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Abstract—Radio-frequency (RF) sensing is a key technology
for designing intelligent and secure wireless networks with high
spectral efficiency and environment-aware adaptation capabili-
ties. However, existing sensing techniques can extract only limited
information from RF signals or assume that the RF signals
are generated by certain known protocols. As a result, their
applications are limited if proprietary protocols or encryption
methods are adopted, or in environments subject to errors
such as unintended interference. To address this challenge, we
study protocol-agnostic cross-layer sensing to extract high-layer
protocol information from raw RF samples without any a priori
knowledge of the protocols. First, we present a framework for
protocol-agnostic sensing for over-the-air (OTA) RF signals, by
taking packet boundary recognition (PBR) as an example. The
framework consists of three major components: OTA Signal
Generator, Agnostic RF Sink, and Ground Truth Generator.
Then, we develop a software-defined testbed using USRP SDRs,
with eleven benchmark statistical algorithms implemented in
the Agnostic RF Sink, including Kullback-Leibler divergence
and cross-power spectral density, among others. Finally, we
test the effectiveness of these statistical algorithms in PBR on
OTA RF samples, considering a wide variety of transmission
parameters, including modulation type, transmission distance,
and packet length. It is found that none of these benchmark
statistical algorithms can achieve consistently high PBR rate,
and new algorithms are required particularly in next-generation
low-latency wireless systems.

I. INTRODUCTION

Radio-frequency (RF) sensing is a key technology to design
the next-generation intelligent and secure wireless networks
with higher spectral efficiency and better resilience against ad-
versarial attacks. In the past decades, RF sensing has attracted
significant research interest, focusing on cognitive radio [1],
spectrum coexistence [2], localization and tracking [3], and
detection of adversarial interference [4], among others. This
article studies a new application of RF sensing, which we
call protocol-agnostic cross-layer sensing, in non-cooperative
environments with limited or no a priori knowledge of the
protocols adopted by the wireless networks.

Why Protocol-Agnostic Cross-Layer Sensing? Different
from the RF sensing at physical layer, where the primary

ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER: (a) Contrac-
tor acknowledges Government’s support in the publication of this paper.
This material is based upon work funded by AFRL, under AFRL Contract
No. # FA8750-20-1-0501. (b) Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of AFRL.

Distribution A. Approved for public release: Distribution unlimited AFRL-
2020-0313 on November 18, 2020.

objective is to detect the presence and strength of radio sig-
nals [5], [6], cross-layer RF sensing aims to discover a richer
set of signal features at higher protocol layers, and hence to
unveil the hidden traffic pattern and enable more sophisticated
adaptation to the dynamic spectrum environments or launch
more effective denial of service (DoS) efforts. For example, it
is discussed in [4] that, compared to traditional continuous-
noise interference, significantly more effective interference
attempts can be launched against a network if adequate knowl-
edge of the network’s transmission protocols can be obtained.
Towards this end, the low-level time-domain information of
the control packets of a known protocol such as timing and
length can be used to implement protocol-aware interference
to target those control packets [4].

While existing research has shown great potential of cross-
layer sensing, there are still several challenges to address.
First, the quality of the received RF signals, in terms of
signal strength and signal-to-noise ratio (SNR), is highly
affected by path loss, fading, shadowing, noise, and other
factors. As a result, it is difficult to extract any useful high-
layer protocol information without successful decoding of the
packets because of the poor-quality RF signals. Moreover, it
is also challenging to perform cross-layer sensing in those
low-power IoT systems [7], [8] such as Bluetooth, LoRaWAN
and SigFox, where spread-spectrum and frequency hopping
techniques have been utilized for interference avoidance in
high-density RF environments [7].

Second, as more spectrum resources are made open for un-
licensed use, different wireless systems may need to co-locate
on the same frequency band while operating different, possibly
proprietary protocols. For example, the ISM bands (USA:
915 MHz, Europe: 868 MHz) are home to many low-power,
wide area network (LPWAN) technologies such as SigFox and
LoRaWAN [9]. SigFox is an Ultra-Narrowband (UNB) com-
munication scheme based on proprietary MAC-layer protocol,
which ensures a high degree of network security by limiting
the over-the-air (OTA) activity of devices within a network
in addition to non-OTA activation of end devices [10]. In
such scenarios, higher-layer protocol information cannot be
sensed by decoding the packet header information because of
the proprietary protocols.

To address the above challenges, a key step is to under-
stand through rigorous experiments the limitations of existing
approaches for protocol-agnostic RF sensing. In this work



we make an initial step towards this direction, taking packet
boundary recognition (PBR) at the link layer based on raw
RF samples at the physical layer as an example. We consider
PBR because it is an enabling technique for collecting various
upper-layer protocol characteristics of wireless networks, e.g.,
packet duration, timing, periodicity as well as type (e.g.,
control vs data). A wide set of new sensing-based applications
can be enabled by our work, including intelligent spectrum
access, wireless network traffic and non-cooperative interfer-
ence detection, among others, through enhanced environmental
awareness and protocol identification.

We claim the following two main contributions:
• We first present a framework for protocol-agnostic sens-

ing for OTA RF signals. The framework consists of
three components: OTA Signal Generator, Agnostic RF
Sink, and Ground Truth Generator. We further develop a
software-defined testbed based on USRP software radios,
considering PBR as an example. Eleven statistical algo-
rithms are implemented in the Agnostic RF Sink for PBR
analysis of the received OTA signals.

• We conduct a rigorous performance evaluation of each of
the PBR algorithms using OTA RF samples, and compare
their performance with ground truths generated within the
Ground Truth Generator. Time-domain analysis of low-
level signal features provides necessary information for
higher-level inference. Results indicate that none of these
benchmark statistical methods can achieve consistently
high PBR accuracy in all the tested scenarios, and new
algorithms are required particularly in next-generation
low-latency wireless systems.

II. RELATED WORK

RF sensing has attracted significant research attention with a
sizable and growing body of literature [1]–[3], [6], [11]–[14].
For example, the authors of [11] prove the ability to classify
traffic by protocol according to only a fraction of packets
within a stream, assuming packet size, timing, and received
power levels to be known. Similarly, in [12] Dempsey et al.
sense and classify different types of packets generated by a
known set of network and transport layer protocols, assuming
packet size, timing and other lower-layer packet information
to be known. A wideband compressive sampling method is
introduced in [15] to detect wireless signals in frequency
hopping networks. The authors of [16] propose a simplified
iterative compressive sensing approach to detect spectrum
holes in ultra-wideband wireless UAV networks. Datta et
al. compare in [17] the efficiency of cooperative sensing
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Fig. 1: Software-defined packet recognition framework.

methods for spectrum detection by considering different fading
models. In [18], the authors use spectral correlation function
to extract second-order statistic information of the RF samples
to detect spectrum occupants. Please refer to [6], [19] and
references therein for a good survey of the main results in
this field. Different from these work, where the physical layer
information is usually assumed to be known, in this paper we
focus on protocol-agnostic RF sensing with limited or no a
priori knowledge of the signals.

The use of physical layer characteristics in protocol-agnostic
applications has been most explored in the context of mod-
ulation recognition (MR) [20]–[24]. For example, a discrete
wavelet two-stage neural network group is introduced in [20]
to use time-frequency features for automatic MR. In [21], [22],
O’Shea et al. show that convolutional neural networks (CNNs)
trained on OTA radio signals can be an effective alternative
to traditional feature-based MR. Zhang et al. propose in [23]
to utilize frequency-domain information of the radio signals
as input to a CNN for MR. Readers are referred to [24] and
references therein for a good survey in this area. Different
from MR, in this work we focus on a new application of
protocol-agnostic sensing for packet boundary recognition.

III. PACKET BOUNDARY RECOGNITION FRAMEWORK

A. Overall Framework
The framework of the packet recognition system is illus-

trated in Fig. 1, where there are three major components:
OTA Signal Generator, Agnostic RF Sink, and Ground Truth
Generator. In the OTA Signal Generator, the passband source
signal s(t) is first generated by modulating baseband signal
sb(t) to a carrier frequency fc, i.e., s(t) = <{sb(t)ej2πfct}
and then sent to the SDR front-end of the OTA Signal
Generator for over-the-air transmissions. At the same time,
the baseband signal sb(t) is also recorded as a non-OTA traffic
sequence in the Ground Truth Generator to extract ground
truth packet boundary information.

The signals received by the Agnostic RF Sink, denoted as
x(t), can be given as x(t) = s(t) ∗ h(t) + η(t), where ∗ is
the convolution operation, h(t) is the channel gain, and η(t)
represents noise introduced by the channel. The continuous
signal x(t) is first quantized by the Receiver Control Logic
in the RF Agnostic Sink into a stream of discrete samples
represented as a vector x = [x1, x2, ..., xS ], where S is
the length of the quantized stream in samples. The resulting
sample stream is then further divided into a set of consecutive
bins each of size B in the Local Signal Processing block.

Denote the resulting set of bins as X = {X1, X2, ..., Xβ},
in which β = b SB c and b•c is the integer floor operation. The
obtained bins X are finally used by the Agnostic RF Sink for
feature extraction and PBR analysis. The analysis results are
then evaluated by comparison with the ground truths captured
by the Ground Truth Generator. This will be further discussed
later in this section.

B. PBR Analysis
Recall in Section I that our objective is to understand the

limitations of existing statistical methods for protocol-agnostic



sensing. To this end, eleven statistical PBR approaches have
been implemented in the Local Signal Processing block of the
Agnostic RF Sink. These approaches include cross-correlation,
variance, covariance, entropy, cross-entropy, Pearson’s corre-
lation, Fisher’s method, Kullback-Leibler Divergence (KLD),
distance correlation, Welch’s method, and cross-spectral den-
sity (CSD). These approaches have been selected to test,
in a comparative manner, their potential for discovering the
target patterns of the test data by considering a wide range of
experimental configurations. Next, we discuss two represen-
tative categories of PBR analysis approaches to illustrate the
experimental process.

Entropy, Cross-Entropy, and Relative Entropy Ap-
proaches. Entropy is a notion from information theory, taken
as a measure of information, and has been applied to pattern
recognition problems [25]. For PBR, sample bins containing
inter-packet gaps are expected to exhibit different levels of
entropy than bins without any gaps. In this work, Shannon
entropy is considered. Given a single sample bin Xm ∈ X, the
corresponding entropy, denoted H(Xm), can be calculated as

H(Xm) = −
B∑
i=1

P (xm,i) log2 P (xm,i), (1)

where P (xm,i) is the probability of sample xm,i in bin Xm.
Cross-entropy can be calculated similarly. For adjacent

sequential bins Xm, Xn ∈ X, their cross-entropy, denoted
H(Xm, Xn), can be calculated as

H(Xm, Xn) = −
B∑
i=1

P (xm,i) log2 P (xn,i). (2)

Kullback-Leibler Divergence (KLD), or relative entropy, can
be used to find the change in entropy based on statistical
similarity of the two bins [26]. For sample bins Xm, Xn ∈ X,
the KLD, denoted KLm,n can be computed as

KLm,n = H(Xm, Xn)−H(Xm) (3)

where H(Xm) and H(Xm, Xn) represent the entropy and
cross-entropy defined in (1) and (2), respectively. In this work,
entropy and cross-entropy are used in feature extraction from
RF data to exploit the difference in the distribution of in-packet
samples from samples containing the inter-packet gap. For two
identical sample bins, the computed KLD will be zero as there
is no relative change in entropy.

Welch’s (Periodogram) Method. This method is based
on short-time spectral density estimation to show frequency
domain information for each sample bin. These periodograms
generated from overlapping windows within each sample bin
using the discrete Fourier transform (DFT). The n-th sample
in the m-th window of a sample bin, denoted as xm(n), can
be expressed as

xm(n) , w(n)x(n+mR), (4)

where m = 0, 1, ...,M − 1, n = 0, 1, ..., N − 1 with M being
the number of windows per bin and N the number of samples
per window; x(n + mR) is the (n + mR)-th sample of the
bin, with R representing the window hop size (e.g., R = 0.5
allows 50% window overlap) and w is the windowing function.

In this work, a Hann (raised cosine) window function has been
used to prevent window edge discontinuities.

Then, the periodogram, denoted as Pm(ω) for the m-th
window of a sample bin at frequency ω, can be written as

Pm(ω) =
1

N

∣∣∣∣∣
N−1∑
n=0

xm(n)e−j2πn/N

∣∣∣∣∣
2

(5)

where xm = (xm(n))Nn=0 is the sample vector of the m-th
window with xm(n) defined in (4). For each sample bin, let
S(ω) represent the average of the resulting periodograms, then
S(ω) , 1

M

∑M−1
m=0 Pm(ω), where Pm(ω) is the periodogram

calculated in (5). Since this method takes a single sample bin
as input, the target feature is defined as the magnitude of the
peak frequency component of each sample bin.

C. Ground Truth Analysis

The PBR results obtained by the statistical approaches
discussed in Sec. III-B will be compared against two types
of ground truth information: the number of packets in each
transmission denoted as G and the sample index of g-th packet
boundary denoted as gsmp.

The number of packets in each transmission, i.e., G, is
known from the time of transmission and will be used to
determine the overall PBR rate for each of methods discussed
above. Denote the PBR rate as Γ =

Gprd

G , where Gprd is the
predicted number of packets in the stream, determined using
the approaches discussed in Section III-B.

To verify individual packet boundary locations, we first
determine the sample index gsmp and bin index gbin of the g-
th calculated boundary and then compare them to the ground
truth boundary locations. With a fixed transmission bit rate
RTXbit and receive sample rate RRXsmp, the expected location of
the g-th packet boundary can be predicted as, in the case of
uniform packet length Lbyte, gsmp = ĝsmp + 8gLbyte ∗

RRX
smp

RTX
bit

,
where ĝsmp represents the index of the starting sample of the
first packet within the collected RF data.

IV. DATA COLLECTION

Based on the PBR framework discussed in Section III,
a testbed has been developed using USRP software defined
radios. Figure 2 shows a snapshot of the testbed, where the
transmitter and receiver are implemented using USRP N210
and B210, respectively. The control host is a Dell Latitude
5491 laptop, which implements the OTA Signal Generator
and Agnostic RF Sink as customized implementations in GNU
Radio, and Ground Truth Generator as functions in Python.

Two categories of data have been generated, based on the
length of the modulated packets: fixed-length packet streams,
to investigate how different packet sizes are detected, and
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0 m

Fig. 2: A snapshot of the software-defined PBR testbed.



Modulation Stream Type Packet Sizes (Bytes)

BPSK

OTA
(Streams 1-20)

1500 (Streams 1-5)
2000 (Streams 6-10)
4000 (Streams 11-15)
Random (Streams 16-20)

Non-OTA
(Streams 101-104)

1500
2000
4000
Random

GMSK

OTA
(Streams 21-40)

1500 (Streams 21-25)
2000 (Streams 26-30)
4000 (Streams 31-35)
Random (Streams 36-40)

Non-OTA
(Streams 105-108)

1500
2000
4000
Random

8-PSK

OTA
(Streams 41-60)

1500 (Streams 41-45)
2000 (Streams 46-50)
4000 (Streams 51-55)
Random (Streams 56-60)

Non-OTA
(Streams 109-112)

1500
2000
4000
Random

16-QAM

OTA
(Streams 61-80)

1500 (Streams 61-65)
2000 (Streams 66-70)
4000 (Streams 71-75)
Random (Streams 76-80)

Non-OTA
(Streams 113-116)

1500
2000
4000
Random

QPSK

OTA
(Streams 81-100)

1500 (Streams 81-85)
2000 (Streams 86-90)
4000 (Streams 91-95)
Random (Streams 96-100)

Non-OTA
(Streams 117-120)

1500
2000
4000
Random

10

TABLE I: Summary of generated datasets.

random packet streams, to model more realistic network be-
haviors. The former consists of uniform packets of lengths of
1500, 2000, or 4000 bytes. The latter consists of packets with
lengths determined by a known pseudorandom sequence, with
a minimum length of 48 bytes and a maximum length of 4080
bytes. For each type of stream, five of the most widely-used
digital modulations have been considered, including BPSK,
QPSK, GMSK, 8-PSK, and 16-QAM. The generated samples
are first saved as arrays of complex Non-OTA data and sent to
the Ground Truth Generator prior to OTA transmission.

On the receiver side, the OTA data is collected and prepro-
cessed for PBR analysis. The data is preprocessed as described
in Section III, including quantization and binning of radio
signals into vectors of sizes 50 and 100 samples. Each of the
preprocessed datasets is then used to further generate three
feature sets consisting of complex I/Q data, received signal
amplitude, and short-time frequency spectrum.

In total 100 datasets of OTA radio signals have been
collected, each consisting of around 3,000,000 samples, as
well as 20 sets of non-OTA data each containing between
400,000 and 1,600,000 samples. The collected datasets are
summarized in Table I.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the PBR approaches discussed in
Section III, by comparing them against ground truths in terms
of PBR rate and accuracy in a variety of conditions. The PBR
rate refers to the percentage of packets detected successfully,
while the PBR accuracy is defined as the distance between
the predicted and the ground truth packet boundaries. Next,
we study two PBR examples for non-OTA and OTA data in
Figs. 3(a) and 3(b), respectively.

Figure 3(a) shows an example of the PBR results for
Welch’s method on non-OTA data with packet size of 2000
bytes and modulation types of BPSK (top), GMSK (middle)
and 16-QAM (bottom). The output values of Welch’s Method

(a) (b)
Fig. 3: Example PBR output using sensed signals (Welch’s method).
(a) Example of non-OTA data; (b) Example of sensed OTA data.

is proportional to the frequency content of the baseband signal.
In Fig. 3(a), it can be found that the output values of Welch’s
Method range from 0 to 3. By comparing with the ground truth
obtained in Section III, we found that each of the major peaks
in the three plots corresponds to a packet boundary, which
verifies the effectiveness of Welch’s Method in PBR.

The corresponding results for OTA data is reported in
Fig. 3(b). In the test cases, the output values of Welch’s method
range from 0 to 16. Compared to non-OTA results in Fig. 3(a),
the clarity of the peak values has been somewhat degraded by
channel effects inherent to OTA transmissions.

PBR Rate Analysis. In the following three experiments,
we study the PBR rate of the 11 approaches discussed in
Section III. The results are reported in Figs. 4, 5, and 6.

In Fig. 4, we plot the PBR rate for QPSK modulated packets
of size 1500, 2000, 4000 bytes as well as random size. The
bin size has been set to 100 samples. The results are obtained
by averaging over 5 transmission ranges as shown in Fig. 2. It
can be seen that the PBR rate ranges from 30% to 99% with
different parameters, and that in general, a higher PBR rate can
be achieved with longer packets. For example, with packet size
of 1500 bytes, as shown in Fig. 4, the most accurate method
is KLD, which can detect 76% of packets. The corresponding
PBR rate is 99% for packet sizes of both 2000 and 4000 bytes.
Similarly, a very good PBR performance can also be achieved
by the distance correlation approach and variance approach,
with a PBR rate of 97% for both approaches with packet size
of 4000 bytes.

From Fig. 4, it can also be found that the PBR rate is
significantly degraded for all 11 approaches when the packets
are generated with random length. For example, the PBR
rate is only 30%, 35%, 36%, 38% and 40% for the KLD,
cross-correlation, variance, covariance, and distance correla-

Fig. 4: PBR rate for QPSK-modulated data streams with packet size
of 1500, 2000, 4000 bytes and random size.



tion approaches, respectively. The most accurate method for
random-sized packets is Welch’s method, which can detect
45% of packet boundaries. This experiment implies that i) with
the tested existing statistical approaches, we can expect PBR
rates between 30% and 100% in real wireless networks, where
packets are usually generated according to a fixed set of packet
lengths; and ii) in the presence of unintended interference,
it can be an effective security measure to randomize packet
lengths in order to reduce the probability of detection.

In Fig. 5, we plot the PBR rate of the KLD approach
considering 5 modulations and packets of sizes of 1500, 2000,
and 4000 bytes as well as random size. The bin size has
been set to 100 samples. We consider the KLD approach in
this experiment because it achieves the highest PBR rate in
most of the tested cases. It can be seen that it can achieve
a PBR rate of 87%, 87%, 70%, and 99% with fixed packet
lengths for BPSK, 8-PSK, 16-QAM, and QPSK modulations,
respectively. The corresponding PBR rate with random packet
lengths is 41%, 43%, 45%, and 30%. The exception is GMSK,
for which a PBR rate of less than 50% can be achieved even
with fixed packet lengths; for this modulation, according to our
experiments the most effective PBR approaches are Welch’s
Method and the CSD approach, which can achieve a PBR rate
of at least 60%. From this experiment we can see that there is
no “one-size-fits-all” approach for PBR in wireless networks
with time-varying or unknown modulation types.

In Fig. 6(a), we further plot the PBR rate of the KLD
approach with different transmission distances, considering the
same modulation and packet size as in Fig. 5. It can be seen
that the KLD approach can achieve a consistent PBR rate for
most modulations. For example, a PBR rate of 82%, 80%,
82%, 82%, and 82% can be achieved for QPSK modulation at
50 samples per bin as the transmission distance increases from
0.5 meters to 2.5 meters. Similarly, almost a 100% PBR rate
can be achieved at 100 samples per bin. The same trend can
also be observed for other modulations, except 16-QAM. As
shown in the right figure, the PBR rate of 16-QAM decreases
from 92% to 50% as transmission distance increases from 0.5
meters to 2.5 meters. This is because high-order modulations
can result in increased sensitivity to channel effects such
as noise, fading, etc. We also notice that this sensitivity is
accentuated with larger sample bins. As shown in the left-
hand side plot, a more consistent PBR rate can be achieved for
16-QAM with smaller bin sizes. Therefore, smaller bin sizes

Fig. 5: Analysis of modulation for KLD, 2000-byte packets.

should be used for high-order modulations at long transmission
ranges for more consistent PBR performance.

In Fig. 6(b), we further study the PBR rate achievable with
different packet sizes by considering 8-PSK and 16-QAM as
example modulations for entropy and variance approaches. In
general, a higher PBR rate can be achieved with 8-PSK mod-
ulation than with 16-QAM modulation in almost all the tested
cases. For example, a PBR rate of 81% can be achieved for 8-
PSK using the entropy method and packet size of 1500 bytes,
which is 61% for 16-QAM. This implies that in the context
of protocol-agnostic sensing, higher-order modulation schemes
can be used to reduce the probability of detection. It is also
found from the left-hand side of the figure that for the entropy
approach, a consistent PBR rate can be achieved for 16-QAM
with different static packet sizes; in contrast, the right-hand
side of the figure shows that a consistent PBR rate can be
achieved for 8-PSK modulation using the variance approach.
Due to the prevalence of packets smaller than 1500 bytes
within each random-length set (∼40%), poor performance on
traffic with randomized packet length is expected given the
performance degradation observed with smaller packet sizes
for most observed methods. From these results, it is further
verified that no single statistical approach to PBR will perform
well across all the tested variables.

PBR Accuracy Analysis. In this experiment, we study
the PBR accuracy performance, taking KLD and variance
approaches as an example. As discussed in the beginning of
this section, PBR accuracy is defined as the relative difference
between the predicted and ground truth packet boundaries.
This accuracy measure is determined by comparing the ground
truth boundaries to each predicted boundary, and is defined as
∆Gprd =

1
Gprd

∑Gprd

n=1 | gbin(n)−gbin,prd(n) |, where Gprd is
the predicted number of packets in a sample stream, gbin(n)
is the ground truth bin location of the n-th boundary, and
gbin,prd(n) is the corresponding predicted bin location.

The results are reported in Fig. 6(c), where QPSK and
GMSK modulations are considered using KLD and variance
methods for packet sizes of 2000 and 4000 bytes. It can be
seen from the left-hand side figure that the KLD-based method
accurately predicts QPSK packets, while the achievable pre-
diction accuracy is significantly lower for GMSK-modulated
packets. For example, we observe a ∆Gprd of 5.04 bins (each
of 50 samples) for KLD method on QPSK-modulated packets
of size 2000 bytes, which is 71.98 bins for GMSK-modulated
packets. Similar results can be observed in the right-hand side
of Fig. 6(c) for the variance approach. The sampling rate was
configured in the receiver USRP to be 1,000,000 samples per
second. Therefore, an offset of 5.04 bins corresponds to 252
µs, and 3.6 ms for 71.98 bins offset. While these ground truths
are not attainable in a protocol-agnostic context, this is an
important metric by which to validate PBR algorithms. This
implies that existing statistical approaches are more suitable
for PBR detection in low data rate wireless systems with long
packets, for example LoRaWAN and LTE networks.



(a) (b) (c)

Fig. 6: Performance metrics of various test configurations. (a) PBR rate against transmission distance with bin size of 50 (left) and 100
(right) samples; (b) PBR rates with different packet sizes for entropy (left) and variance (right) approaches; and (c) PBR accuracy of KLD
(left) and variance (right) approaches.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have established benchmarks for a new RF
sensing technique called protocol-agnostic cross-layer sensing,
taking link-layer time-domain PBR based on physical-layer
raw RF samples as an example. We analyzed experimentally
the effectiveness of eleven statistical sensing approaches in
terms of PBR rate and accuracy by generating a dataset
of RF samples, considering a wide set of modulation types
and packet lengths. It is found that none of these statistical
approaches can achieve consistent good PBR results in all sce-
narios. The dataset collected in this work and the performance
analysis can provide a benchmark for research in protocol-
agnostic sensing. In future work we will study protocol-
agnostic sensing in scenarios with time-varying packet lengths
and in the presence of interference, by jointly considering
packet boundary and other features such as frequency and
modulation type.
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