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Abstract—Physical-layer cooperation allows leveraging the
spatial diversity of wireless channels without requiring multiple
antennas on a single device. However, most research in this field
focuses on optimizing physical-layer metrics, with little consid-
eration for network-wide and application-specific performance
measures. This paper studies cross-layer design techniques for
video streaming over cooperative networks. The problem of joint
rate control, relay selection, and power allocation is formulated
as a mixed-integer nonlinear problem, with the objective of
maximizing the sum peak signal-to-noise ratio (PSNR) of a set of
concurrent video sessions. A global optimization algorithm based
on the branch and bound framework and on convex relaxation of
nonconvex constraints is then proposed to solve the problem. The
proposed algorithm can provide a theoretical upper bound on the
achievable video quality and is shown to provably converge to the
optimal solution. In addition, it is shown that cooperative relaying
allows nodes to save energy without leading to a perceivable
decrease in video quality. Based on this observation, an uncoor-
dinated, distributed, and localized low-complexity algorithm is
designed, for which we derive conditions for convergence to a Nash
equlibrium (NE) of relay selection. The distributed algorithm is
also shown to achieve performance comparable in practice to the
optimal solution.

Index Terms—Cooperative communication, rate control, relay
selection, video streaming.

I. INTRODUCTION

T HE NOTION of spatial diversity refers to the idea of
using multiple transceiver antennas to effectively cope

with fading in wireless channels. The underlying principle is
that different propagation channels can be established with mul-
tiple transceiver pairs between a transmitting and a receiving
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node. By sending signals that carry the same information
through different channels, multiple faded copies of the same
information can be obtained at the receiving node. The com-
munication link reliability can then be considerably improved
since, roughly speaking, the probability that all channels go
down at the same time is low, resulting in higher data rate or
lower power consumption.
Spatial diversity is traditionally exploited by using mul-

tiple transceiver antennas (i.e., multiple-input–multiple-output
(MIMO) [2]). However, equipping a mobile device with mul-
tiple antennas may not be practical since the minimum required
separation between the antennas is dictated by the operating
radio wavelength. The concept of cooperative communica-
tions has been therefore proposed to achieve spatial diversity
without requiring multiple transceiver antennas on the same
node [3], [4]. In cooperative communications, in their virtual
multiple-input–single-output (VMISO) variant, each node is
equipped with a single antenna and relies on the antennas of
neighboring devices to achieve spatial diversity. There is a
vast and growing literature on information and communication
theoretic results in cooperative communications. The reader is
referred to [5], [6], and references therein for excellent surveys
of the main results in this area. However, the common objective
of most research in this field is to optimize physical-layer
performance measures (i.e., bit error rate and link outage
probability) from a broad system perspective, without con-
sidering in much detail how cooperation interacts with higher
layers of the protocol stack to improve network performance
measures. For example, [7] and [8] investigate the achievable
rates and diversity gains of cooperative schemes focusing on
a single source and destination pair. Some initial promising
work on networking aspects of cooperative communications in-
cludes studies on medium access control protocols to leverage
cooperation [4], [9]–[12], delay-centric cooperation [13],
cooperative routing [14]–[16], optimal network-wide relay se-
lection [17]–[19], and optimal stochastic control [20]. In these
works, the main emphasis is not on the impact of cooperation
on end-to-end video delivery. Moreover, different from [8],
which derived the capacity for interference-aware cooperative
relay networks, and different from most of the above works that
consider interference-free network, i.e., orthogonal channels
have been established a priori (e.g., [17] and [18]), we focus
on interference-limited cooperative networks.
This paper studies cross-layer design techniques for video

streaming over interference-limited cooperative wireless net-
works with distributed control. Specifically, we study strategies
for joint control of the video encoding rate at the application
layer, relay selection, and power control at the link and physical
layers tomaximize the sum peak signal-to-noise ratio (PSNR) of
multiple concurrent video sessions. Cooperative video delivery
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has attracted significant attention [21]–[24]. For video delivery,
video quality is measured in terms of PSNR, which is a func-
tion of delay and throughput. Higher data rates result in higher
video encoding rates and hence higher video quality, but at the
same time cause higher delays. Higher delays result in higher
packet losses because of violations of delay constraints, and
consequently cause lower video quality. Therefore, delay and
throughput need to be optimized jointly for high-quality video
delivery.
The main contributions of this paper can be outlined as

follows.
1) We first formulate the problem of joint rate control, relay
selection, and power control for video streaming in coop-
erative networks. The problem turns out to be a nonlinear
(nonconvex) and combinatorial optimization problem [i.e.,
a mixed-integer nonlinear problem (MINLP)].

2) Since MINLPs are in general NP-hard, we develop a so-
lution algorithm with provable convergence based on the
branch and bound (B&B) [25] framework and on relax-
ation of nonconvex problem constraints. The proposed al-
gorithm searches for an -optimal solution iteratively. At
each iteration, we relax the original nonconvex problem to
a series of convex problems. We show that the proposed
algorithm provides guaranteed convergence to the optimal
solution.

3) In addition, through well-crafted numerical simulations,
we show that cooperative relaying allows nodes to transmit
at lower power without leading to a perceivable decrease
in video quality. Intuitively, this happens because the ef-
fect of power control in interference-limited wireless net-
works is mitigated by cooperative relaying. Based on this
observation, we design an uncoordinated, distributed, and
localized low-complexity algorithm.

4) We study and demonstrate convergence of the distributed
algorithm to a Nash equilibrium (NE) of relay selection
and rate control. We compare the performance of the dis-
tributed algorithm to the optimal algorithm and show its
excellent video quality performance in practice.

The rest of the paper is organized as follows. In Section II,
we discuss related work in detail. In Section III, we briefly
describe the communication system model and introduce the
problem formulation. The centralized algorithm is described in
detail in Section IV, while our distributed algorithm is then dis-
cussed in Section V. Examples and numerical results are dis-
cussed in Section VI. Finally, we draw the main conclusions in
Section VII.

II. RELATED WORK

Resource allocation has long been an important research
topic [26], [27], and there exists a solid body of works ad-
dressing resource allocation in cooperative networks at different
layers of the protocol stack [4], [9]–[11], [13]–[20], [28], [29].
For example, Yang et al. [29] consider a system model where a
relay node can be shared by multiple source–destination pairs.
They propose an optimal algorithm that runs in polynomial time
to solve the relay assignment problem to maximize the total
capacity of all source–destination pairs. Sharma and Hou [14]
study a joint problem of relay node assignment and multihop
flow routing, with the objective to maximize the minimum
rate among a set of concurrent sessions. Additionally, several

important papers have considered cross-layer design in coop-
erative networks (see [4], [16], [18], and [20]). For example,
the authors of [4] proposed a cross-layer framework to exploit
virtual MISO links in mobile ad hoc networks. Yeh et al. [20]
formulate and solve an optimal stochastic control problem
with cooperative relays. Cooperative communication has also
been studied in the context of dynamic spectrum access or
cognitive radio. For example, Zhang et al. [30] demonstrate
that the network throughput in cooperative networks can be
increased by jointly exploiting spatial and spectrum diversity.
In this paper, we further consider the multimedia quality of
information (QoI) at the application (APP) layer and jointly
optimize the video rate control, relay node selection, and power
control.
There are several excellent contributions in cooperative

video delivery. For example, Mastronarde et al. [21] proposed
a solution based on cooperative coding, which warrants a
uniformly better experience to the video users and needs
relatively modest changes to the multiple access cross-layer
optimization framework proposed by Fu and van der Schaar
in [31]. Alay et al. [22] studied layered video multicast in
a two-hop cooperative infrastructure-based networks, while
Khalek and Dawy [23] derived the optimal resource allocation
solution for energy efficient scalable video distribution over
cooperative multihop networks. Xiao et al. [24] proposed
a joint source-channel coding (JSCC) framework for video
transmission. In this paper, we focus on optimizing the sum
video quality of different video sessions by designing both
centralized and distributed solution algorithms.
We rely on advanced optimization theoretic notions to de-

sign globally optimal and distributed algorithms, respectively.
Applying optimization theory to solve complex resource allo-
cation problems in cooperative networking has also received
previous attention. Hou et al. [18] designed an optimal algo-
rithm for joint flow routing and relay selection based on the
branch-and-cut framework. Rossi et al. [19] proposed a focused
real-time dynamic programming (FRTDP) approach to study
the stochastic shortest-path problem in cooperative networks.
Here, we design an optimal solution algorithm based on a com-
bination of branch-and-bound framework and convex relaxation
techniques. Different from [18], we study optimization of coop-
erative networks based on the signal-to-interference-plus-noise
ratio (SINR) interference model, and different from [19], we
focus on multiple concurrent flows.

III. PROBLEM FORMULATION

We consider a decentralized single-hop video streaming net-
work, where each source node compresses a video sequence at
a given rate. The scenario considered is, for example, represen-
tative of a multimedia sensor network [32]. The video content
is enqueued at the source node buffer and then transmitted to
the destination through a direct or cooperative link. If the video
packet is not received before a predefined playout deadline, the
packet is dropped. Video packets can also be dropped because
of transmission errors caused by interference or channel fading.
Cooperative communication techniques may be employed on
each link to potentially increase the channel capacity, e.g., co-
operative relaying, distributed space time coding, coded coop-
eration, and virtual spatial multiplexing. In this paper, we focus
on decode-and-forward cooperative relaying.
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There are multiple potential relay nodes, and each video ses-
sion can select one of them (or none) as a relay node. The trans-
mission time is divided into consecutive time slots, and if a
session uses cooperative relay, a transmission is completed in
two time slots. In the first time slot, the source node broad-
casts its information to both destination and relay nodes, and
in the second, the relay node forwards the received information
to the destination. There are two common cooperation strate-
gies: amplify-and-forward (AF) and decode-and-forward (DF)
[3]. In AF, the relay simply amplifies the received signal and
forwards it to the destination. With DF, the relay first decodes
the received signal, then forwards it if it can be successfully de-
coded. In this paper, we concentrate on the DF strategy. How-
ever, the proposed -optimal algorithm can be extended to AF as
discussed in Section IV. Distributed algorithms can be designed
accordingly. The objective of the problem is to maximize the
sum of the video qualities (expressed as the sum-PSNR) of mul-
tiple concurrent video sessions by jointly regulating the video
encoding rate for each session, adjusting the transmission power
for each source and relay node, and selecting the optimal relay
node for each session. We start by introducing the link capacity
model for direct transmission and for cooperative relaying in
Section III-A, and the video distortion model in Section III-B.
Then, in Section III-C, we formulate the MINLP problem.

A. Link Capacity

Denote as the set of video sessions and as the set of
potential relay nodes. Define the vector of relay assignments as

, where iff relay node is
selected as relay for video session , and otherwise.
Assume that each video session can select at most one relay in
each cooperative transmission and each relay can at most be
selected by one video session. We have

(1)

(2)

(3)

Denote the maximum transmission power of each source and
relay node as and , respectively. Then, it must hold

(4)

(5)

(6)

(7)

where and denote the transmission power of source and
relay , respectively. Moreover, if a relay is not selected by any
session, its transmission power should be zero so it does not
cause interference to other nodes, otherwise it takes a value from

. Therefore, we have

(8)

In the proposed -optimal solution algorithm in Section IV, the
constraint (8) will be used to search for a feasible solution, while

it can simply be omitted in the convex relaxation. Note that
the omission does not affect optimality of the proposed algo-
rithm since the constraint can be explicitly satisfied by setting
the transmission power of a relay node not selected by any ses-
sion to zero in the two-stage convex relaxation.
Now, assume that multiple concurrent transmissions are

allowed on the same portion of the spectrum, e.g., through
code division multiple access (CDMA) or time-hopping im-
pulse-radio ultrawideband (TH-IR-UWB). Denote the total
available bandwidth as and the spreading gain as . We
only consider long-term channel state information (CSI) and
assume that the additive white Gaussian noise (AWGN) power
perceived at each relay and destination node is equal to .
The link capacity for session can be expressed as

(9)

where and represent the direct link capacity and
cooperative link capacity for session , respectively.
1) Direct Link Capacity : In the case where session

uses only a direct link, i.e., we have

(10)

where represents the average channel gain from the source
node of session to the corresponding destination node, and
is the average interference perceived at the destination node,
which can in turn be expressed as

(11)

In (11), denotes the interference at the destination of ses-

sion caused by the source of session , and denotes
the interference at the destination of session caused by relay
node .
Interference on each link depends on power allocation and

relay selection at each individual node, but also on the network
scheduling strategy (i.e., the relative synchronization of trans-
mission start times between different network communication
links). To keep the model treatable, the interference at each re-
ceiver can be approximated in different ways, e.g., worst-case
approximation assuming that all source and active relay nodes
cause interference in both time slots, or average-based approx-
imation, which considers the average effect of each interferer
over the two time slots. Our investigation reveals that the av-
erage-based approximation approximates reality very well—in-
depth validation of the average-based interference model is dis-
cussed in detail in Appendix A. The interference caused by the
source of session to the destination of session can be ex-
pressed as

(12)
where represents transmission power of the source node of
session .
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The other component in (11), , represents the interfer-
ence generated by relay node at the destination of session
when it is used by another video session, i.e.,

(13)

where is the average channel gain from relay to the des-
tination of session .
2) Cooperative Link Capacity : Assume that the DF

cooperative relaying mode is employed at each relay node. If
session uses the cooperative link, i.e., , we
have

(14)

where is the capacity from source to the selected relay
node, and is the capacity achieved through maximal ratio
combining of the received signals at the destination [3].
The link capacity from source node to relay node is modeled

as

(15)

where is the average channel gain from the destination of
session to relay , is the interference perceived at relay
assuming that it is selected by session , and consists of two
components as

(16)

where represents the component of caused by all

other source nodes, and represents the component of
caused by relay nodes. The two components can be expressed
as

(17)

(18)

where represents the average channel gain from relay to
relay .
Finally, the link capacity achieved through maximal ratio

combining of the received signals at the destination in (14) can
be expressed as

(19)

where is defined in (11).

B. Video Distortion Model

The video quality is measured in terms of PSNR, which is
a monotonically decreasing function of the mean-square error
(MSE) [33]

(20)

In (20), represents the PSNR of video session
is the corresponding video distortion, and is a constant
parameter representing the maximum of possible distortion.
Video distortion is caused by the interplay of lossy video

compression, denoted as , and distortion caused by video
packet loss, denoted as

(21)

is a function of the video encoding rate , modeled
as [33]

(22)

where , and are video-specific parameters.
Packet loss is caused by transmission errors and violations

of the playout deadline caused by queuing delay. We denote
the packet error rate for video session as . In this paper,
we consider constant for each session and assume that
each session varies its physical-layer transmission scheme adap-
tively (e.g., modulation, coding) such that the transmission error
probability is independent of the specific transmission strategy.
For the sake of simplicity, we employ a simple model
as in [34]—our model can be easily extended to account for
more sophisticated delay models, e.g., a Chernoff-bound-based
model [35]. The average queuing delay of video session
can then be expressed as [36]

(23)

where and are the average packet length and video en-
coding rate, respectively, and represents the link capacity
available to session as defined in (9). The probability that the
queuing delay of a packet video session exceeds the playout
deadline , measured in seconds, can be written as

(24)

The distortion caused by packet loss in (21) can then be
formulated as

(25)

where is a parameter representing the sensitivity of a video
sequence to packet loss, which can be measured offline or esti-
mated in real time.

C. Sum-PSNR Maximization Problem

We can now formulate the problem of maximizing the sum-
PSNR ofmultiple video sessions by jointly controlling the video
encoding rate, power allocation, and relay selection, subject to
a set of constraints as follows.
• Minimum rate: Each video session requires a minimum
encoding rate for video session , i.e.,

(26)
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• Link capacity: The video encoding rate for each video ses-
sion cannot exceed the available link capacity

(27)

• Queuing delay: The average queuing delay for each video
session cannot exceed the playout deadline,1 i.e.,

(28)

By substituting (23) into (28), we have

(29)

Therefore, the link capacity constraint in (27) is implied by
the queuing delay constraint.

• Maximum transmission power: The transmission power of
each source and relay node is limited by the maximum
transmission power as in (6) and (7).

• Relay selection: Relay assignment has to satisfy con-
straints expressed as in (1)–(3).

Define ,
and as the vectors of power alloca-
tion strategy, video encoding rate, and relay selection strategy,
respectively. Then, the problem can be formulated as

Given

(30)

Find (31)

Maximize (32)

Subject to – – (33)

It is worth pointing out that, although the problem formulation in
this section focuses on video streaming only, it can be extended
to account for heterogeneous traffic sources. Additionally, the
formulated problem in (30)–(33) can be easily extended to in-
corporate fairness among users, e.g., by maximizing the sum of
weighted PSNRs or the sum of log(PSNRs) without changing
concavity of the objective function. Other forms of fairness e.g.,
max-min, will be considered in our future research.

IV. OPTIMAL SOLUTION ALGORITHM

The problem formulated in Section III-C is a nonlinear, non-
convex combinatorial problem. In general, MINLP problems
are NP-HARD, i.e., no existing algorithm can solve an arbitrary
MINLP in polynomial time. We propose a solution algorithm
based on the branch-and-bound framework and on convex re-
laxations. The algorithm is designed to solve the problem at
hand with very low complexity in practice compared to an ex-
haustive search. This is the first algorithm that addresses optimal
video rate control, relay selection, and power control in interfer-
ence-limited wireless networks. In this section, we present de-
tails of the proposed algorithms, B&B framework, convex-re-
laxation, local search, and variable partition.

1According to (23) and (28), the worst-case value of in (24) can be as
large as , and the resulting individual video quality might become unaccept-
able. To enforce constraints on the quality of each individual user, one may add
a constraint for each session imposing that the packet loss rate be lower than a
given threshold. In this case, the resulting optimization problem might be infea-
sible, i.e., there may be instances in which the worst-case performance cannot
be guaranteed for all users at the same time.

A. Overview of the Proposed Algorithm

We develop a nonheuristic method for global optimization
of the problem introduced in Section III. The proposed algo-
rithm searches for a globally optimal solution with predefined
precision of optimality [25]. If we denote the globally optimal
sum-PSNR objective function as as the opti-
mality precision, then the algorithm searches for an -optimal
solution , which satisfies , with being arbitrarily
close to 1.2

Denote as the original search space, in-
cluding all possible combinations of video rate control, power
allocation, and relay selection. The proposed algorithm main-
tains a set of subdomains ,
where represents the iteration step of the algorithm. For any
, consider and as the upper and lower bounds

on sum-PSNR over . We refer to and as the
local upper bound and local lower bound, respectively.
The B&B framework requires that, for given , the

and should be easy to calculate. To determine ,
we rely on relaxation, i.e., we relax the original nonconvex com-
binatorial problem into two convex problems assuming that:
1) the network is interference-free; and 2) relay assignment is
fixed. Because of these two assumptions, the solution of the re-
laxed convex problem may not be feasible, e.g., the video en-
coding rate cannot be supported by the underlying network. For

, we locally search for a feasible solution starting from
the relaxed solution and set the corresponding sum-PSNR as
the local lower bound. The convex-relaxation method and local
search strategy will be described in detail in Sections IV-B and
IV-C, respectively.
The proposed algorithm searches for the -optimal solution

iteratively. At each iteration, the algorithm maintains a global
upper bound and a global lower bound on the sum-
PSNR such that

(34)

At the beginning, i.e., , the set of subdomains is initial-
ized to , i.e., , and and are initial-
ized to be and , respectively. The algorithm
partitions into two subdomains. For example, by assuming
that relay 1 is assigned to session 2, can be divided into

and . Details
of the partition strategy will be discussed in Section IV-D. For

, the algorithm calculates and , re-
spectively. If , this indicates that the globally
optimal solution is not located in . Hence, is removed
from . Then, the algorithm updates the global upper and lower
bounds as follows:

(35)

(36)

We use to drive the branch and bound technique and use
to check how close the obtained solution is to and

2The proposed algorithm itself is optimal in the sense that the optimal algo-
rithm can be obtained by setting arbitrarily close to 1. However, this may result
in increased time and space complexity of the algorithm. In practice, is usu-
ally set to a value smaller than 1, and we call the resulting solution -optimal
solution. With the above understanding, in this paper we use optimal for gen-
eral description of the algorithm, while we use -optimal to refer to a specific
solution.
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decide when to terminate the algorithm. If ,
the algorithm terminates and sets the optimal sum-PSNR to

. Otherwise, the algorithm chooses one subdomain
from and further partitions it into two subdomains, calculates

and , and updates the and as in (35)
and (36). In our algorithm, we select the with the highest
local upper bound from , i.e.,

(37)

As the domain-partition progresses, the algorithm converges
to the optimal sum-PSNR . This can be guaranteed by the fol-
lowing two properties of our B&B method.3

1) As , the measure of goes to 0, and the
transmission strategy in becomes fixed. For example,
as the partition progresses, more relay selection variables

become fixed to 0 or 1, and the allowed transmission
power for and will be limited to a domain of smaller
measure. As , each contains only fixed
relay selection, power allocation, and video encoding rate.

2) As the measure of goes to 0, the gap between
and also approaches 0. In Section IV-B,

the original problem is relaxed to a standard convex prob-
lems, whose upper bound decreases monotoni-
cally with decreasing measure of . As , the

converges to with a fixed transmission
strategy.

Based on the update criterion of and in (35) and
(36), the gap between and converges to 0. Fur-
thermore, from (34), and converge to the globally
maximal sum-PSNR .

B. Convex Relaxation

In this section, we derive a relaxation of the original problem
through convex relaxations of nonconvex constraints. Through
the proposed relaxation, at each iteration of the algorithm, the
problem can be solved in polynomial time on a restricted do-
main using standard convex optimization techniques to provide
an upper bound on the sum-PSNR.
First, we need to state the following proposition.
Proposition 1: The objective function in (32) is a concave

function of video encoding rate and link capacity .
Proof: We need to show that the individual PSNR

is a concave function of the video encoding rate
and link capacity . Then, the sum of concave func-
tions is a concave function. For the sake of concise-
ness, denote the total distortion as and set

. Since ,
we have . Hence, we
only need to show that is convex. This can be proven
based on the property that a function is convex if and only if it
is convex when restricted to any line in its domain [37].
Based on: 1) Proposition 1; 2) the fact that PSNR is nonde-

creasing with respect to ; and 3) the composition property that
preserves convexity [37, Ch. 3.2.4, p. 83], to relax the original
problem to a convex problem, we only need to relax such
that it is a concave function of and , and hence the
queuing delay constraint in (29) becomes convex.
From the link capacity model in Section III-A, we can see that

the expression of the overall link capacity, defined in (9)–(19),

3A formal proof of the convergence of branch and bound can be found in [25].

is rather convoluted. To simplify the convex relaxation, we de-
signed a two-stage method that results in two mutually exclu-
sive relaxations depending on the associated domain partition.
In each stage, the original problem is relaxed to be a convex op-
timization problem, and a solution (which might be infeasible
and is referred to as relaxed solution) can be obtained by solving
the problem. This relaxed solution will then be used as a starting
point to search for a feasible solution. The key idea of the relax-
ation method can be intuitively illustrated as follows.4

1) Stage 1: For a given subdomain , if the relay selection
strategy in is not fixed for all and , we only
relax , but assume that the network is interference-free.
Denote the relaxation in this stage as RLX_1.

2) Stage 2: Given a subdomain , if the relay selection
strategy in is fixed for all and , we relax and
. Denote the relaxation in this stage as RLX_2.

Next, RLX_1 is taken as an example to show how to relax the
original problem formulated in Section III to be convex, while
relaxation for RLX_2 can be performed similarly.
RLX_1: Based on the assumption of interference-free net-

work, each node can work at its maximum transmission power,
and the link capacity is a function of only. Then, the link
capacity from source to destination defined in (10), from
source to relay defined in (15), and the combined capacity

defined in (19), can be relaxed (by ignoring the effect of
interference) as

(38)

(39)

(40)

respectively, where and
.

The cooperative link capacity , defined in (14), can be
expressed with two constraints as

(41)

and

(42)

Notice that the is nondecreasing with and .
We also need to relax the overall link capacity defined in

(9). We first relax the relay selection strategy by allowing each
relay to be assigned to multiple video sessions, and vice versa,
allowing each video session to use multiple relays. Then, the
constraint in (1) can be rewritten as

(43)

where and are the lower and upper bounds on ,
respectively. At the first iteration, they are set to

and (44)

Denote as an upper and lower bound for
, respectively, and further denote the nonlinear item in

(9), with . Then, according to the reformulation

4Tighter and uniform relaxation for both cases can be obtained (at the ex-
pense of higher complexity) to solve the resulting relaxed problem. The reader
is referred to [38] for additional details of relaxation techniques.
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and linearization technique (RLT) [38], can be relaxed
using four linear constraints as

(45)

(46)

(47)

(48)

The lower bound for can be simply set to be
. An upper bound can be obtained as

(49)

where and
,

with and

.

So far, we have completed the convex relaxation of stage
RLX_1. Consequently, the overall link capacity in (9) can
be expressed as

(50)

and we have following proposition.
Proposition 2: The original problem formulated in (30)–(33)

is relaxed to a convex optimization problem in standard form.
Proof: Through relaxation, we have the following.
i) in (50) is linear function of , and .
ii) in (38) is a constant.
iii) defined in (45)–(48) is constrained by and

through four linear functions.
iv) in (39) and in (40) are concave functions of

.
v) The two linear constraints, (41) and (42), result in a
convex domain.

Together with Proposition 1, the relaxed problem is a convex
optimization problem in standard form.

C. Local Search Method

At each iteration of our algorithm, we solve the RLX_1 or
RLX_2 using interior-point algorithms [39]. However, the op-
timal relaxed solution may not be feasible. For example, in the
case of RLX_1, the optimal is likely to take an intermediate
value between 0 and 1. As introduced in Section IV-B, we refer
to the -optimal solution found in this way as “relaxed solu-
tion,” and we locally search for a feasible solution starting from
the relaxed solution. The local search is based on the fact that
the power allocation in the relaxed solution is always feasible.
A feasible value of can be set to its closest integer, i.e.,

(51)
Note that because of the constraints in (2) and (3), there exists
at most one over all , and one over all , such
that . Then, a feasible power allocation can
be obtained by setting to zero for all relay nodes that are not
selected by any sessions, i.e., for each with

.
Given a feasible power allocation and relay selection, a fea-

sible , and further can be calculated using (10),
(19), and (9), respectively.

Given , the optimal video encoding rate for session
can be calculated by solving the following convex problem:

Find

Maximize

Subject to (52)

If the above problem is feasible, the optimal sum-PSNR is set
as the local lower bound . Otherwise, it indicates that,
for the present power allocation and relay strategy, there does
not exist a video encoding rate satisfying the con-
straints of minimum video encoding rate and maximum queuing
delay for all video sessions. In this case, the local lower bound
is set to 0.

D. Domain Partition

Because of the relaxation in RLX_1 and RLX_2, in general
there will be a performance gap between the local upper and
lower bounds over each subdomain. In our algorithm, this gap is
iteratively decreased by iteratively partitioning each subdomain
into two smaller subdomains.
We first need to select a subdomain from to be partitioned.

Considering that the global upper bound is equal to the highest
local lower bound, we select the with the highest local upper
bound to be partitioned, such that the global upper bound be-
comes smaller as partition progresses. To partition into two
subdomains, we need to select a variable among , and
, and then partition it from amiddle value of its domain. Here,

only variables that affect the sum-PSNR directly are partitioned,
i.e., no intermediate variables are partitioned.
The variable partition is carried out corresponding to the two

stages of relaxation. At the beginning of the algorithm, there is
only one domain in , and the relay selection is not fixed.
In this case, the RLX_1 is employed to calculate the local upper
bound. Denote as the relaxed solution to . Then,
is selected for partition over all and such that

(53)

where represent the original relaxed solution that have not
been fixed through the rounding operation in (51). Since a higher
value of indicates that relay is more likely to be assigned
to video session , the above criterion fixes the relay assignment
decision with the highest value of . Recalling the relay se-
lection constraints (1)–(3), i.e., each session can select at most
one relay and each relay can be selected by one session, the se-
lected can be partitioned by setting

(54)

(55)

(56)

for the first new subdomain and

(57)

for the second new subdomain. The local upper and lower bound
on sum-PSNR over two new subdomains are calculated by using
RLX_1 and then local search, respectively. Finally, the two new
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subdomains are added into or pruned according to the prune
strategy described in Section IV-A.
After a certain number of variable partitions, in the selected
the relay selection strategy could be fixed. In this case, is

partitioned by partitioning or , and RLX_2 is employed to
calculate the local upper bound over the two new subdomains.
The partition can be carried out as follows. Denote

(58)

(59)

If is partitioned by setting

(60)

for the first new subdomain, and

(61)

for the second new subdomain. Otherwise, the is partitioned
similarly. Here, and mean the upper and
lower bounds for in the new subdomains, respectively.
It is worth pointing out that variables can also be selected and

partitioned in alternative ways. For example, one could select
the that is the least likely to be assigned, or partition
from its relaxed solution. Moreover, we can also first partition
or and then partition . However, different variable

partition methods do not affect the optimality of our algorithm,
while they may affect the convergence speed. Alternative par-
tition methods will be investigated in our future work to seek
for faster convergence. We also notice that as the partition pro-
gresses, the relay selection strategy becomes fixed in each sub-
domain. Moreover, the gap between the upper and lower bounds
for each and converges to 0. That is, the proposed algo-
rithm has guaranteed convergence.
So far, we have designed an optimal algorithm for de-

code and forward cooperation based on a combination of
the branch and bound framework and convex relaxation
techniques. As stated in Section III, this can be (nontriv-
ially) extended to the amplify and forward case, where
the link capacity, denoted as , can be expressed as

with
, and representing the SINR corre-

sponding to the links from source to destination, source to relay,
and relay to destination, respectively. Since the expression of

is rather complicated and nonconcave in general, it re-
quires the design of an ad hoc convex relaxation method. This
can be done by applying our proposed two-stage relaxation
method again to relax the corresponding objective function
and constraints so that they result in a convex optimization
problem. Then, at each stage, the RLT can also be applied to
relax those nonconvex items using a set of linear constraints.

V. DISTRIBUTED ALGORITHM

In this section, we propose a distributed solution algorithm
for solving the problem formulated in Section III. Then, in
Section VI, we evaluate the distributed algorithm by comparing
it to the centralized algorithm proposed in Section IV.
The distributed algorithm is designed to achieve an NE

point in the feasible domain [40]. The Nash equilibrium is a

well-known notion from noncooperative game theory often
used as a tool for designing distributed algorithms in complex
wireless communication systems [41]–[43]. There are two
important characteristics of an NE solution: 1) At any NE so-
lution point, no user has incentives to deviate from the current
transmission strategy unilaterally; and 2) each user’s utility is
maximized, given the transmission strategies of all other users.
Considering that in cooperative wireless networks, the inter-

ference among video sessions depends on both power control
and relay selection strategy, we design our distributed algorithm
assuming that each source and relay node always transmits at
maximum transmit power and relies on cooperative relaying for
interference reduction. Then, we apply the distributed algorithm
to different wireless networks and evaluate its performance by
comparing it to the proposed centralized -optimal solution al-
gorithm in Section IV.
With fixed maximum transmission power, the problem

of video rate control and relay selection can be formulated
as a game, in which each video session is a player. Each
player optimizes its own video quality by selecting the best
relay node and also deciding the optimal video encoding
rate. Denote the vector of relay selection strategies for video
session as , and the vector of
relay selection strategy for all video sessions except as

. Further define
the vector of video encoding rates of all sessions except as

. Then, the objective of the
game is to find an NE solution for relay selection, denoted as

, and video encoding rate, denoted as , such
that for each video session, say

Subject to – (62)

To this end, we propose an iterative best-response-based algo-
rithm. In each iteration, each node locally optimizes its own
video quality by solving the optimization problem in (62), with
given fixed video encoding rate and relay selection strategy for
all other video sessions. Each node continues to locally optimize
its transmission strategy until any deviation from its last solu-
tion would imply a decrease in its performance.
Recall that the objective function of is a concave

function of video encoding rate and underlying link capacity.
With given fixed transmission power of all source and relay
nodes, and also relay selection strategy for all other video ses-
sions except , the overall link capacity for video session in
(9) can be reformulated as a linear function of relay selection
variable

(63)

where and are constant and represent the capacity
of direct link and cooperative link if relay node is used by
video session , respectively. Since composition preserves con-
vexity [37], the objective function of is also a concave
function of .
Considering that is also a monotonically increasing

function of the underlying link capacity, maximizing
can be decomposed into two subproblems: 1) maximizing link
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capacity by solving a linear optimization problemwith objective
function defined in (63); and 2) maximizing by solving
a convex optimization as follows:

Find

Maximize

Subject to (64)

Without loss of generality, we assume that in the first
subproblem, and

. Then, constraint in (1) is equiv-
alent to . Hence, constraints
in (1)–(3), (26), and (29) form a convex domain set, and the
problem formulated in (62) is a convex optimization problem.
This implies that in each iteration of the distributed algorithm,
each node only needs to solve a convex optimization problem,
which can be done in polynomial time through well-established
techniques (i.e., interior-point algorithms [39]).
Theorem 1: The best-response-based distributed solution al-

gorithm converges to an NE solution of relay selection game if
the number of relay nodes is large compared to the number of
video sessions and any two sessions in are located sufficiently
far away from each other. In this case, the relay selection game,
which is in general a quasi Nash equilibrium (QNE) problem,
reduces to an NE problem.

Proof: Proof of the convergence to NE is shown in
Appendix-B.
It is worth pointing out that the resulting NE is not neces-

sarily an efficient working point. In our future research, we will
seek to derive algorithms designed to provably select efficient
Nash equilibria. In this paper, we verify the high efficiency of
the solution obtained by our distributed algorithm via simula-
tion. In Theorem 1, it is reasonable to assume large number of
relay nodes compared to the number of video sessions. Since
video transmission usually requires high-capacity links, within
a given communication area and a portion of the spectrum, the
number of concurrent video sessions must be limited. Addition-
ally, the theorem provides a sufficient condition that guarantees
convergence of the distributed relay selection algorithm to an
NE with a limit on the effect of interference. Although for an
arbitrarily given cooperative network it is usually not easy for
the sufficient condition to be satisfied, the proposed distributed
algorithm performs very well even when there is interference,
which will be verified through numerical results in Section VI.

VI. SIMULATION RESULTS

A. System Setup

In this section, performance evaluation results are presented
for the proposed centralized and distributed algorithms.We con-
sider a single-hop wireless communication network with area
of 1000 600 m . Different network scales are considered in-
cluding nodes, with and 100. Nodes are
randomly distributed in the communication area. The path-loss
coefficient between node and node is given by

, where represents the distance [m] between
the two nodes, and 4 is the path-loss factor. AWGN noise power
is set to 10 mW for each node. The bandwidth of the available
spectrum is set to kHz, and the spreading gain is set
to . The maximum transmission power for each source

TABLE I
VIDEO PARAMETERS

and relay node is set to 1000 mW. Two video sequences are con-
sidered, Foreman (FM) andMother and Daughter (MD), which
are characterized by intense and moderate rate variability. We
use the mathematical model described in Section III-B to cal-
culate the PSNR with given video parameters and link capacity,
which can be calculated with given SINR. The parameters of
the two video sequences are reported in Table I, where the units
of and are kb/s, ms, and bits, respectively. Moreover,
we implement a slot-level simulator using MATLAB and per-
form the proposed algorithms for each given network topology.5

We first show convergence and complexity analysis for the pro-
posed centralized and distributed algorithms. Then, we present
example results of rate control, relay selection, and power con-
trol. Finally, we compare the performance of the two algorithms.
All results presented in this section are obtained by averaging
over 30 independent simulations.

B. Convergence and Complexity Analysis

Convergence performance of the proposed -optimal algo-
rithm is illustrated in Fig. 1(a) for different video sessions, total
number of nodes, and optimality precision. Network parameters
are set to (FM, MD, 30, 98%)6 for the top figure, (FM, MD, FM,
30, 95%) for the middle figure, and (FM, MD, 100, 90%) for the
bottom figure. The optimality precision is defined as the ratio of
global lower bound on sum-PSNR to the global upper bound. In
all three cases, the centralized algorithm converges to the pre-
defined optimality precision.
Complexity of the terms of the -optimal algorithm is evalu-

ated in average number of iterations, and accumulation proba-
bility of required number of iterations is shown in Fig. 1(b) in
the case of (FM, MD, 30, 95%). We can see that the number of
iteration varies from 7 to 3000 with an average of 752. We ob-
serve that around 80% of simulations can be finished in less 500
iterations. Recall that our algorithm searches for the -optimal
solution by partitioning the original domain into a series of sub-
domains. Since there are two video sessions and 30 nodes, we
have two source nodes and 26 potential relay nodes, and then
the number of relay selection variables ,
is . Quantize the maximum transmission power of
1000 mW using a step of 100 mW, then each source or relay
node has 10 possible choices of transmission power. Then, total
number of possible transmission strategies can be calculated as

, which is too large to search the
original domain exhaustively. Therefore, compared to exhaus-
tive search, the proposed centralized algorithm is quite efficient
in computational complexity.

5In this paper, we focus on networks whose topologies vary slowly so that
it suffices to perform the algorithms for a time duration much longer than each
cooperative transmission.
6(FD, MD, 30, 98%) refers to two sessions transmitting FD and MD, respec-

tively, and %. Similarly, (FM, MD, FM, 30, 95%) indicates
three video sequences transmitting FM, MD, and FM, respectively,
and %.
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Fig. 1. (a) Convergence performance of the centralized algorithm. Parameters of video sequences, total number of nodes , and maximum optimality precision
are (top) (FM, MD, 30, 98%), (middle) (FM, MD, FM, 30, 95%), and (bottom) (FM, MD, 100, 90%). (b) Complexity performance of the centralized algorithm in
the case of (FM, MD, 30, 95%), measured in accumulation probability of required number of iterations to converge. (c) Convergence performance of the distributed
algorithm given in individual PSNR. Parameters are (FM, MD, FM, 20) for top figure and (FM, MD, FM, 50) for bottom figure.

Fig. 2. Example of a 20-node network.

Convergence performance of the proposed distributed algo-
rithm is evaluated with three video sessions, FM, MD, and FM,
and in cases of total number of nodes of 20 and 50, respectively.
Results indicate that the distributed algorithm converges very
fast, i.e., within three iterations on average in both cases. Two
examples of the convergence curves are shown in Fig. 1(c) for
20 (top) and 50 (bottom) nodes, respectively; we can see that
the distributed algorithm converges in less than five iterations
in the examples.

C. Example Results of Resource Allocation

We now discuss example results of the two algorithms with
fixed network topology shown in Fig. 2.
1) Example of Achieved Sum-PSNR: First, we show two ex-

amples of the achieved sum-PSNR obtained using -optimal so-
lution algorithm. In the first experiment, there is only one video
session , which transmits video sequence FM. The re-
sult of the execution of the proposed algorithm is shown in
Fig. 3(a). In this case, the -optimal PSNR is 35.2 dB. is
selected by as the relay node. The transmission powers of
and are 1000 and 1000 mW, respectively. The achieved

link capacity and corresponding optimal video encoding rate are
306.4 and 241.9 kb/s, respectively. In the second experiment,
there are two video sessions , which transmit
the video sequences FM and MD, respectively. Precision of op-
timality is set to %. In this case, the -optimal sum-PSNR
is 79.38 dB. The individual PSNRs for the two video sessions
are 34.9 and 44.4 dB, respectively. is selected by as the
relay node, while is selected by as the relay node. The
transmission powers of are 561, 998, 980, and

TABLE II
EFFECTS OF RELAY SELECTION, POWER ALLOCATION, VIDEO RATE CONTROL

IN THE CASE OF TWO VIDEO SESSIONS

944 mW, respectively. The achieved link capacity and corre-
sponding optimal video encoding rate are 285.9 and 222.9 kb/s
for video session 1, and 430.4 and 370.3 kb/s for video session 2.
2) Effects of Video Encoding Rate, Relay Selection, and

Power Allocation: Next, we examine the effects of relay selec-
tion, power allocation, video rate control, as well as the number
of video sessions on the sum-PSNR. In this experiment, three
video sessions are employed, FM, MD, and FM. Results of the
proposed algorithm are compared to three cases: exhaustive
search without relay selection (woRS), search without power
control (woPC), search without rate control (woRC). Results
are shown in Table II.
When the proposed algorithm is employed, and are

selected as relay for session 1 and 2, respectively. Session 3 uses
direct transmission. All source and relay nodes transmit at the
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Fig. 3. (a) Upper and lower bounds of SUM PSNR in the case of (top)one and (bottom) two sessions. (b) Sum PSNR of two video sessions in the case of different
maximum transmission power. (c) Optimal transmission power of (left) source and (middle) relay nodes, and (right) source power without power control, in the
case of different maximum transmission power.

Fig. 4. (a) Performance in sum-PSNR for the proposed centralized and distributed algorithms. (b) Performance in average transmission power for the proposed
centralized and distributed algorithms. (c) Sum-PSNR of six video sessions with different number of relay nodes.

maximum power. The achieved sum-PSNR is 112.4 dB. Due to
the existence of session 3, and are unsuitable to be relay
for session 1. In the case of woPA, we fixed the transmission
power of each node to the maximum power. We can see that
the sum PSNR decreases as the maximum transmission power
decreases. When all nodes transmit at 500 mW, the decrease
in the sum-PSNR is about 4.5 dB compared to the proposed
algorithm. In this case, it is also desirable for sessions 1 and
2 to use relays.
In the case of woRS, a session selects the node that is located

between source and destination as relay. If is selected, the
sum-PSNR decreases considerably. This is because causes
interference to the destination of session 3. If no relay is used,
the decrease in sum-PSNR is over 6 dB. Therefore, the relay
should be selected considering its interference to other sessions.
In the case of woRC, we can see that as the video encoding
rates deviate considerably from the optimum, the sum-PSNR
decreases significantly.
3) Effects of Different Number of Video Sessions: In

Table III, we show the effects of the number of video sessions
on relay selection, power allocation, and rate control. At most
of four video sessions are employed, FM, MD, FM, and MD.
We can see that relay selection is greatly influenced by the
number of active sessions. For example, when and

are selected by and as relay, respectively. When
will not select any longer because will

cause high interference to if selected. Instead, selects
as the relay. A similar phenomenon happens when session 4
becomes active. From the table, we observe that the nodes
usually transmit at the maximum power, except when .
Actually, in the case of , if the maximum power is em-
ployed, the sum-PSNR increases slightly and also lies within
the optimality precision.

TABLE III
COMPARISON OF PROPOSED -OPTIMAL ALGORITHM IN THE CASE OF

DIFFERENT SESSION NUMBER

4) Effects of Transmission Power: The effects of transmis-
sion power are further explored in Fig. 3(b) and (c). We see that
enabling cooperation among nodes can result in a significant
improvement in the sum-PSNR. Moreover, when cooperation is
enabled, transmitting at the maximum power can lead to a slight
increase in sum-PSNR. That is, cooperation can allow nodes
to work at lower power without causing much decrease in the
sum-PSNR. This is important in wireless multimedia ad hoc and
sensor networks, where power efficiency is also of paramount
importance.

D. Performance Evaluation for the Distributed Algorithm

Performances for the proposed centralized and also dis-
tributed algorithms are shown in Fig. 4(a) in terms of
sum-PSNR. Results are obtained by averaging over 30 times
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of independent simulations. In the figure, the algorithm with
fixed maximum transmission power and without cooperation
is employed as bottom-line performance. Two video sessions
of FM and MD are employed, and total number of nodes is
set to 20 and 30, respectively. We can see that the proposed
centralized algorithm can achieve the highest sum-PSNR. In
the case of 30 nodes, an improvement of greater than 2 dB
can be achieved compared to the algorithm with fixed power
and without cooperation. Sum PSNR achieved by the proposed
distributed algorithm is very close to the centralized algorithm
in the case of 20 nodes. Compared to the algorithm with fixed
power and without cooperation, the distributed algorithm can
achieve about 1.5 dB of improvement by using cooperative
relaying in the case of 30 nodes.
The proposed two algorithms are also evaluated in terms

of average transmission power, and corresponding results
are shown in Fig. 4(b). From the figure, we can see that the
proposed centralized algorithm results in the lowest average
transmission power. This is achieved by using cooperative
relaying since the transmission time for each source and relay
is half compared to the case of direct transmission, and con-
sequently, the total transmission power becomes more evenly
distributed over the whole network. This is extremely important
in wireless multimedia sensor networks to avoid depleting the
battery of a single node and hence to avoid bottleneck links.
Average transmission power is also given in Fig. 4(b). We
can see that even if the maximum transmission power is used
for each source and relay node, the distributed algorithm can
achieve more even power consumption through cooperative
relaying than in the noncooperative case.

E. Effects of Cooperative Relaying With Higher Interference

In this section, we study effects of cooperative relaying to the
video quality in a larger network by setting the number of video
sessions to six and 10, respectively. In the first experiment, there
are six video sessions with three transmitting FM and the others
transmitting MD. Sum PSNR of the six sessions is given in
Fig. 4(c) by averaging over 30 times of simulation. Given an ar-
bitrary network topology, it is possible that the minimum rates
of all six sessions cannot be guaranteed simultaneously, and the
sum PSNR is set to zero in this case. From Fig. 4(c), we can
see that when there is no relay node, the distributed algorithm
reduced to fixed power and noncooperative, and the centralized
-optimal algorithm performs the best by using power control.
As the relay number increases, the effects of power control are
reduced, and performance of the distributed algorithm is very
close to the -optimal algorithm.
In the second experiment, we use 10 video sessions, with six

transmitting FM and the others transmitting MD. We found that
it is very hard to generate a network topology that can satisfy
the minimum rates of all sessions simultaneously. In this case,
admission control is needed, or more spectrum should be used
to support large number concurrent sessions.
In the third experiment, we consider a network with com-

munication area of 200 200 m (which is much smaller than
1000 600 m used in above), 10 nodes in total, and two video
sessions ofMD and FM.As a result, the average interference be-
tween any two randomly located nodes in the network becomes
much higher than that in previous experiments. Results show
that the centralized -optimal solution algorithm could achieve

an average sum PSNR of 83.1 dB, while the distributed algo-
rithm achieves 80 dB, which is more than 97% of the -op-
timum. That is to say, a good performance still can be achieved
by applying the proposed distributed algorithm in interference-
dominated cooperative networks.

VII. CONCLUSION

In this paper, we studied cross-layer design techniques for
video streaming cooperative multimedia wireless networks. We
formulated the joint control of the video encoding rate, relay
selection, and power allocation as a nonconvex and combina-
torial problem. Then, we proposed a global solution algorithm
based on a combination of branch and bound and convex re-
laxation of the original problem, which is proven to converge to
the optimal solution. Moreover, we have shown that through co-
operative relaying, nodes are allowed to work at lower level of
average transmission power without decrease in the sum video
quality. We also proposed an iterative distributed algorithm in
which each iteration can be executed in polynomial time and the
overall algorithm converges very fast in practice. The proposed
algorithm can be directly applied to a scenario with multiple co-
existing preestablished source–destination pairs and can be also
used to optimally control resource allocation for an independent
set of transmissions with primary interference constraints (i.e.,
no transmitters and receivers in common) periodically sched-
uled by a separate scheduling algorithm, where idle nodes can
be used as potential relays.
It is worth pointing out that in this work we focus on studying

the problem of joint rate control and relay selection from an
information-theoretic perspective, i.e., we do not make any
assumptions on the actual modulation and coding scheme.
In future work, we would like to consider real transmission
techniques—e.g., specific modulations, SNR thresholds—and
implement the proposed algorithm on a GNU Radio/USPR2
testbed available at SUNY Buffalo.

APPENDIX

A. Validation of the Average-Based Interference Model

We validate the average interference model by comparing it
to the exact interference in practical cooperative wireless net-
works. Let us consider a cooperative network having multiple
sessions that use cooperative relaying. Then, for a wireless link
that uses direct transmission only, the interference measured
at its destination node comes from all source and relay nodes
that transmit in the first time slot, while it comes from other
source and relay nodes in the second. Then, the average ca-
pacity of the wireless link can be calculated as

, where and represent the ca-
pacity in the first and second time slot, respectively.
We let represent capacity of the wireless link calcu-

lated using the average-based interference model, and then we
compare it to . A communication area of 500 500 m is
considered, and the number of interfering cooperative sessions
varies from 2 to 16 in increments of 2. The other simulation
parameters are set as in Section VI. Results of the comparison
in terms of are shown in Fig. 5(a) (Average/Exact). Every
point was plotted by averaging over 10 simulations. The value
of is slightly lower but very close to that of , e.g.,
around 98% and 97% of can be achieved when
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Fig. 5. (a) Comparison between the average-based/worst-case interference
model and exact interference. (b) Cumulative probability of the capacity ratio
corresponding to the average-based interference model.

and , respectively. We observe that the value of
decreases very slightly as the number of interfering sessions in-
creases, implying that the accumulation of average performance
degradation caused by the average-based interference model is
negligible. Similar results can be also observed when wireless
link also uses cooperative relaying. For comparison, we also
compare the worst-case approximation and the synchronization
case. The performance of the worst-case approximation model
deteriorates significantly as the number of interfering nodes in-
creases, and less than 80% of the real capacity can be achieved
when there are 16 interfering nodes. We also plot the cumula-
tive probability of the capacity ratio corresponding to the av-
erage-based interference model in Fig. 5(b). A capacity ratio
larger than 0.9 can be achieved with probability of 93%, 88% for

and , respectively. Based on the above discussion,
we can conclude that the average-based interference model pro-
vides a good approximation of the exact interference in practical
cooperative wireless networks, especially when the number of
interfering sessions is not large.

B. Proof for Convergence to NE for Distributed Algorithm

We only need to show that the relay selection problem for-
mulated in Section V can be reformulated as a VI problem, and
show that the proposed distributed algorithm converges to a VI
solution that is also an NE solution.
VI Formulation: To this end, we assume that

. The assumption is realistic since in
a cooperative wireless network where the number of relay
nodes is comparable or larger than the number of video
sessions, relay selection for a video session only affects in-
terference caused by this video session to the other sessions.7

Then, the overall link capacity in (63) can be rewritten as
, and the constraint in (2)

can be rewritten as . It can be proven

that the domain set of the relay selection problem is compact
and convex, and that the utility function of each session is con-
tinuously differentiable. Under these conditions, the problem
of joint relay selection and video rate control in Section V can

7Multiple sessions may possibly want to select the same relay node as co-
operative relay even in a network with only a limited number of sessions. The
resulting NE problem is a QNE problem, where the domain sets of all sessions
are coupled with each other and more advanced techniques, e.g., pricing-based
algorithms, are needed to derive the equilibrium point. In this paper, we focus on
standard NE analysis and leave the QNE for future work. Readers are referred
to [44] for more details of QNE analysis.

be reformulated as a VI problem, and there exists at least one
VI solution [45, p. 175, Theorem 2.4.4].
In the following, we present a sufficient condition for the dis-

tributed algorithm to converge, that can be derived based on the
framework in [46]. We represent in (20) using for
simplicity. Then, the gradient vector of session with respect

to can be written as , where rep-

resents the number of potential relay nodes in set . Similarly,
we represent the gradient vector of session , with , as

. Furthermore, denote the Jacobi ma-

trix of and with respect to as
and , respectively. Here, is namely the
Hessian matrix session . Then, we can define a matrix

as follows
if
otherwise

, where

and ,
with representing the eigenvalue of with the
smallest absolute value. Then, to guarantee the convergence
of the proposed distributed algorithm, we only need to show
that the matrix is a P-matrix [46]. It can be shown that,
for given transmission parameters (e.g., potential relay nodes
of each session, maximum transmission power), there exists a
threshold that can be calculated numerically, e.g., by
using a bisection-based iterative method, to verify whether
is a P-matrix or not at each iteration.
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