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Abstract—Denial-of-service (DoS) attacks launched by mali-
cious jammers can pose significant threats to infrastructure-
less wireless networks without a centralized controller. While
significant recent research efforts have dealt with such attacks
and several possible countermeasures have been proposed, little
attention has been paid to the idea of cooperative anti-jamming.

Inspired by this observation, this paper proposes and studies a
cooperative anti-jamming scheme designed to enhance the quality
of links degraded by jammers. To achieve this objective, users
are allowed to cooperate at two levels. First, they cooperate
to optimally regulate their channel access probabilities so that
jammed users gain a higher share of channel utilization. Second,
users leverage multiple-input single-output cooperative commu-
nication techniques to enhance the throughput of jammed links.
The problem of optimal cooperative anti-jamming is formulated
as a distributed pricing-based optimization problem, and a best
response algorithm is proposed to solve it in a distributed way.
Simulations demonstrate that the proposed algorithm achieves
considerable gains (compared to traditional non-cooperative anti-
jamming) especially under heavy traffic or high jamming power.
Furthermore, the proposed distributed algorithm is shown to
achieve close-to-global optimality with moderate traffic load.

Index Terms—Anti-jamming, Cooperative Relay, Cross-layer
Optimization, Distributed Algorithm.

I. INTRODUCTION

W IRELESS networks are known to be vulnerable to
denial-of-service (DoS) attacks, mostly as a conse-

quence of their broadcast nature [2]–[4]. By radiating high-
power radio-frequency signals, a malicious adversary can
easily generate interference to degrade the perceived signal-to-
interference-plus-noise ratio (SINR) and therefore the achiev-
able link throughput of legitimate users. The situation may be
exacerbated in infrastructure-less wireless networks with no
centralized entity to coordinate the transmission strategies of
different users.

Various techniques have been proposed to combat jamming
attacks at different layers of the protocol stack. A common
idea behind many of these techniques is to leverage additional
levels of “diversity”, for example, frequency hopping spread
spectrum (FHSS) and direct sequence spread spectrum (DSSS)
attempt to avert interference in the frequency or coding do-
mains, respectively.
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FHSS has long been used to provide anti-jamming capa-
bilities in wireless communications. By quickly shifting from
one frequency carrier to another, FHSS allows legitimate users
to actively avoid jamming attacks. However effective, FHSS
has several shortcomings. First, it relies heavily on a pre-
defined secret pattern. Therefore, it may not be suitable for
ad hoc networks where it is difficult to share a common
secret between transmitters and receivers; or for cognitive
radio networks where the availability of spectrum “holes”
may follow a random pattern [5]. Second, FHSS requires
significantly more spectrum resources than single-carrier trans-
mission strategies, and is not spectrally efficient [6]. Third,
FHSS assumes that jammers can only jam one or a subset
(but not all) of the available channels at the same time, while
in some scenarios, it may be possible for a jammer to launch
more powerful attacks by generating broadband interference
on all the available channels. In fact, it has been shown
that multi-channel jamming is feasible with cognitive radio
technology [7].

In recent years, several adaptive frequency hopping strate-
gies have been proposed to address the first shortcoming,
including uncoordinated frequency hopping (UFH) [8] and
message-driven frequency hopping (MDFH) [9]. The commu-
nication efficiency of UFH was analyzed theoretically in [10],
and practical algorithms were proposed in [11], [12]; the anti-
jamming properties of MDFH were analyzed in [13], [14].
However, in scenarios with scarce spectrum resources, anti-
jamming techniques that can utilize the spectrum resource
more flexibly and efficiently are needed.

DSSS provides an alternative way for spectrum spreading
[15], [16]. Unlike FHSS, DSSS achieves this goal in the coding
domain. Despite this difference, like FHSS, DSSS has limited
spectral efficiency. Besides, DSSS relies on a specific physical
layer transmission scheme (i.e., code-division multiple access,
CDMA).

The rapid increase in spectrum requirements has motivated
another family of anti-jamming techniques, suitable for multi-
carrier networks. Unlike FHSS and DSSS, which achieve anti-
jamming capabilities by expanding the transmitted waveform
to a wider spectrum, these techniques try to achieve optimal
use of the available spectrum resources. Thus, we refer to
these techniques as adaptive optimal resource allocation ap-
proaches.

In optimal resource allocation techniques, a user, instead
of trying to avoid a jammer altogether by using a different
portion of the spectrum, relies on exploiting the current spec-
trum in the most efficient way to combat jamming. Optimal
resource allocation techniques usually attempt to maximize
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the information-theoretic capacity of the link by allocating
resources on several different channels at the same time.
For example, in orthogonal frequency-division multiplexing
(OFDM) systems iterative water-filling algorithms can be used
to maximize the achievable capacity of legitimate users in the
presence of jammers [17]. Since each user independently and
selfishly selects its optimal transmission strategy, these ap-
proaches are often analyzed using tools from non-cooperative
game theory. An extensive literature has emerged that relies
on this or similar approaches [17]–[23].

It can be observed that all these techniques, along with those
adopting FHSS, focus on how to effectively utilize different
frequency channels against jamming. Therefore, they all take
advantage of frequency diversity. In DSSS techniques, coding
diversity is exploited. There are also techniques leveraging
space diversity in various ways. Directional transmission is
well-known to be able to enhance the throughput by creating
highly directional links, and is thus widely used in anti-
jamming [24] [25]. Multipath routing provides a way to
circumvent the jammer [26] [27]. Even the mobility of the
nodes can in certain scenarios be exploited to avoid jamming
[28].

In this paper, we attempt to explore an additional degree
of freedom, the cooperative diversity dimension, which has
been underexplored in the context of anti-jamming techniques.
Cooperative techniques can be jointly leveraged at the net-
work, MAC, and physical layers to provide effective coun-
termeasures against jamming. While in commercial networks
it is natural for different terminals to operate selfishly and
in a non-cooperative fashion, in sensor networks and tactical
military networks, which are often managed by a single
entity, cooperative behaviors can be more easily implemented.
Interestingly, the idea of exploiting cooperation has also been
proposed in different contexts. For example, to protect the
secrecy of a wireless communication link, several studies
have proposed to employ cooperative jamming (also known
as “friendly” jamming) to prevent eavesdroppers from inter-
cepting the transmitted information [29] [30] [31].

Inspired by this idea, we propose and study a cooperative
anti-jamming scheme designed to maximize the fairness-
constrained network throughput in the presence of jammers.
The proposed algorithm jointly optimizes the channel access
probabilities and cooperative relaying probabilities of legiti-
mate users. Legitimate users cooperate at two levels. At the
medium access control layer, a cooperative channel access
scheme is proposed where the channel access probabilities of
different users are optimally regulated so that users degraded
severely by jammers have an increased share of air time.
In this way, users with good links “trade” capacity with
those with jammed links. The second step is to extend the
cooperation from MAC to physical layer. It is well known
that, by using cooperative relays, virtual multiple-input-single-
output transmission links can be formed to increase the link
capacity. In the proposed scheme, users able to enhance the
link capacity of other users through cooperative transmis-
sions cooperate as relays with a certain probability. A new
distributed algorithm is proposed to jointly optimize these
two levels of cooperations, with significant gains in terms of
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Fig. 1: An example topology with a jammer.

achievable network throughput.
To summarize, we make the following contributions:
1) We propose the first cooperative anti-jamming scheme

that jointly optimizes the cooperative behavior of nodes
at the MAC and physical layers. To the best of our
knowledge, this is also the first anti-jamming scheme
based on a virtual multiple-input-single-output (MISO)
variant of cooperative communications;

2) We formulate the optimal cooperative anti-jamming
problem as an optimization problem with the objective
of maximizing the fairness-constrained network through-
put. We design a distributed solution algorithm based on
dynamic pricing that is guaranteed to converge even if
the socially optimal problem is not convex.

3) We design a provably-optimal centralized algorithm
based on the branch and bound framework and convex
relaxation techniques. The algorithm provides a perfor-
mance benchmark for any distributed algorithm designed
to solve similar problems.

4) We compare the performance of the cooperative dis-
tributed algorithm with a non-cooperative distributed
algorithm and with the optimal centralized algorithm.
We show that the cooperative algorithm achieves near-
optimality under light and moderate traffic, and provides
considerable gains compared to non-cooperative strate-
gies.

The rest of the paper is organized as follows. Section
II presents the system model and problem statement, while
Section III derives a model of the utility for each legitimate
user. In Section IV, we present and analyze the distributed
solution algorithm of cooperative anti-jamming. The central-
ized algorithm is proposed in Section V. Some practical issues
are discussed in Section VI. In Section VII, we analyze the
performance of the proposed algorithms. Finally, we draw
conclusions in Section VIII.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a wireless ad hoc
network composed of a set N of legitimate users each con-
sisting of a source-destination pair of nodes. In this case,
the network can be viewed as a set of concurrent node-to-
node transmissions. Assuming that the transmitting nodes are
always saturated, i.e., their queues are always backlogged, then
we can also refer to each of the transmitter-receiver pairs as a
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session. We denote the source and destination nodes of each
session n ∈ N as s(n) and d(n), respectively. There are a set
F of frequency-orthogonal channels for the legitimate users
to transmit on.
Jamming Model. We assume that there is one jammer node,
denoted as j, constrained by a limited power budget that
attempts to degrade the throughput of the legitimate users by
generating interference on the available channels. The model
can be easily extended to the case of multiple jammers. We
assume that the jammer is able to emit wideband interference
across all the available channels simultaneously. If we denote
by pj = (pfj )f∈F the jammer power allocation profile, where
pfj is the power allocated on channel f , we have

1Tpj ≤ pmax
j , (1)

where pmax
j is the maximum power of the jammer, and 1

represents an 1× |N | vector of ‘1’ elements.
Because of the heterogeneity of different channels, the

jammer must allocate its power budget in some way to
achieve a good jamming effect. In previous literature [17]–
[22], this is done by allocating the jamming power so that
the achievable capacity of the jammed links is minimized.
This strategy is theoretically optimal. However, it requires
knowledge of many factors that are generally not available
for the jammer, such as the channel gain of the jammed link
and the power allocation of a jammed node. In this paper, we
model the jammer in a similar way. Observing that it is often
unrealistic to assume that the jammer is able to acquire the
information mentioned above, we model two types of jammers
with different capabilities in terms of information acquisition.
The first is assumed to be only capable of sensing nearby
transmissions by measuring the interference plus noise level
at its own position; the second has perfect knowledge of the
legitimate user strategies, as well as the channel gain to the
jammed node, i.e., the same capabilities as the jammers in
[17]–[22]. These two models set an upper and lower bound for
a typical real jammer, which would have knowledge between
these two ideal cases. We let the jammer update its own
strategy once the jammed nodes have updated theirs. In this
sense, the jammer is reactive.

It is worth noting that we have intentionally neglected some
low-level details of the jamming pattern. For example, it is
possible for a jammer to selectively jam only a small part
of the transmitted packets; the jammer might also leverage
location information to produce a highly-directive spatial
jamming pattern. Our objective is not to propose a technique
specialized against a particular jamming scheme. Rather, we
seek to demonstrate the performance benefits of anti-jamming
techniques based on leveraging cooperative diversity, which
can be used by any anti-jamming schemes once appropriately
specialized. The general model in the paper provides us with
a way to showcase the proposed anti-jamming scheme; but the
idea can be extended and specialized and is not limited to the
simple jammer.

We do not consider the case of jamming of control mes-
sages. These messages typically incur small overhead and are
transmitted with highly reliable modulations such as BPSK
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Fig. 2: Illustration of the multichannel slotted CSMA MAC.

and with strong channel coding. If a jammer is capable of
destructing the control messages, likely it is also able to
completely disrupt the network. In such a case, techniques
exploiting more degrees of diversity, including the space
diversity, should be used, as discussed in Section I.
MAC Layer Cooperation Model. The cooperative anti-
jamming strategy is based on joint control of functionalities at
the MAC and physical layers. At the MAC layer, users regulate
their channel access probabilities to give higher opportunities
to transmit to nodes that are being jammed. To achieve
this objective, an opportunistic spectrum access scheme with
tunable spectrum access probability is needed at the MAC
layer. We consider one based on a state-of-the-art slotted
multichannel CSMA. However, any other MAC protocols that
enables stochastic channel access can be used, as long as the
users are able to adjust the channel access probability. Details
of the protocol are introduced below.

Similar to traditional CSMA-based MAC protocols, the
considered protocol is based on contention. Transmission time
is divided into a set of consecutive timeslots, and all nodes are
assumed to be synchronized. At each timeslot, a user chooses
(at most) one channel to transmit on, as in frequency hopping
methods. However, the channel is chosen “randomly”, i.e., a
user chooses each channel with a certain probability. A node
is also allowed to choose none and in this case it can serve as
a relay for other users.

If a node chooses channel f ∈ F , it first senses the channel
at the beginning of the timeslot, to decide if the channel is
available. Since there may be multiple users choosing the
same channel, contention may happen. As in typical CSMA-
based protocols, a competing node sets a random backoff and
starts counting down, and the first one counting to zero wins
the contention. To simplify the formulation, we assume that
the contention window size is sufficiently large, so that the
probability of collision is negligible. An example of the MAC
protocol is illustrated in Fig. 2.

With such MAC protocol, a user can tune its channel access
probability by simply adjusting the channel sensing probability
on different channels. We let qfn, f ∈ F denote the channel
sensing probabilities of user n on channel f . Since with non-
zero probability node n may delay its own transmission and
serve as relay for other nodes, we have

∑
f∈F q

f
n ≤ 1.

Physical Layer Cooperation Model. Physical-layer coop-
eration is obtained through relaying [32] [33]. Instead of
transmitting its own traffic, a user can act as a relay and
cooperatively transmit a packet on behalf of another user.
Cooperative transmission is typically achieved by dividing
the available transmission time into two phases: in the first
phase, the transmitter broadcasts the message to both the
destination and the relay; in the second phase, the relay
forwards the received message to the destination, which then
combines the two copies of the message and decodes. We
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Fig. 3: Behavior of a legitimate user

focus on the decode-and-forward (DF) variant of cooperative
communications, under which the relay node forwards the
packet only when the information received from the source
node can be successfully decoded. The analysis in this paper
can be extended to other forwarding strategies, e.g., amplify-
and-forward (AF).

To cope with the dynamic nature of the jammer, we consider
a dynamic relay selection strategy to let the users form virtual
MISO links. At each timeslot, a user that chooses not to sense
any channels will act as a relay for another user if there is a
positive cooperative gain1.
Strategy of Legitimate Users. The behavior of a legitimate
user can be illustrated through the flowchart in Fig. 3. When a
user is backlogged, it selects its channel sensing probability for
each channel. If it chooses not to sense any channel, it serves
as a potential cooperator for other legitimate users. Intuitively,
the cooperative relaying probability - which will be derived
formally in Section III - is a function of the channel sensing
probability qfn, of the strategy of the jammer pj, and of the
network topology. Users that choose to sense the same channel
compete for channel access by setting random backoffs, and
the winner has the privilege to transmit.

The factors determining cooperation at the two layers, i.e.,
channel access probability and cooperative relaying probabil-
ity, are both functions of the channel access probability, for
a given jammer strategy and network topology. Therefore, we
can simply use the channel access probability as the strategy
space of a legitimate user, and denote it as qn = (qfn)f∈F̃
with F̃ , F ∪{0}, where qfn indicates the sensing probability
of channel f , and q0

n denotes the probability that n does not
sense any channel. Then, it needs be

qfn > 0, ∀n ∈ N , ∀f ∈ F̃ (2)

qfn ≤ 1, ∀n ∈ N , ∀f ∈ F̃ (3)

1Tqn = 1, ∀n ∈ N . (4)

We further denote by q = (qn)n∈N the sensing probability
profile of all users in N , and by q−n = (qm)m∈N/n the
profile of all users except for n.

1Cooperative transmission does not always outperform direct transmission.
The cooperative gain depends on the strategy of the jammer, the network
topology and the instantaneous channel states - see Section III for details.

Legitimate Problem Statement. Our objective is to maximize
the total utility of all legitimate users, which represents the
fairness-constrained network throughput and will be defined
formally in Section III, by choosing the optimal sensing
probability profile for each user, for any given strategy of the
jammer.

III. PROBLEM FORMULATION

We consider the expected capacity of a legitimate user n ∈
N , expressed as

Cn(q, pj) =
∑
f∈F

qfnρ
f
n(q, pj)C

f
n(q, pj), (5)

where qfn is the probability that user n senses channel f ,
ρfn(q, pj) represents the probability that user n is able to suc-
cessfully access the channel, and Cfn(q, pj) is the achievable
capacity on that channel (through either direct transmission or
by using a cooperative relay), for a given sensing probability
profile q and jamming power profile pj.
Channel Access Probability. MAC-layer cooperation is
achieved through stochastic channel access. According to the
slotted multichannel CSMA protocol described in Section II,
user n ∈ N is able to successfully access channel f ∈ N if
i) the channel is sensed to be idle at session n’s source node
s(n); and ii) session n wins the channel access competition. If
we let ρ̃fn(pj) indicate the probability that channel f is idle and
ρ̂fn(q) the probability that session n wins the competition, the
channel access probability ρfn(q, pj) in (5) can be expressed
as

ρfn(q, pj) = ρ̃fn(pj)ρ̂
f
n(q). (6)

If we let pth represent the power threshold below which a
channel is sensed idle, then ρ̃fn(pJ) can be defined as

ρ̃fn(pj) , P
(
pfj Hjs(n) · (hfjs(n))

2 + (σfs(n))
2 ≤ pth

)
, (7)

with Hjs(n), hfjs(n) capturing path loss and fading of the
link between the jammer and session n’s source node s(n)
on channel f , respectively, and (σfs(n))

2 being the noise
power. For hfjs(n) Rayleigh distributed with fading factor Ωfs(n),
ρ̃fn(pj) in (6) can be written as

ρ̃fn(pj) =

∫ xmax

0

1− e−x
2/Ωf

s(n) dx, (8)

with xmax calculated from (7) as

xmax =
√

(pth − (σfs(n))
2)/(pfj Hjs(n)). (9)

We now need to derive the probability that a user n ∈ N
wins the medium access competition after sensing the channel
f ∈ F to be idle. Denoting N f

n ⊂ N/n as the set of nodes
competing with user n on channel f , the winning probability
for user n can be written as 1

1+|N f
n |

, where |N f
n | is the number

of nodes in N f
n . Since each potential competing user m ∈

N/n joins the access competition with probability qfmρ̃
f
m(pj),
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the cardinality of N f
n , i.e., |N f

n |, can be proven to be Poisson
distributed with mean [34]

E(|N f
n |) =

∑
m∈N/n

qfmρ̃
f
m(pj). (10)

Then, the overall probability of winning a medium access
competition for user n, i.e, ρ̂fn(q) in (6), can be expressed
as

ρ̂fn(q) =

|N |−1∑
k=0

1

1 + k
·
(
E(|N f

n |)
)k
e−E(|N f

n |)

k!
. (11)

Expected Capacity. Suppose that user n ∈ N has won the
competition to access channel f . We can then derive the
expected capacity achievable through either direct transmission
or using a cooperative relay, i.e., Cfn(q, pj) in (5).

If direct transmission is used by n, denote the direct link
capacity by Cdir

n,f (pj). Then, we have

Cdir
n,f (pj) = B log

(
1 + γs2d

n,f (pj)
)
, (12)

where B is the bandwidth of each channel, and

γs2d
n,f (pj) ,

pnHn · (hfn)2

(δfd(n))
2 + pjHjd(n) · (hjd(n))2

(13)

where pn is the transmission power of user n; Hn and hfn
are the path loss and fading, respectively; (δfd(n))

2 is the noise
power at the destination of user n denoted by d(n) on channel
f . The expected capacity achievable with a direct link, denoted
by Ĉdir

n,f (pj), can be computed by averaging over all possible
channel fading outcomes of the links between s(n) and d(n),
and the jammer and d(n), i.e.,

Ĉdir
n,f (pj) =

∫ ∞
0

∫ ∞
0

Cdir
n,f (pj) · P(hfn = x1)

·P(hjd(n) = x2)dx1 dx2.

(14)

As discussed in Section II, each source node m ∈ N/n
serves as a potential relay with probability q0

m. Therefore, with
a certain probability, user n will receive cooperation assistance
by one of the potential cooperators. Suppose user n chooses
s(m) as the relay, then, the resulting cooperative capacity
denoted by Ccop

nm,f (pj) can be expressed as [32]

Ccop
nm,f (pj) =

B

2
log
(
1 + min (γs2r

nm,f , γ
s2d
n,f + γr2d

mn,f )
)
, (15)

where γs2r
nm,f = γs2r

nm,f (pj) and γr2d
mn,f = γr2d

mn,f (pj) represents
the SINR (defined as in (13)) of the link from source to relay,
and from relay to destination, respectively.

Note, from (12) and (15), that the cooperative capacity
Ccop
nm,f (pj) can be higher or lower than the direct capacity

(because of the 1
2 coefficient in (15)). If we define the

following indicator function

I(x, y) ,

{
1, if x > y
0, otherwise,

(16)

then, the expected capacity achievable through cooperative
communication (assuming that cooperative transmission out-
performs direct transmission) can be defined as

Ĉcop
nm,f (pj) , E

(
Ccop
nm,f (pj)|I

(
Ccop
nm,f (pj), C

dir
n,f (pj)

)
= 1
)

(17)

The expected capacity achieved through cooperative communi-
cation in (17) can be computed by averaging over all possible
channel fading outcomes of the links, for each channel f ∈ F :

1) hfjd(n): from jammer to d(n);
2) hfjs(m): from jammer to s(n);
3) hfn: from s(n) to d(n);
4) hfnm: from s(n) to s(m);
5) ĥfmn: from s(m) to d(n).

Therefore, we have

Ĉcop
nm,f (pj) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

Ccop
nm,f (pj)

· I
(
Ccop
nm,f (pj), C

dir
n,f (pj)

)
P(hfjd(n) = x1)

· P(hfjs(m) = x2)P(hfn = x3)

· P(hfnm = x4)P(ĥfmn = x5)

dx1 dx2 dx3 dx4 dx5. (18)

The resulting probability that user n achieves a capacity gain
through cooperative relaying can then be represented as

φfnm(pj) = q0
m

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

I
(
Ccop
nm,f (pj), C

dir
n,f (pj)

)
· P(hfjd(n) = x1)

· P(hfjs(m) = x2)P(hfn = x3)

· P(hfnm = x4)P(ĥfmn = x5)

dx1 dx2 dx3 dx4 dx5, (19)

and the corresponding sum probability can be written as

φfn(pj) =
∑

m∈N/n

φfnm(pj). (20)

Finally, the expected capacity achievable by user n over
channel f can be expressed as

Cfn(q, pj) =
∑

m∈N/n

q0
mĈ

cop
nm,f (pj)

+
∑

m∈N/n

(
1− φfn(pj)

)
Ĉdir
n,f (pj).

(21)

Note that (21) is exact when the probability that more than
one cooperator participates in cooperative communication is
very low. Otherwise, the capacity expression will be obtained
as a sum of the expected cooperative capacities contributed
by different cooperators. However, we can show through
experimental results that in most cases this assumption is true.
Readers are referred to Appendix A for details.
Social Problem Statement. So far, we have derived the
expected capacity of each user n ∈ N . If we consider a
proportional fairness criterion, then the utility of each user
can be defined as

Un(q, pj) , log(Cn(q, pj)), (22)

and the ideal objective is to maximize the sum utility of all
users, i.e.,

Given : pj

Maximize
q∈(0,1]|N|

U(q,pj) =
∑
n∈N

Un(q, pj)

Subject to : (2), (3), (4).

(23)
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However, this objective is not easily achievable with dis-
tributed control. In fact, the optimization problem is non-
convex and the utility expressions in (22) are rather complex.
Moreover, the non-convexity also implies that only subop-
timal solutions can be computed in polynomial time even
with centralized algorithms. Since we would like to design
distributed solutions with low complexity, we follow here
a different approach and design a pricing-based distributed
solution algorithm with provable convergence to a stationary
point of the social problem.

We will introduce the distributed algorithm (which is our
core contribution) in Section IV and also propose a centralized
algorithm as a benchmark in Section V.
Jamming Strategy. Two types of reactive jammers are consid-
ered, differentiated based on the information available to them.
The first type is only capable of measuring the interference
plus noise level per channel, at its own location. Without any
further information, all the jammer can do is to use this value
as a rough estimation of the traffic on different channels. A
reasonable strategy, under theses circumstances, is to allocate
the power budget on the channels proportional to the estimated
traffic on each of them. Denote the sensed interference plus
noise level by j on channel f as Df

j . Then the strategy is

pfj =
Df

j∑
f∈F D

f
j

· pmax
j ,∀f ∈ F . (24)

It is often the reality that the jammer has no further information
other than this, so we refer to this type of jammer as the
“standard” jammer.

We further model a more sophisticated jammer, which we
refer to as the “optimal” jammer. The objective of an optimal
jammer is to minimize∑

n∈N

∑
f∈F

qfnρ
f
nC

dir
n,f (pj), (25)

i.e., the sum of legitimate user capacity, assuming no physical
layer cooperation. We do not consider physical layer coop-
eration here, since it is infeasible to solve the minimization
of
∑
n∈N C

f
n(q, pj)

2. The objective of the optimal jammer
is, therefore, to minimize a lower bound of the sum capacity
of the legitimate users. The gap between the result and the
real sum capacity is introduced by physical layer cooperation.
Apparently the “optimality” is built on the knowledge of some
impractical assumptions (it is almost impossible for a jammer
to know exactly how the user capacity changes with different
jamming strategies), but we will use it as a benchmark to
evaluate the anti-jamming scheme nonetheless.

The strategy of the optimal jammer is formally

Given : q
Minimize

pj

∑
n∈N

∑
f∈F

qf
nρ

f
nC

dir
n,f (pj)

Subject to : 1Tpj = pmaxj

(26)

The problem (26) can be solved using an approach similar to
the water-filling algorithm, but in a “reverse” way. For details,
see Appendix B.

2Notice that, the binary indicator I
(
Ccop

nm,f (pj), C
dir
n,f

)
implies that (18)

is not a differentiable function in pj .

IV. DISTRIBUTED SOLUTION ALGORITHM

The distributed solution algorithm is designed based on
the recent framework results in [35], with the objective to
achieve a stationary solution point of the social problem (23).
Specifically, we design an iterative best-response algorithm
based on a pricing mechanism. At each iteration, each session
n maximizes its own utility minus a pricing term that acts as
a penalty imposed to each session for being too aggressive in
choosing its own strategy and thus “hurting” other sessions.
The challenge in applying the framework is to design the
pricing term of each iteration so that the distributed algorithm
converges to a “good” stationary point (if more than one exists)
of the social problem in (23) 3. Since we are designing an
algorithm for legitimate users for which the strategy of the
jammer, i.e., pj is a given parameter, we will neglect it from
the utility function for simplicity in this section and Section V.

We denote by qν the sensing probability profile of iteration
ν (with ν = 1, 2, . . . ). The pricing term for session n ∈ N ,
denoted as Γn(qn, q

ν
−n), can be written as

Γn(qn, q
ν
−n) , (qn)T

(
Γfn(qfn, q

ν
−n)
)
f∈F̃ −

τn
2
‖qn − qνn‖2, (27)

where

Γfn(qfn, q
ν
−n) ,

∑
m∈N/n

∂Um(qν)

∂qfn
(28)

represents the marginal decrease of the sum-utility of the other
sessions due to a variation of session n’s sensing probability
associated with channel f . Here − τn2 ‖qn − q

ν
n‖2 is a prox-

imal regulation with constant τn, whose value needs to be
chosen properly to guarantee strong concavity of the resulting
penalized utility function, and at the same time to prevent
each session n from being too conservative in changing its
sensing probability profile. To discuss the convergence, we
first introduce Lemma 1.

Lemma 1: Given the sensing probability profiles of all other
users q−n, the utility function Un(qn, q−n) defined in (22)
is strongly concave with respect to qn.

Proof: Since Cn(q) is a linear function of qn given
q−n and Cn(q) > 0, Un(qn, q−n) in (22) is concave
over qn. Therefore all we need to prove is that the second
derivative ∇2

qn
Un(qn, q−n) is bounded for ∀q−n ∈ Φ−n ,

(Φm)m∈N/n with

Φm , {qm|constraints : (2), (3), (4)}. (29)

The second derivative of U(qn, q−n) with respect to qn can
be written as

∇2
qn
U(qn, q−n) =

1

Cn(qn, q−n)
∇2
qn
Cn(qn, q−n)

− 1

C2
n(qn, q−n)

∇qn
Cn(qn, q−n).

(30)

It can be verified that both ∇qn
Cn(qn, q−n) and

∇2
qn
Cn(qn, q−n) are bounded for closed Φn. Since we

3Note that problem (23) is non-convex. Therefore, it is computationally
infeasible in general to find the optimal solution. The proposed algorithm
is “good” in the sense that: (i) it is theoretically guaranteed to converge to
a non-local-minimum stationary point; (ii) in practice, it achieves close-to-
globally-optimal performance.
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let qfn > 0 for ∀n ∈ N , f ∈ F , 1
Cn(qn,q−n) and 1

C2
n(qn,q−n)

are also bounded. Hence, ∇2
qn
U(qn, q−n) is bounded.

Because Lemma 1 guarantees strong concavicity, we can set
τn = 0. The formal description of the algorithm is given in
Algorithm 1, where the penalized version of utility function
Un(qn, q−n), denoted by Ũn(qn, q−n), is defined as

Ũn(qn, q−n) , Un(qn, q−n) + Γn(qn, q
ν
−n, 0), (31)

with Γn(qn, q
ν
−n, 0) defined in (27). The convergence proper-

ties of Algorithm 1 are given in Theorem 1 below, where ζ is
a parameter to guarantee the convergence of the algorithm.

Algorithm 1: Pricing Jacobi Algorithm
Data : {ζν} > 0; Set ν = 0.
(S.1) : If qν satisfies a suitable termination criterion:
STOP;
(S.2) : For all n ∈ N , compute

q̂n(qν) , arg max
qn∈Φn

Ũn(qn, q−n) (32)

(S.3) : Set qν+1
n = qνn + ζν(q̂n(qν)− qνn).

(S.4) : ν ← ν + 1 and go to (S.1).

Theorem 1 (Convergence Condition): Given the social prob-
lem (23), suppose that {ζν} is chosen so that

ζν ∈ (0, 1], ζν → 0, and
∑
ν

ζν = +∞. (33)

Then, either Algorithm 1 converges in a finite number of
iterations to a stationary solution of (23), or every limit point
of the sequence {ζν} (at least one of such points exists) is a
stationary solution of (23). Moreover, no such point is a local
minimum of the social function.

Proof: Based on the Descent Lemma in [36], it can
be proven that the algorithm always converges to a feasible
solution point of the social problem in (23). Then, together
with Lemma 1, it can be further proven that each such solution
point is also stationary for the social problem. An example of
sequence ην satisfying conditions (33) in Theorem 1 is [35]:

ζν =
ζν−1 + α(ν)

1 + β(ν)
, ν = 1, . . . , (34)

where α(ν) = α and β(ν) = νβ with α, β ∈ (0, 1) and α ≤ β.

V. CENTRALIZED SOLUTION ALGORITHM

We now present a centralized solution algorithm to solve
the social problem (23) to provide a performance benchmark
for the distributed solution algorithm proposed in Section IV.
Objective. Denote U∗ as the global optimum of the social
problem, and ε ∈ (0, 1] as a predefined optimality precision.
Then the objective of the algorithm is to obtain an ε-optimal
solution q satisfying

U(q) ≥ εU∗. (35)

Here, the optimality precision ε can be set as close to 1 as we
wish at the price of computational complexity.

Denote UPglb as a global upper bound, and LRglb as a
global lower bound on the sum-utility U(q) in (23). Then it
must be

LRglb ≤ U∗ ≤ UPglb. (36)

Then, the algorithm searches for the ε-optimal solution by
iteratively updating UPglb and LRglb so that, the two bounds
get closer and closer to each other, until

LRglb ≥ ε ·UPglb. (37)

We implement the above iteration based on a combination of
the branch-and-bound framework and convex relaxations [37].
Algorithmic Framework. We solve a series of subproblems
of the original social problem (23), obtained by partitioning its
domain into a set of subdomains. Denote ΦN =

∏
n∈N Φn as

the joint domain of all the users in N with Φn defined in (29);
and Φ = {ΦiN , i = 0, 1, 2, . . . } as the set of subdomains, with
i denoting the subdomain index, ΦiN = ΦN for i = 0, and
ΦiN ⊂ ΦN for the others. For each subproblem ΦiN , denote
the local upper and lower bounds on sum-utility U(q) by
UP(ΦiN ) and LR(ΦiN ), respectively. Then, the global upper
bound UPglb and lower bound LRglb are updated as follows.

UPglb = max
i=0,1,...

{UP(ΦiN )} (38)

LRglb = max
i=0,1,...

{LR(ΦiN )}. (39)

The algorithm then checks how close the obtained global
bounds are to each other. If the termination criterion (37)
is satisfied, the algorithm terminates and sets the ε-optimal
solution as U(q) = LRglb, and sets q accordingly; otherwise,
the algorithm chooses one subdomain from Φ, partitions it into
two smaller subdomains, then calculates the local upper and
lower bounds for them each, and again updates UPglb and
LRglb. The above procedure is repeated until the gap between
UPglb and LRglb converges to 0, and hence [according to (36)]
converges to the global optimum U∗.
Convex Relaxation. In the above iterations, for a given ΦiN ,
the corresponding local upper bound UP(ΦiN ) needs to be
easy to compute. To this end, we rely on convex relaxation,
i.e., we relax the original nonlinear nonconvex problem into
a convex one that is easy to solve using standard convex
programming techniques. We call the solution obtained by
solving the relaxed optimization problem relaxed solution.
Since the relaxed solution is also a feasible solution, we
compute the sum throughput based on (22), and set the local
lower bound LR(ΦiN ) to the resulting solve.

To relax the objective function in (23) to be convex, we
only need to relax the individual utility function of each
user. Different approaches can be used (see [37] for details
of possible relaxation techniques). Here, we adopt a simple
but effective relaxation method based on the observations that
Un(q) is a monotonically decreasing function with respect to
qfm for any f ∈ F . For given ΦiN , denoting the range of qfm as
[qL
m,f q

U
m,f ], Un

(
qn, (q

L
m,f )f∈Fm∈N/n

)
provides an upper bound

on Un(qn, q−n). By deriving the first and second derivatives
of Un(qn, q−n) with respect to qn, it can be seen that Un(qn)
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is a concave function whose global optimum can be easily
computed, e.g., by using standard interior-point methods [38].
Variable Partition. We select the subdomain ΦiN with the
highest local upper bound from Φ for partition, i.e.,

i = arg max
i

UP(ΦiN ). (40)

The selected subproblem is then partitioned into two new
subproblems by partitioning one of its variables, i.e., {qfn, n ∈
N , f ∈ F}. We select the variable with the largest range and
partition it from the half, i.e., selecting qn∗,f∗ that satisfies

{n∗, f∗} = arg max
n∈N ,f∈F

(qU
n,f − qL

n,f ) (41)

and partition it as

qM
n∗,f∗ =

qU
n∗,f∗ + qL

n∗,f∗

2
, (42)

which results in two new subproblems with domains of
[qL
n∗,f∗ q

M
n∗,f∗ ] and [qM

n∗,f∗ q
U
n∗,f∗ ], respectively.

VI. PRACTICAL CONSIDERATIONS

Information Exchange. Player strategies (for both legitimate
users and jammer) are coupled. A user needs to have some
knowledge on strategies of other users to update its own.
qfm,∀m 6= n,∀f 6= 0 are not needed by n, because it only
affects ρfn. And ρfn can be inferred from previous channel
contention results. q0

m∀m 6= n cannot be inferred. Therefore,
each node needs to periodically broadcast its own q0, i.e., its
probability to serve as a relay, to the nodes within contention
range. Legitimate users can exchange information through a
control channel.

The strategy of a legitimate user is also affected by the
jammer’s strategy, which can be estimated over a period of ob-
servation. Note, the interference at d(n) is pjHjd(n) ·(hjd(n))

2,
with hjd(n))

2 being a random variable with known distribution.
As long as there are sufficient observations, pjHjd(N) can be
estimated. The exact value of pj is not necessary since Hjd(n)
is considered fixed in our scenario.

The standard jammer, only has to measure the interference
plus noise level at its own position. It is assumed that all
“necessary” information, such as the legitimate user strategies
and the channel gain to the receivers, is available at the optimal
jammer. Clearly, it is not feasible in practice. However, it must
be pointed out that we are not trying to design “practical” jam-
ming strategies in this paper; instead, we are trying to analyze
the performance of the proposed anti-jamming scheme. The
optimal jamming strategy provides an extreme scenario and
the performance with it provides a benchmark in evaluating
the anti-jamming scheme.
Cooperator Recruitment. A critical component of the pro-
posed scheme is cooperator recruitment. The process of co-
operator recruitment is performed after channel access com-
petition. To reserve the channel and select the transmission
scheme (i.e., rate and modulation), the transmitter and receiver
exchange messages as follows. The transmitter sends an RTS
to the receiver, and the receiver replies with a CTS message.
During the message exchange, the receiver can estimate the

channel coefficient from transmitter to receiver, and send it
back to the transmitter. Meanwhile, the neighbors that have
elected to serve as potential relays can also listen to the
message exchange and estimate the channel coefficient from
transmitter and receiver to themselves. After the channel has
been reserved, the transmitter sends out a relay recruitment
message to its neighbors. Potential relays reply with their
estimated channel coefficients. In this way, the transmitter
can calculate the capacity of the direct link as well as the
cooperative throughput with each relay candidate, and there-
fore decide whether to use a relay and which relay to use. If
there are multiple candidates, the transmitter will choose the
one with the highest cooperative gain. Compared to traditional
CSMA/CA, the only extra overhead is the message exchange
between transmitter and relay candidates.

It is worth noting that, the expected cooperative capacity
in (21) is obtained by summing up the contributions of every
potential relay, so an important prerequisite for this equation
to approximate well the real cooperative capacity is that the
probability that two or more relays with cooperative gain exist
simultaneously is negligible.

Fortunately, in the scenario we are focusing on, i.e., a
network with moderate or heavy traffic load and a powerful
jammer, it is reasonable to assume that most of the legitimate
users are affected by the jammer simultaneously, and thus
the probability that relays exist with positive cooperative gain
is not high in most cases (see Appendix A). Besides, even
if a relay is able to enhance another user’s link through
cooperation, it will only act as relay with a certain, typically
small, probability (only when it chooses not to sense any
channel). In most cases, then, the probability that multiple
potential relays exist for a user in the same timeslot is very
low, and the approximation in (21) is quite accurate.

For scenarios in which many cooperation opportunities
exist, the cooperative capacity in (21) becomes an upper
bound on the real value because of the overlap in cooperation
probabilities.
Computational Cost. A major component in the computa-
tional complexity of the proposed algorithm lies in the com-
putation of both expected cooperative capacity and probability
with cooperative gain, shown in (18) and (19), respectively.
The integrations seem impractical. However, as we will show
through rigorous analysis, only moderate computational cost
is incurred.

Before the formal analysis, several remarks on the integra-
tions are listed,

1) By using reasonable approximations, the integrations
can be dramatically simplified, so that the computational
cost is significantly reduced.

2) Since the legitimate users take mixed strategies, it re-
quires a jammer to observe a sufficiently long period for
the legitimate strategies before a strategy update (see de-
tails in following discussions). Thus, the computational
cost is diluted over time.

3) For any value of pj, both (18) and (19) only need to be
computed once. Therefore a legitimate user can maintain
a lookup table for possible pj values over a finite set.

We will elaborate these remarks in detail.
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Experiment 1 2 3 4 5 6 7 8 9 10
Results (ms) 387.212 391.213 380.824 380.795 383.794 411.635 380.777 380.758 380.745 392.714

TABLE I: CPU time consumed to compute a loop of 106 logarithms

First of all, the integrations in (18) and (19) can be approx-
imated with much simpler forms. In fact, the integrations are
computed to account for every possible combinations of the
channel gains for I(Ccp

nm,f (pj, C
dir
n,f (pj)) = 1. Recalling (15),

we can use the SINR values instead of channel gains as the
integrated variables. For example, (18) can be rewritten as

Ĉcop =

∫
γs2r

∫
γs2d+γr2d

B

2
log
(
1 + min (γs2r, γs2d + γr2d)

)
· I(Ccop, Cdir)P (γr2d)P (γs2d + γr2d) (43)

· dγr2dd(γs2d + γr2d),

with subscripts omitted. In this way, the integrations involve
only 2 integrals, and the computational complexity is signifi-
cantly reduced.

The distributions of the new integrated variables are not
well defined as the channel gains (which are assumed to
be Rayleigh distributed), but in practice, integrations are
often approximated with summation over a number of small
subintervals. In this case, the probability for each subinterval
can be computed and stored in advance. Suppose the number
of subintervals for each of the integrated variables is Nint, then
the time complexity for computing (18) and (19) is O(N2

int).
Second, in this paper we assume that the jammer tries to

minimize the expected sum rate of the jammed nodes. Recall
that the legitimate nodes follow mixed strategies, with a certain
probability of taking an action on each of the channels. At
the same time, the jammer, which is not aware of the exact
distributions,4 has to learn them based on observations. This
implies that, in order to obtain a good estimate, the jammer
must listen to the legitimate transmissions for a period long
enough for the accumulated observations to be statistically
significant. Because at least |N ||F| transmission periods are
required for each node to try each channel at least once, this
period is at least at the order of O(|N ||F|)5.

Third, for the same value of pj, the corresponding (18) and
(19) only need to be computed once. Therefore, a node can
maintain a lookup table for the possible values of pj over a
finite set. It updates the corresponding entry once a new pj

value is encountered, and refers to the table once an old pj is
used by the jammer.

Based on the above analysis, we design an on-demand look-
up table based integration computation algorithm. For every
updated jammer strategy that is not already in the look-up
table, the computation for the corresponding item is conducted.
The integrations are computed ∀m ∈ Vn,∀f ∈ F 6. Therefore,
the time complexity for one strategy update is O(|Vn||F|N2

int).
However, as already discussed, the strategy update period also
scales at an order (usually much) higher than O(|N ||F|).

4we assume the 2nd type of jammer has perfect knowledge on the legitimate
user strategy (only for worst-case study).

5It is usually much larger, but we will not delve into the analysis. We will
show that even the order of O(|N ||F|) is sufficient for our argument to hold.

6There are 2 integrations for each (m, f). However, since (18) and (19)
differ only on the integrated parts, they can be done within the same loop.

Therefore, the effective computational complexity is actually
at a scale smaller than O(N2

int), with a controllable Nint

affecting the precision of the integration.

Algorithm 2: On-demand Look-up Table Based Integra-
tion Computation Algorithm for Legitimate Users n
Data: The distances from s(n) to r(n) and the neighboring
nodes.
(S.1): Initialize look-up-table Tm,∀m ∈ Vm.
(S.2): If jammer strategy pj is updated:
(S.3): For m ∈ Vn, f ∈ F :
(S.4): If the item in Tm corresponding to pj is
already computed: read it from Tm;
(S.5): Else: compute (18) and (19) for m ∈ Vn
with pj and store it to Tm;

We conclude the above analysis with a case study. There are
10 legitimate users and 5 channels. The strategy update period
is set to 10|N ||F|, so it takes 5 × 102 transmission periods
to update the strategies. If Nint is set to 100, then there are
5 × 105 steps in all the loops, assuming that all nodes are
mutually connected. Therefore, in every transmission period,
1000 computations of the integrated variables in (18) and (19)
are needed.

Assuming the throughput is 10Mbits/s, a packet with 1000
Bytes takes around 800 µs to be transmitted. So the task is to
compute 1000 logarithm computations (because the bottleneck
to compute the variables inside the integrations is clearly the
logarithm computation) within 800 µs.

To show these computations are feasible, we conducted
experiments on a Raspberry Pi 2 Model B, with a quad-
core ARM Cortex-A7 CPU clocked at 900 MHz [39]. To be
specific, we run a C++ program with a loop composed of
106 steps. At each step, a logarithm function is computed. We
use the clock() function to calculate the CPU time used. The
experiment is conducted 10 times, and the results are shown
in Table. I. In average, it takes 348.872ms for a loop with 106

logarithm computations, or equivalently, 348.872 µs for 1000
steps, i.e., less than half of the transmission period.

VII. PERFORMANCE EVALUATION

System Setup. The topology is generated randomly. Specif-
ically, all nodes are located in a 500 m × 500 m area, with
the distance between the transmitter-receiver pairs generated
uniformly between 250m and 350m. The location of the jam-
mer is fixed to the position (250, 250). In most experiments,
we assume that there are 2 different channels. The Rayleigh
fading coefficients of the channels are set to different values
generated uniformly from [ 1

2 ,
2
3 ]. We set the path loss factor

to 4.
The power of legitimate users is set to 1 W, while the

average noise power is set to 1 × 10−10 W. The power of
the jammer is set to different values in different experiments,
but generally it is much higher than that of the users to
better highlight the anti-jamming performance. We use in the



1536-1276 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2016.2569083, IEEE
Transactions on Wireless Communications

10

50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

X: 150
Y: 250

X: 100
Y: 350

X: 100
Y: 450

X: 250
Y: 250

X: 100
Y: 100

s(1)

d(2)

s(2)

d(1) Jammer

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
11

11.5

12

12.5

13

13.5

14

14.5

Sensing Prob. of User 1

Sensing Prob. of User 2

Su
m

 U
til

ity

Cooperative (global optimum)
Noncooperative

(a) (b)

Fig. 4: (a) Toy topology. X, Y: x and y coordinates, respectively; (b) Convergence of the distributed algorithm (to the global optimum in
this example).

simulations the standard jammers, unless otherwise specified.
The bandwidth of each channel is set to 20 kHz.
Case Study. We first show a toy example to gain insights on
the convergence and optimality of the algorithm. We consider
a 2-user-1-channel scenario. We vary the sensing probability
of both users from 0 to 1 and calculate the expected utility
for every possible tuple. We set the Rayleigh fading factors to
0.5. The locations of the nodes are as shown in Fig. 4(a).

We observe from Fig. 4 that user 2 is able to cooperate with
user 1. We verify that the algorithm converges to (0.95, 0.71)
(the black line in the figure shows the convergence path). We
can also easily verify that the convergence point is the global
optimum. The non-cooperative optimum (each user senses the
channel with probability 1 since there is only 1 channel in this
case) is compared with our algorithm. Specifically, the total
utility of the non-cooperative algorithm is 14.18 , while the
total utility of the distributed algorithm is 14.53. The gain is
moderate because the traffic in this case is fairly light (2 users
competing for 1 channel).
Convergence Analysis. We now evaluate the convergence
speed of the proposed algorithm. We set the number of users to
10, and the number of channels to 2. The power of the jammer
is 10 W. The result is shown in Fig. 5(a). We only plot the
strategy updates of users 1 to 5 on channel 1 for readability. We
observe that the strategies converge quite quickly, i.e., within
20 iterations.

The average convergence speed of our algorithm is also
shown in Fig. 5(b). We vary the number of users from 2 to 10
in steps of 2, with the same settings for other parameters. For
a fixed number of users, we randomly generate 20 topologies
and calculate the average convergence speed. The algorithm
is considered to have converged if the element-wise absolute
difference of two consecutive iterations is no larger than 0.005.
We observe that the distributed algorithm converges within
about 30 iterations in all cases.
Utility Comparison. Now we compare the utility of our
distributed algorithm vs. the frequency hopping algorithm and
the centralized algorithm. In the frequency hopping algorithm,
users select the best instantaneously available channel. Since

we aim at maximizing the sum-log capacity, to make the
comparison fair, we consider a frequency hopping algorithm
designed to maximize the same objective function. The sce-
nario is the same as described above. We vary the number of
users between 2 and 18 in steps of 2, as shown in Fig. 6.

In all considered scenarios there are gains for our algorithm,
up to 19.6%. We observe that, since the utility represents
the logarithm of capacity, a gain of 19.6% is considerable.
Compared with the centralized algorithm, when the number
of users is small, our algorithm achieves utility very close to
the upper bound of the centralized algorithm. To be specific,
when the number of users is below 12, we achieve more
than 80% of the upper bound of the centralized optimal
value. In these cases, the lower bounds and the upper bounds
of the centralized algorithm converge to one point, so the
upper bound is actually the optimal point and our distributed
algorithm has near-optimal utility performance. When the
number of users is large, there are gaps between our algorithm
and the upper bound. However, in these cases, the branch-and-
bound-based algorithm fails to converge within the maximum
number of iterations we set.7 Therefore, the upper bound does
not necessarily represent the actual optimal value. So, for these
two cases, we are unable to make any conclusive statement
about the global optimality.

Besides the density of users, the jamming power is also an
important factor affecting the performance of the anti-jamming
algorithm. To analyze this, we fix the number of users to 6.
We vary the power of the jammer from 1 to 20 W. To better
illustrate the impact of the jamming power, we fix the topology
and the Rayleigh fading factors for each jamming power.

The results are shown in Fig. 7, where the power of the
jammer is normalized by the power of the legitimate nodes.
It can be observed that as the power of the jammer increases,
the utility of both algorithms decreases. Our algorithm always
outperforms the non-cooperative algorithm, with a gain up to
34.9%. An important observation is that the gain increases

7Although theoretically the algorithm will eventually converge, there is no
guarantee of convergence speed. In our experiment, the maximum number of
iterations is set to 30000.
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Fig. 5: (a) Example of convergence (b) Average number of iterations for convergence vs number of users.
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Fig. 6: Utility vs number of users.

when the power of the jammer increases. This implies that,
when the jamming attack is not very severe, i.e., at low
power, and there is enough room for the frequency hopping
scheme to counteract the effect of jamming, the advantage of
cooperation is not so evident. Therefore, cooperative diversity
is particularly beneficial under severe jamming attacks.
Performance Against Different Jamming Strategies. We
now show the performance of the proposed anti-jamming
scheme against different jamming strategies. To this end, we
run simulations in which both standard and optimal jammers
are considered for the same topology. We consider both utility
and sum rate (since it is the objective of the optimal jammer)
for different topologies and show the results in Fig. 8. For all
the simulated topologies, the number of nodes is set to 5 and
number of channels set to 2.

The superiority of the proposed cooperative anti-jamming
scheme in terms of utility is confirmed in Fig. 8(a), where
cooperative anti-jamming is shown to perform better than fre-
quency hopping with both the standard and optimal jammers.
This is quite intuitive, since the design goal of the proposed
scheme is utility maximization. A more interesting observation
is shown in Fig. 8(b) with respect to the achieved sum rate. It
can be observed that, with the optimal jammer, the proposed
cooperative anti-jamming scheme achieves similar sum rate to
the frequency hopping scheme. Recall that the objective of the
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Fig. 7: Utility vs jamming power.

optimal jammer is to minimize the sum rate of all the affected
links. This implies that cooperation between different users is
unable to increase the achievable sum rate if the jammer is
designed to minimize it. Note that this conclusion is valid in a
statistical sense, i.e., the sum rate is the same when averaged
over a considerable amount of randomly generated topologies.
For each individual topology, cooperative anti-jamming may
achieve higher or lower sum rates than frequency hopping. The
primary advantage of cooperation is that it allows different
users to trade achievable capacity among them. As for the
standard jammer, cooperative anti-jamming achieves higher
sum rate than frequency hopping.

Combining this with the previous observation on utility, we
can conclude that: (i) in the worst case (with the optimal
jammer), the cooperative anti-jamming scheme can achieve
better fairness, with similar sum rate; (ii) with standard
jammers, the cooperative anti-jamming scheme outperforms
frequency hopping on both sum rate and fairness. Considering
that, in reality, it is impossible for a jammer to know all
the information to operate in the optimal way defined in
(26), the benefits of the cooperative anti-jamming scheme are
significant.

Another interesting observation concerns physical layer
cooperation. In Fig. 9, the mean and maximum cooperation
probability with both jammers are shown. Clearly, there is no
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Fig. 9: (a) Mean cooperation probability vs jamming power; (b) Max cooperation probability vs jamming power.

obvious difference for different jamming models or jamming
power. This is consistent with the way in which physical
layer cooperation works. In fact, the opportunity for physical
layer cooperation is determined by the relative location of the
nodes involved and the corresponding channel gains. Neither
of these two factors has anything to do with jamming models
or power. Considering that Fig. 8 shows that the cooperative
anti-jamming scheme achieves different results with different
jamming models, it can be inferred that MAC layer coopera-
tion plays a major role in the overall scheme.

VIII. CONCLUSIONS

We proposed and designed a cooperative anti-jamming
scheme by introducing the notion of cooperative diversity into
anti-jamming. There are two levels of cooperations. At the
medium access control layer, a cooperative channel access
scheme is proposed where the channel access probabilities of
different users are optimally regulated so that users degraded
severely by jammers have an increased share of air time; at
the physical layer, users able to enhance the link capacity of
another user through cooperative transmission cooperate as
relays with a certain probability. We designed a pricing-based
distributed algorithm to jointly optimize these two levels of

cooperations. We proved that the algorithm always converges,
even if the centralized optimization problem cannot be proven
to be convex. Compared to non-cooperative algorithms, our
algorithm achieves considerable gains. By comparing it with
a newly-designed branch-and-bound based centralized algo-
rithm, we also showed that the proposed distributed algorithm
achieves close-to-global optimality with a moderate number of
users. The gain is shown to increase with increasing network
traffic and with jamming power. Our results also demonstrate
significant cooperative gains when a network is experiencing
very low throughput. For the performance against different
jamming strategies, we show that, when the jammer is sophis-
ticated enough to be able to bound the total achievable rate of
all sessions, the proposed scheme achieves better fairness than
frequency hopping while maintaining the same performance
in terms of sum rate; if the jammer is less sophisticated,
which is the case in practice, the proposed scheme outperforms
frequency hopping in both metrics.

APPENDIX

A. Verification of The Assumption on Cooperation Probability

Here, we verify the assumption that cooperation opportuni-
ties are sparse. We consider a network with moderate traffic,
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Fig. 10: Probability of positive cooperative gains.

i.e., with 10 sessions and 4 channels. All other settings are
the same as in Section VII. The experiment is repeated with
multiple randomly generated topologies. Figure 10 shows the
average probability that a user can be assisted by a cooperative
relay with positive gain, i.e., the probability that a cooperation
opportunity exists. For readability, only selected channels are
shown. We observe that the assumption that opportunities for
cooperation are sparse is verified. In fact, for most users on
most channels, the average probability that another user can
provide cooperative gain is fairly low (below 0.1). Moreover,
since the probability of cooperative transmission is the product
of the probability shown in the figure and the probability
that the cooperator does not sense any channel, the resulting
cooperation probability is even lower.

B. Reverse Waterfilling

The optimization problem (26) can be viewed as a reverse
water-filling problem. Rewrite the objective function as

f(pj) =
∑
n

∑
f

wfn log

(
1 +

Sfn

pfjH
f
n +Df

n

)
(44)

where Df
n represents the sum of noise and non-jammer in-

terference at node n and Hf
n is the channel coefficients from

jammer to node n, we have the KKT conditions:

pfj ≥ 0,∀f ∈ F , (45)∑
f∈F

pfj = pmax
j , (46)

λf ≥ 0,∀f ∈ F , (47)

λfp
f
j = 0,∀f ∈ F , (48)

−gf (pfj )− λf + ν = 0,∀f ∈ F , (49)

where gf (pfj ) =
∑
n∈N w

f
n

Sf
nH

f
n

(Df
n+pfjH

f
n)(Sf

n+Df
n+pfjH

f
n)

is a de-

creasing function of pfj .
From (49), we have λf = νf − gf (pfj ). Substituting λn in

(47) and (48), we have

pfj ≥ 0,∀f ∈ F , (50)∑
f∈F

pfj = pmax
j , (51)

ν − gf (pfj ) ≥ 0,∀f ∈ F , (52)

pfj

(
ν − gf (pfj )

)
= 0,∀f ∈ F . (53)

If ν > gf (0), because of the decreasing property of gf (pfj ),
we have ν − gf (pfj ) > 0,∀pfj ≥ 0. According to (53), this
implies pfj = 0.

If ν ≤ gf (0), because (52) and the decreasing property of
gf (pfj ), it must be satisfied that pfj ≥ g−1

f (ν). Considering
(53), the equality must hold, i.e., pfj = g−1

f (ν).
To sum up, we have

pfj = g−1
f (min {ν, gf (0)}) . (54)

(54) suggests that an algorithm similar to water-filling algo-
rithm can be proposed to solve the problem.
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