transmission can be reduce by concatenating several frames along with all other sensor data into a single payload.

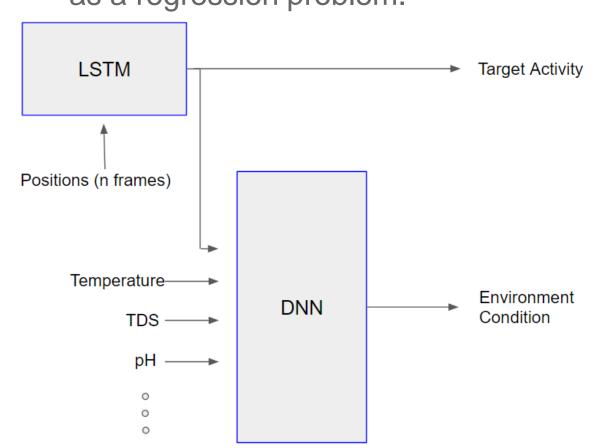
Random port (63-71) is selected for each transmission.

Data Storage and Retrieval

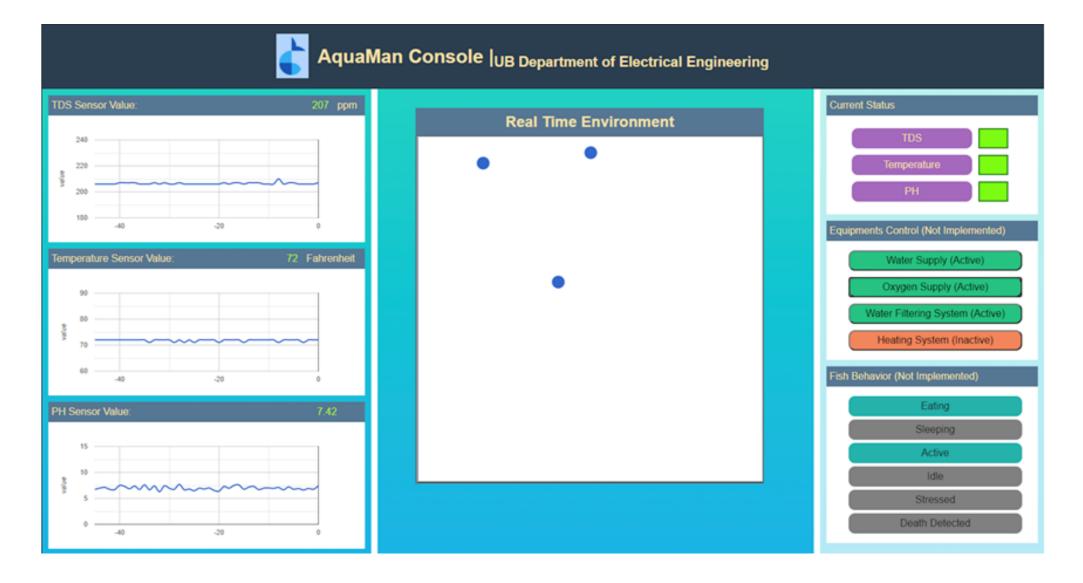
Data forwarded from LoRa gateway to AWS

Dynamodb and queries are handled by

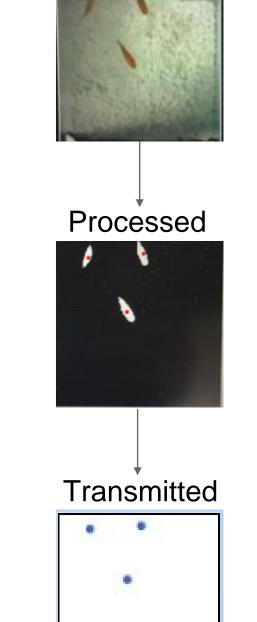
AWS API Gateway. A RESTful API with


HTTP method is utilized and logics are

stored in AWS Lambda.


441	Position	TDC	Temperature	U
ttl	Position	TDS	0	pH
1605661081	02001F04007E0270A202401F03E07F03	214	70	7.36
1605661069	01A0130870080700A101100F090008051	214	70	6.77
1605661044	09E00D01E01809C02606201801B01509	215	70	7.7
1605661019	05805F01301B03300E05305501601905	215	70	7.19
1605661032	04C03D02402705601B03302602201707	214	70	6.91
1605661007	06309B00B00D02101D06409B01E01A0	215	70	7.16
1605660982	06709601101A02102E06909501601B02	215	70	6.74
1605660994	06809701D01D02400406809802304702	215	70	7.25
1605661056	0730150230200A707108201A026026098	215	70	7.53

Data Analysis


- Target Activity use LSTM RNN to predict target behavior as a classification problem
- Environment Condition use DNN to estimate the environment condition as a regression problem.

Real Time Monitoring GUI

