
OSWireless: Hiding Specification Complexity for Zero-Touch Software-Defined
Wireless Networks

Sabarish Krishna Moorthya, Nicholas Mastronardea,
Elizabeth Serena Bentleyb, Michael Medleyb, and Zhangyu Guana∗,

aDepartment of Electrical Engineering, University at Buffalo, Buffalo, NY 14260, USA
bAir Force Research Laboratory (AFRL), Rome, NY 13440, USA

Email: {sk382, nmastron, guan}@buffalo.edu, {elizabeth.bentley.3, michael.medley}@us.af.mil

Abstract

In the current practice of wireless engineering, to optimize wireless networks engineers usually need to grapple si-
multaneously with network modeling, algorithm and protocol design as well as their implementation on distributed
edge nodes. This process is tedious and error prone. In this article we attempt to address this challenge by designing
OSWireless, a new control plane for optimizing software-defined wireless networks. At the core of OSWireless is
the virtualization of four control plane functionalities, including intent, mathematical, algorithmic and forwarding
specifications, and then provide them as a service to network engineers. To this end, we design two new subplanes
for the control plane: Wireless Network Abstraction Specification (WiNAS) Subplane and Optimization-as-a-Service
(OaaS) Subplane. The former converts intent specifications defined using high-level Application Programming In-
terfaces (APIs) to the corresponding mathematical specifications, and the latter generates automatically operational
(possibly distributed) algorithmic specifications. We prototype OSWireless and deploy it over NeXT, a newly devel-
oped software-defined experimentation testbed, and showcase the automated control program generation capability
of OSWireless and the optimality of the resulting programs considering a variety of network control problems. We
further test the applicability of OSWireless on UBSim, a newly-developed Python based simulator for integrated
aerial-ground networks, considering location optimization of mobile nodes as an example. Through developing OS-
Wireless, we hope to accelerate research towards future zero-touch software-defined wireless networks with reduced
management complexity.

Keywords: Zero-Touch Networks, Software-Defined Networking, Specification Abstraction, Distributed Control.

1. Introduction

Software-defined networking (SDN) is a key technique to enable next-generation (NextG) programmable net-
works with high scalability and low management complexity, and to accelerate the adoption of new communication
techniques and hence hasten the network evolution [2–5]. In the past decade, SDN has captured the attention of both
academia and industry [6–18]. Notably, in 2011 the Open Networking Foundation (ONF) released OpenFlow, a stan-
dard defining the communication interface between the control and data planes of SDN-based networks [2]. Later,

∗Corresponding author
1A preliminary shorter version of this paper appeared in the Proceedings of International Conference on Mobile Ad-Hoc and Smart Systems

(MASS), Denver, Colorado, 2022 [1].
2ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER: (a) Contractor acknowledges Government’s support in the publication of this

paper. This material is based upon work funded by AFRL, under AFRL Contract No. FA8750-20-1-0501 and FA8750-20-C-1021, and in part by
the NSF under Grant SWIFT-2229563. (b) Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of AFRL.

3DISTRIBUTION STATEMENT A: Approved for Public Release; distribution unlimited AFRL-2021-3478 on 12 October 2021. Other requests
shall be referred to AFRL/RIT 525 Brooks Rd Rome, NY 13441.

Preprint submitted to Elsevier October 22, 2023

This work has been accepted to publish in Elsevier Journal of Computer Networks

WiNAS
Subplane
(Wireless

Network Abstract
Specification)

PPS Subplane

(Programmable Protocol Stack)

Distribution Abstraction Software

OaaS

Subplane

(Optimization

as a Service)

Intent Specification 1

Control Intent

OSWireless

…

Algorithmic

Specification

Forwarding Processor

Forwarding Algorithms

Forwarding
Decisions

Data

Plane

Control

Plane

Data Plane Virtualization Software

Forwarding

Specification

Mathematical

Specification

Intent Specification 2 Intent Specification 3

Figure 1: Overall architecture of OSWireless.

Google deployed their first SDN-enabled backbone wide area network called B4 based on OpenFlow for connecting
their worldwide data centers [15]. Recently, Google deployed a new-generation distributed SDN controller called
Orion in Google’s B4 networks and data center Jupiter [17]. Po-Fi [18], is a Protocol-Oblivious Forwarding archi-
tecture which follows the SDN consensus and provides a rich and unified programmability to realize novel wireless
functionalities with forwarding rules.

While the immense performance gains have been successfully demonstrated in wired networks (e.g., data center,
backbone networks), the extension of SDN to wireless networks is still very challenging. The primary reason is that
traditional SDN typically requires high-data-rate reliable links connecting the distributed forwarding substrates to the
remote centralized SDN controller, which are typically not available in wireless networks. To address this challenge,
significant efforts have been made to push the control plane closer to the edge of wireless networks. Representative ex-
amples include software defined radio access networks (SoftRAN) [14], software-defined cellular networks (CellSDN)
[10], and mobile cloud computing based software defined wireless networks (MCC-SDWN) [19]. However, these ap-
proaches have been focusing on softwarization of civilian cellular networks and still require high-data-rate backhaul
networks to accommodate the resulting overhead traffic, e.g., around 500 Mbps to support 50 micro cells each with
cell range in the order of one kilometer based on SoftRAN [14]. This calls for new SDN architectures for NextG (both
civilian and tactical) networks with densely deployed small cells, mobile (even flying) hotspots and heterogeneous
network topology.

Meanwhile, existing SDN controllers primarily focus on providing services for distribution abstraction and for-
warding abstraction, while very few efforts have been made for specification abstraction, where the objective is to
provide simplified network models for mapping abstract specifications to physical operational configurations [20–22].
As a result, to optimize the networks the engineers need to grapple simultaneously with mathematical modeling, de-
sign of (possibly distributed) numerical algorithms, protocol design as well as the implementation of the resulting
control logic in hardware. This process is typically tedious and error prone.

Contributions. In this work we attempt to address the above challenges by designing OSWireless, a new zero-
touch SDN controller that can enable intent-driven self-optimizing software-defined wireless networks. A zero-touch
network shares similar features with autonomous driving network (ADN) [23] and intent-driven network (IDN) [24],
where the former refers to networks that can self-operate and adapt to changing conditions without human interven-
tion thereby achieving self-configuration, self-optimization, self-healing, and self-protection, and the latter refers to
networks that can be controlled and managed based on high-level business or operational intent expressed by users or
administrators. In a nutshell, OSWireless provides a control plane for optimizing software-defined wireless networks

2

This work has been accepted to publish in Elsevier Journal of Computer Networks

with automated optimization program generation capabilities, by virtualizing four control plane functionalities, in-
cluding intent, mathematical, algorithmic and forwarding specifications, and providing them as a service to network
engineers. Based on OSWireless, the network engineers are allowed to specify in a centralized manner the control
intent (i.e., what to do) using the high-level specification abstraction APIs, while the control intent can be translated
to (possibly distributed) operational control specifications (i.e., how to do it) following a series of carefully designed
steps.

Towards this goal, we design two new subplanes for the SDN control plane, i.e., Wireless Network Abstraction
Specification (WiNAS) Subplane and Optimization-as-a-Service (OaaS) Subplane. The former converts intent speci-
fications defined using high-level APIs to the corresponding mathematical specifications, and the latter automatically
generates operational algorithmic specifications. The overall architecture of OSWireless is illustrated in Fig. 1, where
the red dotted lines represent the forwarding algorithms, blue dotted lines represent the forwarding decisions and
black dotted lines represent the forwarding routes. We claim the following three main contributions.

i) WiNAS Subplane Design. We first design the WiNAS Subplane, the network abstraction engine of OSWireless.
The objective of this subplane is to provide a set of high-level APIs for specifying various network control intents
and to define the programming interfaces between the intent specifications and the OaaS Subplane. To this end, four
modules have been designed to integrate those major functionalities, such as network element and topology definition
provided by NetTopo Module, QoS characterization provided by QoSPara Module, parameter modeling provided by
ParaModel Module, and network control problem construction provided by MathSpec Module.

ii) OaaS Subplane Design. Based on the services provided by the WiNAS Subplane, we further design the network
optimization engine of OSWireless, i.e., OaaS Subplane. The automated specification translation is accomplished by
first converting the intent specifications defined using textual strings to the symbolic domain and then extracting the
coupling among the protocol layers and distributed nodes. Then, we prototype the OaaS Subplane by integrating two
widely adopted network optimization frameworks as an example: dual method [25] and successive convex optimiza-
tion [26].

iii) OSWireless Deployment and Evaluation. We demonstrate and evaluate OSWireless by deploying it over NeXT,
a newly developed software-defined network emulation and experimentation testbed. OSWireless is deployed over
the edge server of the NeXT system to control two programmable networks. We showcase the automated control
program generation capability of OSWireless and the optimality of the resulting programs considering a variety of
example network control problems. The source code of OSWireless is available in our lab GitHub page [27].

The remainder of the paper is organized as follows. We first discuss the related works in Sec. 2. Then, we describe
the overall design objective of OSWireless in Sec. 3. The design of OSWireless kernel (i.e., WiNAS Subplane) and the
OaaS Subplane are discussed in Sec. 4 and Sec. 5, respectively. The testbed development and experimental evaluation
are respectively presented in Secs. 6 and 7, respectively. Finally, we discuss the learned lessons in Sec. 8 and draw the
main conclusions in Sec. 9.4

2. Related Work

2.1. Software Defined Networking

There are a few SDN architectures for wireless networks in existing literature. For example, in SoftRAN [14], to
alleviate the traffic load pressure of the backhaul network, the centralized controller of SoftRAN makes only those
decisions that have network-level influence, while pushing latency-sensitive local decisions into remote radio head
controllers. CellSDN [10] and MCC-SDWN [19] share the similar split-design-control-plane principles. Recently
O-RAN has emerged to support interoperation between vendors’ equipment by providing industry-wide standards

4The key differences and improvements compared to the conference version [1] are as follows. We have strengthened the motivation of this work
by discussing more related works in Sec. 2. Additionally, we have provided the detailed algorithm (Algorithm 1) used for the tree representation
of expressions in Sec. 4.2. We have also provided examples of expression and script models for expression definition in Sec. 4.3. In Sec. 6, we
introduced a Python-based simulator called UBSim and described its major components. In Sec. 7.1, we have provided an example of network
control problem definition and provided a list of key view-behavior elements and APIs available for custom network control problem definition.
We have also strengthened the experimental evaluation of OSWireless by discussing three more network control problems. Moreover, in Sec. 8 we
have outlined the limitations and future work of OSWireless.

3

This work has been accepted to publish in Elsevier Journal of Computer Networks

for RAN interfaces and to enhance the RAN performance through virtualized network elements and integrated in-
telligence in RAN [28, 29]. An automated permission generation and verification system called VOGUE [30] is
developed to automatically generate flexible access control mechanisms which can be used across different SDN con-
trollers. The authors of [31] presented an intent-based QoS-aware and SDN-enabled slicing implementation which
enables customized specifications and establishment of network slices toward flexible delivery of vertical services. In
[32], the authors design an orchestrator that provides high-level interfaces in order to transparently deploy modular
control and data plane applications for SDN networks. Readers are referred to [33] for an excellent survey of the main
results in this field. Different from these works, which primarily focus on softwarization of cellular networks, in this
work we focus on the automated generation of distributed optimization programs in future heterogeneous wireless
networks.

2.2. Software-defined Radio Testbeds
There have also been significant efforts made by the wireless community to build open, shared experimental

facilities. Towards this goal National Science Foundation (NSF) developed four city-scale shared experimentation
platforms for advanced wireless research through Platforms for Advanced Wireless Research (PAWR) program [34].
There are currently three active PAWR platforms namely POWDER [35], a Platform for Open Wireless Data-driven
Experimental Research, COSMOS [36], Cloud enhanced Open Software defined Mobile wireless testbed for city-scale
deployment (COSMOS), and AERPAW [37], Aerial Experimentation Research Platform for Advanced Wireless. The
fourth platform ARA [35], a Living Lab for Smart and Connected Rural Communities was just recently launched.

2.3. Network Automation
Network automation has also attracted significant research attention [38–49]. For example, in [38] the authors

develop a human-intervention-in-the-loop quasi-automated model calibration scheme for power budget control and
site selection in cellular networks. In [43] Harte et al. design a tool called “THAWS” to speed-up the development
and deployment of heterogeneous wireless sensor networks (WSN). The authors of [44] design a toolflow that can
help monitor the correctness of the implementation throughout the development of WSN. The authors of [49] propose
an autonomous control framework for software-defined swarm UAV networks. We are not aware of any existing
frameworks that can provide open flexible APIs for hiding the specification complexity in software-defined wireless
networks.

The work most related to OSWireless is the open-source project WNOS [50, 51], where we designed an optimiza-
tion based wireless network operating system for principled software-defined wireless networking [50, 51]. WNOS
shares the same design goal with OSWireless, i.e., providing cross-layer distribution optimization as a service in
NextG networks. However, the major limitation with WNOS is that the automated decomposition of centralized net-
work control programs is enabled by a technique called Disciplined Instantiation (DI), which can support only limited
set of network control applications [49, 52] because of the lack of flexibility in the instantiation of abstract network
control problems. In OSWireless we aim to provide a new control plane that is not based on DI and hence can support
more sophisticated and practical network control applications.

3. Overall Design Objective

The primary goal of OSWireless is to enable intent-driven wireless networking by hiding the specification com-
plexity from network engineers. Given a control intent (what to do, e.g., maximize the network spectral efficiency or
minimize the end-to-end delay), OSWireless aims to determine in an automated manner the optimal or at least a de-
sirable operational forwarding strategy (how to do it, e.g., which nodes transmit with what power in which frequency
bands and in which time slots) that can be executed on the distributed physical forwarding substrates. Denote Sint
and Sfwd as the intent specification and forwarding specification, respectively. Then the overall design objective of
OSWireless can be expressed as

f : C(Sint) −→ D(Sfwd), (1)

where f denotes the functionalities provided by OSWireless, C(·) indicates that Sint is defined in a centralized manner,
and D(·) represents that Sfwd is deployed on distributed forwarding substrates. Here, Sfwd and Sint represent the two

4

This work has been accepted to publish in Elsevier Journal of Computer Networks

extremes of network abstraction. By defining Sfwd directly, i.e., with little or no abstraction, network engineers are
allowed to control all the forwarding details with the most flexibility, but at the cost of high specification complexity.
Alternatively, network applications can be developed independently to accomplish different control intents (i.e., Sint)
with only the highest-level APIs exposed to the network engineers. This can hide most of the specification complexity
but enable limited reconfiguration flexibility. A natural question to ask is: How to abstract software-defined wireless
networks to achieve a good tradeoff between low complexity and high flexibility in defining the control specifications?

Design Approach. In this work, we attempt to answer this question by designing OSWireless following a three-
phase approach. The objective of the first phase is to specify the control intent Sint in a centralized manner using
the APIs provided by OSWireless; and then construct the mathematical representation corresponding to intent spec-
ification Sint. Refer to the output of this phase as Mathematical Specification and denote it as Smath. In the second
phase, OSWireless will generate a set of (possibly distributed) numerical solution algorithms to solve Smath. Denote
the output of this phase as Algorithmic Specification Salg. Finally, in the third phase Salg is executed on the distributed
physical substrates to obtain the Forwarding Specification Sfwd at network run time. Then, the design objective (1)
can be rewritten as

f :C(Sint)
Phase
−−−−→

(i)
C(Smath)

Phase
−−−−→

(ii)
D(Salg)

Phase
−−−−→

(iii)
D(Sfwd). (2)

It is worth pointing out that in Phase (iii) we consider distributed Algorithmic Specification Salg as an example, while
the centralized counterpart can be viewed as a special case. As illustrated in Fig. 1, in OSWireless these three phases
are accomplished by designing two new subplanes in the control plane, i.e., WiNAS Subplane and OaaS Subplane,
which will be described in Secs. 4 and 5, respectively.

The rationale behind the three-phase design approach is to separate those coupled network control processes,
including network modeling, objective formulation as well as distributed algorithm design, and provide the func-
tionalities in each process as a service to the other processes. This is similar to the TCP/IP protocol stack, which
separates the network functionalities into five layers and provides the functionalities of each layer as a service to the
other layers. Differently, in OSWireless we focus on separating the functionalities for modeling and optimizing the
programmable protocol stack of software-defined wireless networks.

4. Kernel (WiNAS Subplane) Design

The WiNAS subplane is the kernel of OSWireless. Its core functionalities are two-fold: first, construct the corre-
sponding mathematical specification Smath given a user-defined control intent specification Sint, i.e., Phase (i) in (2);
and second, provide various services based on which the other functionalities of OSWireless are implemented, includ-
ing the OaaS Subplane and the mathematical, algorithmic and forwarding specifications. In OSWireless, these two
functionalities are accomplished by four modules of the WiNAS Subplane, i.e., MathSpec Module, NetTopo Module,
QoSPara Module and ParaModel Module. The MathSpec Module is the place where the mathematical specification
will be constructed, while the other three modules together provide services for the other components of OSWireless.
Next, before describing these modules, we first define the notations.

4.1. Notation Definition

In OSWireless, each network component or parameter is referred to as a Network Element. We further define two
types of network elements: View Element and Behavior Element.

Definition 1 (View Element). A view element is a network element that can be used to characterize the global view
of the network. Here the global view refers to the graph representation of the network topology based on vertices
(i.e., nodes) and edges (i.e., links), with each vertex or edge associated to a set of hardware and radio resources (e.g.,
antennas, subchannels). DenoteV as the set of view elements involved in a network.

Definition 2 (Behavior Element). A behavior element is a network element that can be used to characterize the
behaviors of the view elements inV in terms of various QoS metrics and based on other view and behavior elements,
e.g., noise, capacity and delay. Denote the set of all behavior elements in the network as B. Further denote the subset
of behavior elements associated to network element Vi ∈ V as B(Vi).

5

This work has been accepted to publish in Elsevier Journal of Computer Networks

MathSpec Module

Expression
Initialization Tree Representation Model

Expansion

log log

+ log

+ log

+ Preorder Traversal
Element Model
(retrieved from

ParaModel Module)

𝜏

𝜏

𝜏 𝜏

Figure 2: Diagram of MathSpec Module. Solid and open dots are respectively, view and behavior elements. Open dots with dotted
outlines denote models of behavior elements

A behavior element Bi ∈ B is called a leaf behavior element if it cannot be represented as a function of other behavior
elements inB\Bi, e.g., noise, power; otherwise, it is called an intermediate behavior element, e.g., capacity, which
is a function of noise and power. It is worth pointing out that, a behavior element can be either leaf or intermediate
but cannot be both simultaneously in an intent specification Sint. The type of a specific behavior element depends on
the adopted element model. For example, the capacity of a link will be viewed as a leaf element if it is considered as
known or can be measured at network run time. The element models are defined in the ParaModel Module such as
session delay (ssdelay) ; if is defined as an intermediate behavior element then the users have an option to choose
different models for “script str”, “script obj”..

Further define Ti ≜ (Vi, Bi) as a view-behavior element pair (VBEP) and denote the set of all the possible VBEPs
as T . Then, the intent specification Sint and the corresponding mathematical specification Smath can be represented
based on a subset of VBEPs in T . The main difference between Sint and Smath is as follows. In Sint the network
behaviors are characterized mostly based on intermediate behavior elements without exposing the lower-level details
of the coupling among the behavior elements to the network engineers. Differently, Smath characterizes network
behaviors by formulating mathematically the corresponding network control problem by exposing all the details of
the coupling among the involved behavior elements. The mapping between Sint and Smath is accomplished by the
Mathematical Specification (MathSpec) Module as described below.

4.2. Mathematical Specification Module

Given intent specification Sint, the MathSpec Module constructs the corresponding mathematical specification
Smath following three steps: Expression Initialization, Tree Representation and Model Expansion, as illustrated in
Fig. 2.

Each intent specification Sint consists of a setK of textual expressions as expressed in(3). Each expression defines
either the utility or a constraint of the target network control problem, by referencing to a subset of VBEPs using the
APIs provided by the NetTopo Module such as getCompExpr which is used to retrieve operators and operands in K ;
checkVBEP determines whether a textual operand is a VBEP or not. Denote the set of VBEPs referenced in expression
k ∈ K as Tk ≜ {(T i

k)Ik
i=1} with T i

k ≜ (V i
k, B

i
k) and Ik being the number of VBEPs in Tk. Then the objective of the first

step (i.e., expression initialization) is to construct an initial mathematical representation (denoted as f (Tk)) of the
intent specification Sint. Figure 2 shows a toy example of f (Tk) with four VBEPs. If we consider VBEP (link, rate)
for T i

k ∈ Tk, where link and rate are respectively view and behavior elements, then the initial expression f (Tk) can
be represented in this toy example as

f (Tk) = log(T 1
k) + log(T 2

k) + log(T 3
k) + log(T 4

k)
= log(link1.rate) + log(link2.rate)
+ log(link3.rate) + log(link4.rate). (3)

6

This work has been accepted to publish in Elsevier Journal of Computer Networks

Algorithm 1: Tree representation of expression f
Data: The initial set of expressions F ′ = ∅, F = { f }, the initial VBEP set T = ∅
Result: Updated set T of VBEPs contained in expression f

1 while F ′ , F do
2 Update F ′: F ′ ← F
3 for Each expression g ∈ F do
4 Update F : F ← F \{g}
5 (Operator g0, operands g1, g2) = getCompExpr(g)
6 Update F : F ← F ∪ {g1, g2}

7 for Each operand g′ ∈ {g1, g2} do
8 if checkVBEP(g′) is True then
9 Update VBEP set T : T ← T ∪ {g′}

10 end
11 end
12 end
13 end

This defines the sum-log-rate of the four links, a widely adopted utility function with log introducing proportional
fairness among the links. In OSWireless, this step is accomplished by replacing the textual API expressions with the
corresponding VBEPs. This is accomplished by using the get expr new API. For example, get expr new("link",

"capacity") returns the corresponding VBEP "link capacity".
With the initial expression f (Tk), the MathSpec Module will then construct iteratively an expanded expression

to characterize the mathematical coupling among the involved behavior elements. To this end, the MathSpec Mod-
ule needs to identify the set of VBEPs contained in f (Tk) in each iteration as the model expansion progresses. In
OSWireless, this is accomplished by converting the textual expression f (Tk) into a binary tree in each iteration. As
illustrated in Fig. 2, each leaf node of the resulting tree is a VBEP and the other nodes are mathematical operators. To
this end, preorder traversal is adopted to identify VBEPs. For example, given the initial expression of f (Tk) in (3), the
MathSpec Module will construct in the first iteration a binary tree with three nodes: operator “+ ”, leaf nodes log(T1)
and log(T2) + log(T3) + log(T4). Since log(Ti) is not a VBEP, the MathSpec Module further represents log(Ti) as a
tree with operator log and leaf node T1 (which is a VBEP). The tree representation stops when all the leaf nodes are
VBEPs. The process of tree representation is summarized in Algorithm 1, where the job of getCompExpr(·) in line
5 is to retrieve the operator and operands contained in a textual expression; checkVBEP(·) in line 8 determines if a
textual operand is a VBEP. Both of the two functionalities are accomplished based on the kernel services provided by
the other three modules of the WiNAS Subplane, as described below.

Finally, each of the identified VBEPs is substituted with its corresponding model defined in the ParaModel Mod-
ule. The updated f (Tk) will then be converted to a new binary tree. This procedure will be repeated until all the
behavior elements (see Definition 2) in the expression are leaf behavior elements.

4.3. Kernel Service Provision

Four types of services are provided by the OSWireless kernel. These are i) definitions of the view and behavior ele-
ments, ii) definitions of the association of behavior elements to view elements, iii) modeling of the behavior elements,
and iv) operations of the view and behavior elements, such as getCompExpr(·) and checkVBEP(·) in Algorithm 1.
These services are accomplished in three modules, i.e., NetTopo Module, QoSPara Module and ParaModel Module,
as illustrated in Fig. 3.

The objective of the NetTopo Module is to enable flexible definition of different types of view and behavior ele-
ments, characterize the coupling among the defined network elements and further associate them to the corresponding
mathematical models. This module also provides two types of control interfaces, i.e., internal interfaces among the
different modules of the WiNAS Subplane and external interfaces with the OaaS Subplane. To this end, the NetTopo
Module manages a set of view records each corresponding to a view element in V referenced by intent specifica-
tion Sint. Denote the set of the records as Rv = {Rn

v | n = 1, 2, · · · ,Nv}, where Rn
v represents the nth view record

and Nv is the total number of records. As illustrated in the top block of Fig. 3, each record Rn
v is a variable-length

7

This work has been accepted to publish in Elsevier Journal of Computer Networks

vID() Attr. 1.1, Attr. 1.2, … NetPtr 1.1, NetPtr 1.2, …

bID()

vID() Attr. 2.1, Attr. 2.2, … NetPtr 2.1, NetPtr 2.2, …

vID() Attr. n.1, Attr. n.2, … NetPtr n.1, NetPtr n.2, …

• net_elmt_register()
• net_elmt_conn()
• net_para_loader()
• checkVBEP()
• getCompExpr()

vID() Attr. 3.1, Attr. 3.2, … NetPtr 3.1, NetPtr 3.2, …

OPR

OPR

OPR

OPR

…

…

• ntwk, parent_elmt
• type: node, link, freq, flow …
• layer: app, tspt, net, link, phy
• is_leaf: 0, 1
• …

…

…

…

…

…

…

…

…

elmt_type: link, Attr. 1.1, Attr. 1.2, …

…

bID() elmt_type: link, Attr. 2.1, Attr. 2.2, …

bID() elmt_type: link, Attr. n.1, Attr. n.2, …

ParaPtr

ParaPtr

ParaPtr

ParaPtr

bID() elmt_type: flow, Attr. *.1, Attr. *.2, …

…

bID() elmt_type: flow, Attr. *.1, Attr. *.2, …

bID() elmt_type: flow, Attr. *.1, Attr. *.2, …

…

• ntwk, parent_elmt
• type: node, link, freq, flow …
• layer: app, tspt, net, link, phy
• is_leaf: 0, 1

Default
Model

(EM/SM)

Custom
Model
(EM/SM)

…

Default
Model
(EM/SM)

Custom
Model
(EM/SM)

…

Default
Model
(EM/SM)

Custom
Model
(EM/SM)

…

Capacity

Delay

Packet Loss Rate

…

NetTopo Module

QoSPara Module ParaModel Module

Rv
1

Rv
2

Rv
3

Rv
𝑛

Rb
1

Rb
2

Rb
𝑛

Rb
∗

Rb
∗

Rb
∗

bMdlPtr

bMdlPtr

bMdlPtr

bMdlPtr

bMdlPtr

bMdlPtr

Figure 3: Diagram of NetTopo, QoSPara and ParaModel modules. These three modules together provide various kernel services for
the other modules of OSWireless.

tuple, consisting of five categories of fields. These are vID(Rn
v), which is the OSWireless-wide unique ID of view

element Rn
v; vAttrList(Rn

v), which comprises the list of attributes defined for view element Rn
v, such as the name

of the element (vElmtName), the parent view element that Rn
v is associated with (vPrntElmt), whether Rn

v is a set or
an individual element (vElmtType), among others; field vNetPtr(Rn

v) consists of a set of pointers, each pointing to
another associated view element R′v ∈ V, e.g., the individual elements that form a set element; Finally, vBPtr(Rn

v),
i.e., field ParaPtr in Fig. 3, maintains the set of behavior elements attached to Rn

v and vOprPtr(Rn
v) defines the set of

the operations supported by Rn
v. It is worth mentioning that these operations are designed to enable automated expres-

sion initialization and model expansion in the MathSpec Module (e.g., checkVBEP(.)) and associate the behavior
elements defined in the QoSPara Module to the corresponding behavior element (e.g., vBElmtLoader(.)).

Similar to NetTopo Module, the QoSPara Module maintains the set of behavior elements B. Similar to the view
records, as illustrated in Fig. 3, each behavior record also consists of an OSWireless-wide unique ID bID(Rn

b) and an
attribute list bAttrList(Rn

b). Examples of these behavior attributes include bLayer(Rn
b), which provides the protocol

layer information of the behavior elements; and bHID(Rn
b), which defines the node view element that behavior element

Rn
b is associated to. This information will be provided to the OaaS Subplane for automated distributed problem

decomposition in Sec. 5.
Finally, each behavior record Rn

b ∈ B also has a bMdlPtr field, i.e., MdlPtr in Fig. 3, which is a pointer pointing
to the mathematical model of the behavior element. All the models available to a behavior element are defined in the
ParaModel Module. For each behavior element, two types of models have been defined in OSWireless: i) Expression
Model (EM), which models a behavior element using a closed-form mathematical expression; and ii) Script Model
(SM), which models a behavior element using a script. Examples for expression model and script model are given
in Fig. 4. Compared to expression models, script models can provide more flexibility in characterizing the coupling
among different behavior elements and hence are more suitable for defining more sophisticated network control prob-
lems. In Fig. 4, list str parameter denotes the list of dependent behavior elements to define a new behavior

8

This work has been accepted to publish in Elsevier Journal of Computer Networks

1 ###################################
2 ## Expression Model - Link Capacity
3 ###################################
4 lkcap_default = 'log(1+lksinr)/log(2)'
5
6 ###################################
7 ## Script Model - Session Delay
8 ## Defined using BHV element name
9 ###################################

10 def __script__str__(obj, list_str_parameter):
11 str_parameter1 = list_str_parameter[0]
12 str_parameter2 = list_str_parameter[1]
13 expr = '1/('+str_parameter1+'-('+str_parameter2+'))'
14 return expr
15
16 ###################################
17 ## Script Model - Session Delay
18 ## Defined using BHV element object
19 ###################################
20 def __script__obj__(obj, list_obj_parameter):
21 obj_name_parameter1 = list_obj_parameter[0].name
22 obj_name_parameter2 = list_obj_parameter[1].name
23 expr = '1/('+obj_name_parameter1+'-('+obj_name_parameter2+'))'
24 return expr

Link Capacity

Session Rate

Figure 4: Examples of Expression Model and Script Model.

element. Let us consider the following example, nt.install model(net name g2.ssdelay, ’script str’,

[’lkcap’, ’lkinrate’]). The format for all the built-in models will be made available to users by OSWireless
developers and the format for all third-party models integrated into OSWireless will be made available from the cor-
responding model developers. Additionally, from the figure it can be seen that script models are more general and
therefore can be easily used for defining new hierarchical script models by combining multiple low-level script mod-
els. It is worthy pointing out that a set of script models have been developed for OSWireless, based on which users
can develop their own models to characterize the behavior element for custom designed network control problems.

5. OaaS Subplane Design

With the mathematical specification Smath obtained by the WiNAS Subplane in Sec. 4, the OaaS Subplane will con-
struct in an automated manner a set of numerical solution algorithms (i.e., the algorithmic specification as illustrated
in Fig. 1) that can be executed on distributed forwarding substrates to solve Smath. Since the mathematical specifi-
cation Smath is defined centrally and possibly across multiple protocol layers, we need to convert it into distributed
algorithm specification Salg. This is done following a two-step approach. First, we decompose Smath into distributed
specifications using principles of dual and indirect decomposition. Second, we design custom algorithm templates
with placeholders that are automatically updated based on the algorithm type and the variables in the decomposed
Smath. To this end, we design the OaaS Subplane for decomposition leveraging the kernel services provided by the
WiNAS Subplane. OaaS Subplane’s architecture is illustrated in Fig. 5, which consists of two major components, i.e.,
Decomposition Engine and AlgoGen Engine.

5.1. Decomposition Engine

Simply speaking, a given textual expression f can be decomposed in two steps: i) break down f into a set of
component expressions connected with operator “+”5; and ii) assign the component expressions into different groups
corresponding to different subproblems. The first step can be accomplished based on the tree representation service
provided by the WiNAS Subplane as described in Sec. 4.2. Denote the resulting set of component expressions as

5Operator “−” is considered as part of the component expression. For example, expression x − y will be reformulated as x + (−1) ∗ y before the
tree representation.

9

This work has been accepted to publish in Elsevier Journal of Computer Networks

WiNAS

Subplane

Decomposability

Detection and

Reformulation

Decomposition Engine AlgoGen Engine

OaaS Subplane

View and Behavior Elements
Algorithmic

Specification

𝑺alg

Mathematical

Specification

𝑺math

MathSpec Module

Vertical

Decomposition

Horizontal

Decomposition

Set 𝑃distr of

Distributed

Sub-problems

Base Algorithm

Vertical Signaling Algorithm

Horizontal Penalization Algorithm

Layer and HID Info

Figure 5: Overall architecture of Optimization-as-a-Service (OaaS) Subplane.

Kcomp(f). In the second step, the component assignment is accomplished through two types of decomposition: vertical
and horizontal decomposition, based on the protocol layer and horizontal index (HID) information. These information
can also be obtained based on the kernel services provided by the WiNAS Subplane. The overall decomposition
architecture is illustrated in Fig. 5.

The objective of vertical decomposition is to uncouple the coupling among the protocol layers involved in math-
ematical specification Smath. To this end, for each component expression kcomp ∈ Kcomp(f) its associated layer is
obtained using WiNAS Subplane API bLayer(Rb(kcomp)), where Rb(kcomp) represents the VBEPs contained in com-
ponent expression kcomp. For example, for VBEP (ses, rate), i.e., the transport-layer transmission rate of a session,
the corresponding component expression will be assigned to the transport-layer subproblem. Please refer to Sec. 4.1
for the definition of VBEP and Sec. 4.3 for the field structure of element records. Denote L as the set of subproblems
obtained through vertical decomposition, with each subproblem involving one protocol layer.

Based on horizontal decomposition, each subproblem in L is further decomposed into a set of subproblems each
associated to a single node. To this end, we first introduce the notation of HID in the following definition.

Definition 3 (Horizontal Index (HID)). An HID is an identifier that can be used to identify the view network element
where another behavior or view element should be registered and managed at network run time.
Each behavior element is associated with a network view element as its HID when the behavior element is invoked for
the first time during the construction of the mathematical specification Smath. By default, the HID will be the parent
view element (i.e., parent elmt in QoSPara Module of Fig. 3) of the behavior element. For example, the HID of
behavior element link capacity will be its parent view element link; the HID of a link will be the source node

of the link. In horizontal decomposition, to assign a component expression kcomp ∈ Kcomp(f) to a distributed problem,
we only need to get its HID using WiNAS Subplane API bHID(kcomp) and further get the HID of bHID(kcomp). This
process is repeated until the HID of the view element is itself and then component expression kcomp will be assigned
to the corresponding subproblem.

It is worth pointing out that in the above decomposition process it has been assumed that expression f is decom-
posable. However, this is not always the case in wireless network modeling and optimization because of the coupled
control variables at different protocol layers and different nodes. To address this challenge, as illustrated in Fig. 5, a
Decomposability Detection and Reformulation module has been designed in the OaaS Subplane.

Decomposability Detection and Reformulation. In OSWireless, we determine the decomposability of an ex-
pression f by determining the decomposability of its component tree. As mentioned above, expression f can be
represented as a tree with a set Kcomp(f) of component expressions connected with operator “+”. Then the decom-
posability of f depends on the decomposability of each branch of the tree. This can be simply accomplished based
on the layer checking service provided by bLayer(Rb(kcomp)) and HID checking service by bHID(Rb(kcomp)). Take
vertical decomposition as an example. bLayer(·) first detects the behavior elements in kcomp and then retrieves all
the corresponding protocol layers. If different protocol layers are identified, it means the component expression is
nondecomposable and cannot be assigned to a subproblem corresponding to any specific protocol layer. How can we
still decompose the mathematical specification Smath in this case and in an automated manner?

Notice that different decomposition theories can be used to tackle the decomposability problem, such as dual
decomposition, primal decomposition, hybrid decomposition and hierarchical decomposition as well as indirect de-
composition. However, it is by no means easy to automate the decomposition based on these theories because they all
require rather complicated expertise-based analysis and reformulation of the specification expressions. In this work,

10

This work has been accepted to publish in Elsevier Journal of Computer Networks

by designing the OaaS Subplane we hope to provide the first-of-its-kind framework for automating the decomposition
of centralized network control problems based on certain decomposition theories.

Next we describe the design logic of the OaaS Subplane considering indirect decomposition and dual decomposi-
tion as examples, while the design can also be extended to other decomposition theories. Each specification (mathe-
matical) expression can be decomposed using different techniques such as dual decomposition, primal decomposition,
hybrid decomposition, among others, following their own principles. In addition to these techniques, a specification
expression can also be decomposed based on indirect decomposition by introducing auxiliary variables to i) uncouple
the coupling among the variables in a nondecomposable expression and ii) coordinate the optimization of the resulting
subproblems. Consider a toy example of the queuing delay model. If the M/M/1 model is considered, the average
response time can be expressed as a function of the link capacity and the source rate, i.e., 1

link capacity−src rate
. Here,

the model is defined for link capacity > src rate, otherwise the average delay hence the response time will be-
come infinity. This expression is not directly decomposable since link capacity and src rate operate at different
protocol layers (physical and transport, respectively), and the expression will be viewed as a single branch in the tree
representation process. Based on indirect decomposition, the auxiliary variable vaux will be introduced along with a
decomposable equality constraint vaux == link capacity − src rate. Another example of an auxiliary variable
is the Lagrangian coefficient, which can be introduced in dual decomposition to absorb the constraints into the utility
function. Technically speaking, an auxiliary variable can be assigned arbitrarily to one of the involved protocol layers
in the case of a tie. In OSWireless, the rules for auxiliary variable introduction and their assignment to different
protocol layers are defined in the Decomposition Detection and Reformulation Module (i.e., this module) and in the
behavior element models in ParaModel Module (Fig. 3).

5.2. AlgoGen Engine
Recall from (2) that the output of Phase (ii) is the distributed algorithmic specification Salg. In the OaaS Subplane,

this is accomplished by further generating automatically numerical solution algorithms to solve each of the subprob-
lems obtained above. As shown in Fig. 5, three types of algorithms will be generated, namely the base optimization
algorithm, the vertical signaling algorithm and the horizontal penalization algorithm.

A set of numerical algorithm templates have been designed in the AlgoGen Engine for base algorithm construc-
tion. Each template defines the formats for the optimization variables, the signaling parameters and the penalization
terms. To this end, we define the algorithm templates based on CogApp, an open-source content generator for exe-
cuting Python snippets in source files [53]. To construct the base algorithm, we first detect the optimization variables
present in each of the distributed problems obtained in Sec. 5.1 and substitute the detected variables into the algorithm
template. The optimization variables are specified in intent specification Sint, and the corresponding information is
stored in the behavior element in the QoSPara Module of the WiNAS Subplane and can be retrieved using WiNAS
API bVar(·) when constructing the base algorithm. Both scalar (i.e., |Vopt| = 1) and vector (i.e., |Vopt| > 1) vari-
ables can be supported by the AlgoGen Engine, where Vopt denotes the variables detected in the subproblem. The
vertical signaling parameters can be detected and substituted into the algorithm template similarly. For example, if
dual decomposition is considered, the vertical signaling parameters are the Lagrangian coefficients introduced when
constructing the dual expression of the original expression. These parameters can be updated at network run time by
a projected linear operation derived based on the corresponding constraint expression and then exchanged among the
corresponding subproblems.

The base algorithms are designed to optimize a modified version of the original utility in each of the generated
distributed subproblems. To this end, a penalization term is incorporated to the utility function to prevent a distributed
node from hurting other nodes too much. The automated generation of the penalization terms is accomplished by
converting the textual expression into the symbolic domain.

6. OSWireless Prototyping

Recall from Sec. 3 that the Algorithmic Specification Salg generated by the OaaS Subplane will be executed either
in OSWireless in the case of centralized control or the distributed forwarding substrates Sfwd in the data plane. In
this work we consider distributed control as an example while viewing centralized control as a special case with pre-
configured routing between different nodes. To this end, we implement OSWireless and deploy it over NeXT [54], a
newly designed software-defined testbed for wireless network modeling, optimization and deployment.

11

This work has been accepted to publish in Elsevier Journal of Computer Networks

PDU

OSWireless

OSWireless Kernel: WiNAS Subplane

UBSimSDR

OaaS Subplane

Int-1:
PowRate_ThrptMax

Intent Specification

…

Northbound API MathSpec Module

Southbound API

NetTopo
Module

QoSPara
Module

ParaModel
Module

Indirect Decomposition

Symbolic Computing

Switch

Int-2:
PowRate_DlyMin

Int-3:
Mob_Mov_ThrptMax

Dual Decomposition

Decomposition by Partial
Linearization

Edge Server

USRP SDRs

Switch

PDU

Figure 6: Snapshot of the software-defined testbed and software diagram for OSWireless prototyping.

A snapshot of the testbed is shown in Fig. 6. There are three major components in the NeXT testbed: edge server,
front-end SDR, and programmable protocol stack. The edge server consists of five Dell EMC R340 poweredge
workstations, each with Intel Xeon E-2246G 3.6 GHz CPU and Ubuntu v18.04. The front-end SDR consists of 20
N210 USRPs and is powered by three CyberPower PDU41001 Switched Power Distribution Units (PDU). The PDUs
have been deployed to enable remote experimentation over the testbed during the COVID-19 pandemic and further
share the testbed with the community in the future6. The edge servers and the front-end SDRs are connected using
two switches with Gigabit Ethernet cables.

A programmable protocol stack has been developed operating over the software radio forwarding substrates. Each
node can be programmed to transmit with Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK),
Gaussian Minimum Shift keying (GMSK), or other modulation schemes, based on Reed Solomon Code for forward
error correction with coding rate ranging from 0.14 to 0.30 at step of 0.02, and at transmission power that can be
adapted on the fly by controlling the transmit gain of the Field Programmable Gate Arrays (FPGA) of the USRP
SDRs. The packet length is set to 1000 bytes and the retransmission limit is set to 10 at each link; the lower and
higher packet error rate thresholds are set respectively as 0.05 and 0.15 for triggering the coding rate reconfiguration.
TCP Vegas has been implemented for transport-layer congestion control. The available spectrum band (2-2.6 GHz) is
divided into three subchannels and shared by different nodes with configurable spectrum reuse factor.

In addition to the software-defined data plane as discussed above, the OaaS Subplane is also interfaced with UB-
Sim (previously called SimBAG [55], [56]), as illustrated in Fig. 6. UBSim is a Python-based Universal Broadband
Simulator for event-driven broadband integrated aerial-ground wireless networks. UBSim comprises of four mod-
ules: Network Configuration Module (NCM), Network Element Module (NEM), Discrete Event Driver (DED), and
Algorithm Repository Module (ARM). The NCM module provides the APIs for configuring various virtual network
elements, such as the number of nodes, frequency band, bandwidth. The NEM module defines the classes for all
the network elements in a hierarchical manner. The DED module provides the discrete network simulation envi-
ronment based on the open-source library SimPy [57]. Finally, the ARM module is the place where the algorithms
automatically generated by the OaaS Subplane are deployed and executed at network run time.

Finally, we develop OSWireless and deploy it on one of the workstations as indicated by the yellow rectangle
in Fig. 6, including the WiNAS Subplane (Sec. 4) and the OaaS Subplane (Sec. 5). For the SDR data plane, the
other workstations serve as the controlling hosts of the front-end SDRs for baseband signal processing and run the
distributed control programs automatically generated by OSWireless to adapt the transmission parameters at different

6Currently we are extending the NeXT testbed to enable experiments for integrated aerial-ground wireless networks and make the testbed
publicly accessible by interfacing it with a public cloud Amazon Web Service (AWS).

12

This work has been accepted to publish in Elsevier Journal of Computer Networks

SESSION 1 SESSION 2# NODE INDEX

5

1 2

6

3

7

4

8

D-Link Switch

Power Distribution
Unit

TP-Link
Router

SCENARIO 1 SCENARIO 2 SCENARIO 3

Figure 7: Network topology for OSWireless testing over NeXT testbed.

layers of the programmable protocol stack. For the UBSim data plane, UBSim shares the same server with OSWire-
less. Based on the kernel APIs provided the WiNAS Subplane, we prototype the OaaS Subplane by automating a
set of widely adopted decomposition techniques for demonstration purpose, including dual decomposition, indirect
decomposition and decomposition by partial linearization, while OSWireless can also be extended to incorporate
other decomposition techniques. The symbolic mathematical operations required by the decomposition automation
has been based on open-source symbolic computing library SymPy [58]. Based on the OSWireless prototype, next
we conduct a series of experiments to test the effectiveness and flexibility of OSWireless in hiding the specification
complexity for software-defined wireless networks.

7. Experimental Evaluation

In this section we aim to i) showcase how OSWireless can be used to hide the specification complexity by convert-
ing automatically a given control intent (what to do) to operational control programs (how to do it); and ii) understand
how effective the automatically generated control programs are at network run time. To this end we conduct a series
of experiments over the NeXT testbed considering network control problems at different protocol layers. OSWireless
is designed to support cross-layer optimization of different wireless networks with ad-hoc or infrastructure-based ar-
chitectures. In this paper, as a proof of concept, we have considered an ad-hoc wireless network topology. However,
we expect that OSWireless can be deployed for any architecture.

7.1. Experiment 1: MSMH PowRate ThrptMax
In the first experiment, we consider network scenarios of device-to-device (D2D) communications, an important

technique that can enable a wide set of new applications in NextG and IoT networks, such as sensor and actuator
networks [59, 60] , vehicular networks [61, 62], and wireless backhaul networks [63]. In this work, we consider three
scenarios as shown in Fig. 7. In each scenario, two source nodes communicate with their destination nodes via a set
of relay nodes. The available subchannels are assigned to the nodes with spectrum reuse factor of 1/2. The control
objective in this scenario is to maximize the sum end-to-end throughput of the two sessions by jointly controlling the
transmission power of the nodes at the physical layer and source rate at the transport layer, subject to proportional
fairness between the two sessions. We refer to this scenario as MSMH PowRate ThrptMax, where the first field
(MSMH) represents the multi-session multi-hop network topology, the second field indicates the control variables,
and the last field is the control objective. The same naming convention will be adopted for the other scenarios for
easier source code sharing in the future. Next we first showcase how to define the intent specification based on the
kernel APIs provided by OSWireless.

Figure 8(a) shows the main body of the intent specification for control problem MSMH PowRate ThrptMax writ-
ten in Python 3.0, i.e., what to do described using the high-level APIs provided by the OSWireless kernel WiNAS
Subplane. As shown in Fig. 8(a) line 5 represent the initialization of a blank network control problem. Furthermore.
it can be seen that the network behavior description, including the specification of the network utility, constraints
and control variables, can be accomplished by referring to three types of behavior elements and their associated view
elements using the APIs. These behavior elements are ssrate (source rate of a session), lkcap (link capacity) and

13

This work has been accepted to publish in Elsevier Journal of Computer Networks

Base Optimization Algorithms

Vertical
Signaling

Algorithms

Horizontal
Signaling

Algorithms

(a) (b)

Figure 8: Example network control problem MSMH PowRate ThrptMax. (a) What to do: Intent specification written in Python
3.0. This is specified by network engineer in a centralized manner using OSWireless APIs and executed on the edge server running
OSWireless (the yellow rectangle in Fig. 6); (b) How to do it: Automatically generated distributed control programs for different
Software-Defined Radio (SDR) nodes at physical (starting with “ phy”) and transport (starting with “ tspt”) layers, Lagrangian
coefficient updating algorithms (starting with “lag”), and penalization algorithms (starting with “pnl”). Node indices are indicated
in the file names and the corresponding deployment is shown in Scenario 1 in Fig. 7. No control programs are generated for nodes
4 and 8 because they are destination nodes.

lkpwr (transmission power for a link), as indicated by the solid ellipses in Fig. 8(a) (lines 9, 19 and 28). Notice
that there is no need to specify explicitly the low-level coupling among these view elements, e.g., the mathematical
model of lkcap as a function of lkpwr, or their association to different protocol layers. Instead, this coupling will be
integrated to the initial (original) expression defined by the intent specification (i.e., expr ori in line 6) through the
expression expansion operation in the MathSpec Module (see Fig. 2). The resulting expanded expression is recorded
in expr xpd (Fig. 8(a), line 6). In lines 13 and 19, we get the expression for the behavior element ssrate and lkcap

using get expr new API. We then add the necessary operands and operators to construct the expressions as shown in
lines 10, 11, 23 and 25. We then record the expression using record expr API (lines 13 and 26). A unique name is
assigned to each expression automatically by OSWireless and does not require any input from the user. In line 14, we
set the utility function using set utlt API (line 14). All other expressions recorded will be automatically considered
as constraints. Finally, we set the optimization variables ssrate and lkpwr using set var API (lines 27 and 28)
which corresponds to network control problem (MSMH PowRate ThrptMax) of maximizing throughput by optimiz-
ing link power (lkpwr) and session rate ssrate. After specifying utility and constraints, the operational distributed
optimization algorithms can be automatically generated by simply calling the following three lines of code:
1. vdcp = xlydcp.ncp xlayer decomp(nt ctl),
2. hdcp = dstdcp.ncp dist decomp(vdcp),
3. ag.alg gen(hdcp),
where nt ctl (line 1) stores the centralized intent specification; vdcp and hdcp are the specifications after vertical
(line 1) and horizontal (line 2) decomposition, respectively; line 3 generates the operational optimization algorithms.
The list of available key view elements and its corresponding behavior elements are reported in Table. 1. All the key
high-level APIs exposed to users are presented in Table. 2.

It is worth pointing out that the centralized high-level specification in Fig. 8(a) is all that is needed for OSWireless
to generate the operational distributed cross-layer control programs for MSMH PowRate ThrptMax, while all the spec-
ification complexity of the mathematical specification Smath and algorithmic specification Salg will be orchestrated by
OSWireless in an automated manner and hidden from the network engineers. The file directory of the automatically

14

This work has been accepted to publish in Elsevier Journal of Computer Networks

generated algorithm specification Salg is shown in Fig.8(b) for each node at different protocol layers (physical and
transport in this experiment), which consists of base optimization algorithms, Lagrangian updating algorithms for
vertical signaling among protocol layers, and horizontal penalization algorithms which forms the forwaring specifica-
tion Sfwd. These programs will be loaded to the control hosts (i.e., the edge server in Fig. 6) and executed to control
the distributed USRP SDRs at network run time. As in traditional SDN domain, all the forwarding rules Sfwd and
network behavior are defined as tuples of source and destination IP addresses as well as their port numbers.

View Element Behavior Element
Link Power (lkpwr)
Link SINR (lksinr)

Link Distance (lkdist)
Link Gain (lkgain)

Link Interference (lkitf)
Link Aggregare Link Rate (lkinrate)

Link Capacity (lkcap)
Link Delay (lkdelay)

Link Tx Coordinates (coord x, coord y, coord z)
Link Rx Coordinates (fx coord x, fx coord x, fx coord x)

Session Session Rate (ssrate)
Session Delay (ssdelay)

Table 1: List of key View and Behavior Elements.

API/Function Name Description Arguments
attach Attach network elements elmnt name str, elmnt num int,

addi info dict

connect Connect network elements new elmnt name str,

[elmnt 1 str, elmnt 2 str])

install model Install behavior models bhv elmnt name str,

mdl name str, depend elmnt list

get expr Get expression ntwk bhv name str, elmnt name str

mkexpr Make expression operand1 dict, operand2 dict

operator str

record expr Record expression expr dict, depend elmt str

set para Set utility, constraint expressions and optimization variables para str or list, para type str

ncp xlayer decomp Cross-Layer Decomposition ncp obj

ncp dist decomp Distributed Decomposition vert decomp obj

alg gen Algorithm Generation dist decomp obj

Table 2: List of key high-level API/Functions and its arguments.

Figure 9 shows the end-to-end throughput performance of the control programs automatically generated by OS-
Wireless. The instantaneous throughput is reported in Fig. 9 (a) considering Scenario 1 (see Fig. 7) as an example.
It can be seen that significant throughput gain (around 300%) can be achieved compared to the benchmark scheme
(Benchmark 1), based on which the hardware transmit gain of the USRP SDRs is set to 15 dB (the middle of the
range) and no rate or power adaptations are considered. Figure 10 reports the corresponding instantaneous throughput
and transmission power. Figs. 10 (a) and (b) show the instantaneous throughput of session 1 (red curve) and 2 (blue
curve), respectively. The black curve shows the average throughput of the respective sessions. Fig. 10 (c) show the
instantaneous transmission power of source (SRC 1) and two relay nodes (RLY 11 and RLY 12) of Session 1. From
both the figures, we can see that, the algorithm generated by OSWireless can achieve an optimized the throughput of
4.5 pkts/s for Session 1 and 5 pkts/s for Session 2. Similarly, Fig. 10 (d) show the instantaneous transmission power
of source (SRC 2) and two relay nodes (RLY 21 and RLY 22) of Session 2. We can see that each node optimizes
its own transmission power such that the overall interference caused to other session is minimized. For example, for
both the sessions, the initial transmission power of all the transmitting nodes are set to 15 dB, but with OSWireless
optimization algorithm, the transmission powers of SRC 1, RLY11, RLY12 are optimized to ∼6.5 dB, ∼12.5 dB and
∼7.5 dB, respectively. Similar performance can also be observed for Session 2. The average performance is plotted in
Fig. 9 (b) for the three scenarios by averaging over 10 experiments. Three more benchmark schemes are considered in

15

This work has been accepted to publish in Elsevier Journal of Computer Networks

0 50 100 150 200 250
Time (s)

0

1

2

3

4

5

6

En
d-

to
-E

nd
 T

hr
ou

gh
pu

t (
pk

ts
/s

)

No Optimization (Average of Session 1 and 2)
Optimized Session 1
Optimized Session 2

216%
higher

140%
higher

116%
higher

176%
higher

(a) (b)

Figure 9: (a) Single-run running average and (b) multi-run average end-to-end throughput achieved by OSWireless generated control
programs for MSMH PowRate ThrptMax.

0 50 100 150 200 250
Time (s)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (p

kt
s/

s)

Instantaneous Throughput
Running Average

0 50 100 150 200 250
Time (s)

0

5

10

15

20

Th
ro

ug
hp

ut
 (p

kt
s/

s)

Instantaneous Throughput
Running Average

0 25 50 75 100 125 150 175
Time (s)

6

8

10

12

14

16
Av

er
ag

e
Po

we
r (

dB
)

SRC 1
RLY 11
RLY 12

0 25 50 75 100 125 150 175
Time (s)

8

10

12

14

Av
er

ag
e

Po
we

r (
dB

)

SRC 2
RLY 21
RLY22

(a) (b) (c) (d)

Figure 10: Instantaneous throughput of (a) Session 1 and (b) Session 2; (c)(d): Instantaneous transmission power resulting from
MSMH PowRate ThrptMax in Scenario 1.

addition to that in Fig. 9 (a). These are Benchmark 2: maximum hardware transmit gain for the USRP SDRs (25 dB)
and maximum source rate; Benchmark 3: fixed transmission power (15 dB) with adaptive source rate; and Benchmark
4: power adaptation subject to the target end-to-end throughput. It can be seen that OSWireless outperforms all the
four benchmark schemes, which validates the effectiveness of automatically-generated control programs.

7.2. Experiment 2: MSMH PwrRate DlyMin
In the above experiment we have showcased through a toy example the operation of OSWireless, including intent

specification, automated generation of the corresponding mathematical specification as well as the effectiveness of
the resulting distributed control programs. In that example, the control variables ssrate and lkpwr are only loosely
coupled through the network flow conservation constraint for each link (lines 17-26 in Fig. 8(a)) and hence can be
decoupled vertically after constructing the corresponding dual problem of the mathematical specification. In the
following experiments, we further test the flexibility of OSWireless in control intent definition considering more
sophisticated control problems.

In this experiment, referred to as MSMH PwrRate DlyMin, the control objective is to minimize the average end-
to-end delay of concurrent sessions in a multi-session multi-hop network, by jointly controlling the source rate at
the transport layer and transmission power of the nodes at the physical layer under minimum end-to-end throughput
constraints for each session. The M/M/1 queuing model [64] is considered for each session. In this case, the session
rate ssrate and link capacity lkcap (hence the transmission power lkpwr) are closely coupled in the utility function
through the queuing model - they both appear in the denominator of the model 1

lkcap(lkpwr)−ssrate , and the resulting
mathematical specification cannot be decomposed directly.

Fortunately, OSWireless can hide most of the specification complexity. Specifically, network engineer only needs
to define the control intent by simply calling the model installation API provided by the OSWireless kernel WiNAS
Subplane: “nt.install model(sess, ssdelay, mm1)”, where sess, ssdelay and mm1 are respectively the view

16

This work has been accepted to publish in Elsevier Journal of Computer Networks

Throughput Threshold for Session 1

Throughput Threshold for Session 2

0 50 100 150 200 250
Time (s)

0.05

0.10

0.15

0.20

0.25

0.30

En
d-

to
-E

nd
 D

el
ay

 (s
)

Session 1
Session 2 5x lower

3.5x lower

2.5x lower

(a) (b) (c)

Figure 11: Instantaneous (a) transmission rate and (b) end-to-end delay; (c) average end-to-end delay.

element, behavior element and the parameter model defined in the NetTopo, QoSPara and ParaModel modules of the
WiNAS Subplane, as illustrated in Fig. 3. Then, as described in Sec. 5.1, the resulting mathematical specification
will be analyzed for decomposability, reformulated by introducing auxiliary vertical signaling variables to uncouple
the coupling between lkpwr and ssrate in the queuing model, and finally decompose the obtained network control
problem based on indirect decomposition. Notice that all these operations except the intent specification are conducted
automatically by OSWireless rather than manually based on traditional network control. Hence, the specification
complexity is hidden from the network engineers.

The delay performance of the obtained algorithmic specification is reported in Fig. 11. In the experiment, we
consider low-data-rate latency-critical applications, with the target end-to-end throughput set to 1.5 kbps and 3 kbps
for the two sessions, respectively. From Figs. 11 (a) it can be seen that the end-to-end delay can be effectively reduced
for both of the two sessions. The corresponding end-to-end delay is plotted in Fig. 11 (b). We can see that the target
end-to-end throughput can be assured for them both as the delay is minimized. In Fig. 11 (b) we compare OSWireless
to three benchmark schemes: benchmarks 1, 2 and 3 in Experiment 1 but tailored for this experiment. The results are
obtained by averaging over 10 experiments. We can see that an average delay of 0.14 s can be achieved by OSWireless,
which is 5x, 3.5x and 2.5x lower than the three benchmark schemes, respectively. This experiment further verifies the
correctness of the control programs automatically generated by OSWireless and hence its capability and flexibility in
hiding the specification complexity for more sophisticated network control intents.

7.3. Experiment 3: MSMH Mob Mov ThrptMax

In this experiment we further test OSWireless by considering mobile scenarios based on emulations on UBSim.
Three scenarios (Scenarios 4, 5 and 6) are considered as shown in Fig. 12.7 In each scenario, the locations of the
nodes are randomly initialized. The control objective is to maximize the end-to-end throughput of concurrent ses-
sions by jointly controlling the source rate and the movement of the relay nodes. Notice that the locations of the
source and destination nodes are considered to be fixed during the experiments. We refer to this experiment as
MSMH Mob Mov ThrptMax. The rationale behind considering mobile relay nodes while having fixed source and
destination nodes is to mimic a network scenario where a intermediate base station between two ground base stations
gets damaged due to natural disaster or due to technical failures. In this case, we need an optimization algorithm to
temporarily deploy UAVs between the fixed ground base stations to provide essential services to the users.

Based on OSWireless, the control intent in this experiment can be defined similarly as in Fig. 8(a). The only major
modification is to specify node coordinates coord x and coord y as control variables. This can be done by simply
using the APIs provided by the OSWireless kernel WiNAS Subplane: nt ctl.set var(net name.coord x) and
nt ctl.set var (net name.coord y). Figure 12 reports the optimized node locations, where the initial locations
of the relay nodes of Sessions 1 and 2 are represented using blue solid circles and green ‘x’s, respectively. The
movements of the relay nodes are indicated using dotted arrows. The corresponding end-to-end throughput is shown

7The network scenario index starts from 4 to avoid confusion with the three scenarios in Fig. 7.

17

This work has been accepted to publish in Elsevier Journal of Computer Networks

(a) (b) (c)

Figure 12: Optimized location for (a) Scenario 4, (b) Scenario 5 and (c) Scenario 6.

0 100 200 300 400 500
Iteration Index

60

80

100

120

140

160

180

200

En
d-

to
-E

nd
 T

hr
ou

gh
pu

t (
Kb

ps
)

Session 1
Session 2

0 100 200 300 400 500
Iteration Index

25

50

75

100

125

150

175

200

En
d-

to
-E

nd
 T

hr
ou

gh
pu

t (
Kb

ps
)

Session 1
Session 2

0 100 200 300 400 500
Iteration Index

25

50

75

100

125

150

175

200

En
d-

to
-E

nd
 T

hr
ou

gh
pu

t (
Kb

ps
)

Session 1
Session 2

(a) (b) (c)

Figure 13: End-to-end throughput for (a) Scenario 4, (b) Scenario 5 and (c) Scenario 6.

in Fig. 13. It can be seen that, in all the tested scenarios, both of the two sessions are able to achieve the maximum
end-to-end throughput of 200 kbps in around 200 time slots. This further verifies the flexibility and effectiveness of
OSWireless in control intent specification.

8. Limitations and Future Work

We believe that our work on OSWireless provides a new approach to hiding the specification complexity for
software-defined wireless networks. However, we acknowledge that there are several limitations, which will be ad-
dressed in future work.

Standardization of Interfaces. As discussed in Sec. 3, at the core of OSWireless is to separate those func-
tionalities required by mapping intent specifications to the corresponding forwarding specifications and accomplish
each functionality based on the services provided by the other functionalities. In the current implementation of OS-
Wireless, while different modules have been developed for these functionalities, standardized interfaces among them
are still missing that can allow third-party theoretical researchers, system engineers and field operation engineers to
collaborate within the OSWireless framework.

Domain Knowledge-Integrated Data-driven Modeling. As discussed in the ParaModel Module of the WiNAS
Subplane (Sec. 4), OSWireless currently supports two types of network element models: expression and script mod-
els. Both of the two types assume that the model can be defined analytically. To support better zero-touch control
in heterogeneous wireless networks with more sophisticated control objectives and scenarios as well as more ad-
vanced standard-compliant radio interfaces (e.g., 5G NR), in future work the ParaModel Module can be extended
by incorporating data-driven modeling, e.g., based on function approximation using neural networks, and integrating
expert domain knowledge, including analytical models, cross-layer control and distributed control, with data-driven
modeling.

Automated Control Intent Specification. In this work, while the mapping from intent specification to the al-
gorithmic specification has been automated, the control intents are still specified manually by network engineers.

18

This work has been accepted to publish in Elsevier Journal of Computer Networks

An interesting research direction is to automate this process as well for those scenarios requiring fast response, e.g.,
resilient networking in the presence of disruptive events or contested networking.

9. Conclusions

In this work we have designed OSWireless, a new control plane for optimizing software-defined wireless networks
with automated control program generation capabilities. We verified experimentally the effectiveness and flexibility
of OSWireless in hiding specification complexity. We believe OSWireless can provide a new approach to hiding
the specification complexity for optimizing software-defined wireless networks and hence accelerate the research
towards zero-touch programmable networks. In future work we will i) incorporate AI/ML-based data-driven network
control in OSWireless and further design specification APIs to enable automated control with integrated optimization
and learning; ii) test the effectiveness and flexibility of OSWireless considering wireless networks with standards-
compliant radio interfaces, such as 5G based swarm UAV networks [65]; iii) standardize the interfaces among different
OSWireless modules to allow third-party theoretical researchers, system engineers and field operation engineers to
collaborate within the framework of OSWireless; (iv) allow dynamic configuration of intent and addition/removal
of nodes from the network at run time; (v) allow definition of multiple applications per node with different network
control objective and (vi) extend OSWireless to support complex network toplogies introduced in our prior research
[55], [56] and [66]. The source code of OSWireless is available in our lab GitHub page [27]. We will prepare an
instruction manual and make it available to the community once our system is further matured, so that researchers in
different areas of expertise can use OSWireless.

References

[1] S. K. Moorthy, Z. Guan, N. Mastronarde, E. S. Bentley, M. Medley, OSWireless: Enhancing Automation for Optimizing Intent-Driven
Software-Defined Wireless Networks, in: Proc. of IEEE International Conference on Mobile Ad-Hoc and Smart Systems (MASS), Denver,
Colorado, 2022.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling Innovation in
Campus Networks, SIGCOMM Computer Communications Review 38 (2) (2008) 69–74.

[3] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, W. Chou, A Roadmap for Traffic Engineering in SDN-OpenFlow Networks, Computer Network
(Elsevier) Journal 71 (2014) 1–30.

[4] I. T. Haque, N. Abu-Ghazaleh, Wireless Software Defined Networking: A Survey and Taxonomy, IEEE Communications Surveys & Tutorials
18 (4) (2016) 2713–2737.

[5] W. Wang, Y. Chen, Q. Zhang, T. Jiang, A Software-Defined Wireless Networking Enabled Spectrum Management Architecture, IEEE Com-
munications Magazine 54 (1) (2017) 33–39.

[6] Y. Hu, W. Wendong, X. Gong, X. Que, C. Shiduan, Reliability-Aware Controller Placement for Software-Defined Networks, in: Proc. of
IFIP/IEEE International Symposium on Integrated Network Management, Ghent, Belgium, 2013.

[7] M. Ambrosin, M. Conti, F. De G., R. Poovendran, LineSwitch: Tackling Control Plane Saturation Attacks in Software-Defined Networking,
IEEE/ACM Transactions on Networking 25 (3) (2017) 1206–1219.

[8] S. H. Yeganeh, A. Tootoonchian, Y. Ganjali, On Scalability of Software-Defined Networking, IEEE Communications Magazine 51 (2) (Feb.
2013) 136–141.

[9] A. Montazerolghaem, M. H. Y. Moghaddam, A. Leon-Garcia, OpenSIP: Toward Software-Defined SIP Networking, IEEE Transactions on
Network and Service Management 15 (1) (2018) 184–199.

[10] L. E. Li, Z. M. Mao, J. Rexford, Toward Software-Defined Cellular Networks, in: Proc. of European Workshop on Software Defined Net-
working (EWSDN), Darmstadt, Germany, 2012.

[11] S. R. Chowdhury, M. F. Bari, R. Ahmed, R. Boutaba, PayLess: A Low Cost Network Monitoring Framework for Software Defined Networks,
in: Proc. of IEEE/IFIP Network Operations and Management Symposium (NOMS), Krakow, Poland, 2014.

[12] X. Ge, Z. Li, S. Li, 5G Software Defined Vehicular Networks, IEEE Communications Magazine 55 (7) (2017) 87–93.
[13] S. Bera, S. Misra, S. K. Roy, M. S. Obaidat, Soft-WSN: Software-Defined WSN Management System for IoT Applications, IEEE Systems

Journal 2 (3) (2018) 2074–2081.
[14] A. Gudipati, D. Perry, L. E. Li, S. Katti, SoftRAN: Software Defined Radio Access Network, in: Proc. of HotSDN, Hong Kong, China, 2013.
[15] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,

A. Vahdat, B4: Experience With a Globally-Deployed Software Defined WAN, in: Proc. of the ACM SIGCOMM, Hong Kong, China, 2013.
[16] M. Jimenez, H. Kwok, Building Express Backbone: Facebook’s New Long-haul Network, 2017.

URL https://code.facebook.com/posts/1782709872057497/

[17] A. D. Ferguson, S. Gribble, C. Hong, C. Killian, W. Mohsin, H. Muehe, J. Ong, L. Poutievski, A. Singh, L. Vicisano, R. Alimi, S. S. Chen,
M. Conley, S. Mandal, K. Nagaraj, K. N. Bollineni, A. Sabaa, S. Zhang, N. Zhu, A. Vahdat, Orion: Google’s Software-Defined Networking
Control Plane, in: Proc of the USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2021.

[18] Z. Shi, Y. Tian, X. Wang, J. Pan, X. Zhang, Po-Fi: Facilitating innovations on WiFi networks with an SDN approach, Elsevier Computer
Networks 187 (2021) 107781.

19

This work has been accepted to publish in Elsevier Journal of Computer Networks

[19] B. Cao, Y. Li, C. Wang, G. Feng, S. Qin, Y. Zhou, Resource Allocation in Software Defined Wireless Networks, IEEE Network 31 (1) (2017)
44–51.

[20] Open Networking Foundation, OpenFlow Switch Specification (Oct. 2013).
[21] D. E. Sarmiento, A. Lebre, L. Nussbaum, A. Chari, Decentralized SDN Control Plane for a Distributed Cloud-Edge Infrastructure: A Survey,

IEEE Communications Surveys & Tutorials 23 (1) (2021) 256–281.
[22] M. Priyadarsini, P. Bera, Software Defined Networking Architecture, Traffic Management, Security, and Placement: A Survey, Computer

Networks (Elsevier) 192 (June 2021).
[23] Huawei, Autonomous Driving Network - Building Self-Fulfilling, Self-Healing, and Self-Optimizing Autonomous Networks, Striding To-

wards the Intelligent World White Paper (2019).
[24] L. Pang, C. Yang, D. Chen, Y. Song, M. Guizani, A Survey on Intent-Driven Networks, IEEE Access 8 (2020) 22862–22873.
[25] D. Palomar, M. Chiang, A tutorial on decomposition methods for network utility maximization, IEEE Journal on Selected Areas in Commu-

nications 24 (8) (2006) 1439–1451. doi:10.1109/JSAC.2006.879350.
[26] G. Scutari and Y. Sun, Parallel and Distributed Successive Convex Approximiation Methods for Big-Data Optimization, Lecture Notes in

Mathematics, C.I.M.E, Springer Verlag Series (2018).
[27] https://github.com/ubwingslab/OSWireless G1 (2023).
[28] Open RAN Alliance, O-RAN: Towards an Open and Smart RAN, white paper (October 2018).
[29] S. Niknam, A. Roy, H. S. Dhillon, S. Singh, R. Banerji, J. H. Reed, N. Saxena, S. Yoon, Intelligent O-RAN for Beyond 5G and 6G Wireless

Networks, arXiv.org (May 2020).
URL https://arxiv.org/pdf/2005.08374.pdf

[30] H. Kang, V. Yegneswaran, S. Ghosh, P. Porras, S. Shin, Automated Permission Model Generation for Securing SDN Control-Plane, IEEE
Transactions on Information Forensics and Security 15 (2020) 1668–1682.

[31] M. Gharbaoui, B. Martini, P. Castoldi, Implementation of an Intent Layer for SDN-enabled and QoS-Aware Network Slicing, in: Proc. of
IEEE International Conference on Network Softwarization (NetSoft), Tokyo, Japan, 2021.

[32] E. O. Zaballa, D. Franco, E. Jacob, M. Higuero, M. S. Berger, Automation of Modular and Programmable Control and Data Plane SDN
Networks, in: Proc. of International Conference on Network and Service Management (CNSM), Izmir, Turkey, 2021.

[33] L. Bonati, M. Polese, S. D’Oro, S. Basagni, T. Melodia, Open, Programmable, and Virtualized 5G Networks: State-of-the-Art and the Road
Ahead, Computer Networks 182 (2020) 1–28.

[34] Platforms for Advanced Wireless Research (PAWR) Program.
URL https://advancedwireless.org/

[35] J. Breen, A. Buffmire, J. Duerig, K. Dutt, E. Eide, M. Hibler, D. Johnson, S. K. Kasera, E. Lewis, D. Maas, A. Orange, N. Patwari, D. Reading,
R. Ricci, D. Schurig, L. B. Stoller, J. Van der Merwe, K. Webb, G. Wong, POWDER: Platform for Open Wireless Data-Driven Experimental
Research, in: Proc. of ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation Characterization (WiNTECH),
London, United Kingdom, 2020.

[36] D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen, J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy,
S. Maheshwari, P. Skrimponis, C. Gutterman, Challenge: COSMOS: A City-Scale Programmable Testbed for Experimentation with Ad-
vanced Wireless, in: Proc. of International Conference on Mobile Computing and Networking, London, United Kingdom, 2020.

[37] M. L. Sichitiu, I. Guvenc, R. Dutta, V. Marojevic, B. Floyd, AERPAW Emulation Overview, in: Proc. of ACM International Workshop on
Wireless Network Testbeds, Experimental Evaluation Characterization (WiNTECH), London, United Kingdom, 2020.

[38] G. Hampel, D. Abush-Magder, A. Diaz, L. M. Drabeck, M. J. Flanagan, J. M. Graybeal, J. D. Hobby, M. MacDonald, P. A. Polakos,
J. Srinivasan, H. Trickey, L. Zhang, G. Rittenhouse, The New Paradigm for Wireless Network Optimization: A Synergy of Automated
Processes and Human Intervention, IEEE Communications Magazine 43 (3) (2005) S14–S21.

[39] L. S. Bai, R. P. Dick, P. H. Chou, P. A. Dinda, Automated Construction of Fast and Accurate System-Level Models For Wireless Sensor
Networks, in: Proc. of Design, Automation Test in Europe, Grenoble, France, 2011.

[40] C. Di Martino, M. Cinque, D. Cotroneo, Automated Generation of Performance and Dependability Models for the Assessment of Wireless
Sensor Networks, IEEE Transactions on Computers 61 (6) (2012) 870–884.

[41] M. Ge, J. B. Hong, W. Guttmann, D. S.Kim, A Framework for Automating Security Analysis of the Internet of Things, Journal of Network
and Computer Applications 83 (2017) 12–27.

[42] K. Gökarslan, Menes: Towards a Generic, Fully-Automated Test and Validation Platform for Wireless Networks, arXiv:2006.02270 (2020).
URL https://arxiv.org/abs/2006.02270

[43] S. Harte, E. Popovici, B. O’Flynn, C. O’Mathúna, THAWS: Automated Design and Deployment of Heterogeneous Wireless Sensor Networks,
WSEAS Transactions on Circuits and Systems archive 7 (2008) 829–838.

[44] J. Beutel, M. Dyer, R. Lim, C. Plessl, M. Wohrle, M. Yucel, L. Thiele, Automated Wireless Sensor Network Testing, in: Proc. of International
Conference on Networked Sensing Systems, Braunschweig, Germany, 2007.

[45] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, N. D. Freitas, Learning to Learn by Gradient
Descent by Gradient Descent, in: Proc. of International Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain,
2016.

[46] S. Salman, C. Streiffer, H. Chen, T. Benson, A. Kadav, DeepConf: Automating Data Center Network Topologies Management with Machine
Learning, in: Proc. of Workshop on Network Meets AI ML, Budapest, Hungary, 2018.

[47] R. Shimizu, K. Tei, Y. Fukazawa, S. Honiden, Model Driven Development for Rapid Prototyping and Optimization of Wireless Sensor
Network Applications, in: Proc. of Workshop on Software Engineering for Sensor Network Applications, Waikiki, Honolulu, HI, 2011.

[48] H. Deng, Q. Li, Y. Li, S. Lu, C. Peng, T. Raza, Z. Tan, Z. Yuan, Z. Zhang, Towards Automated Intelligence in 5G Systems, in: Proc. of
International Conference on Computer Communication and Networks (ICCCN), Vancouver, BC, 2017.

[49] L. Bertizzolo, S. D’Oro, L. Ferranti, L. Bonati, E. Demirors, Z. Guan, T. Melodia, and S. Pudlewski, SwarmControl: An Automated Dis-
tributed Control Framework for Self-Optimizing Drone Networks, in: Proc. of IEEE International Conference on Computer Communications
(INFOCOM), Toronto, Canada, 2020.

20

This work has been accepted to publish in Elsevier Journal of Computer Networks

[50] Z. Guan, L. Bertizzolo, E. Demirors, T. Melodia, WNOS: An Optimization-based Wireless Network Operating System, in: Proc. of ACM
International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), Los Angeles, USA, 2018.

[51] Z. Guan, L. Bertizzolo, E. Demirors, T. Melodia, WNOS: Enabling Principled Software-Defined Wireless Networking, IEEE/ACM Transac-
tions on Networking 29 (3) (2021) 1391–1407.

[52] L. Bonati, S. D’Oro, L. Bertizzolo, E. Demirors, Z. Guan, S. Basagni, T. Melodia, CellOS: Zero-touch Softwarized Open Cellular Networks,
Computer Networks (COMNET) 180 (Oct. 2020).

[53] https://pypi.python.org/pypi/cogapp (2019).
[54] J. Hu, M. McManus, S. K. Moorthy, Y. Cui, Z. Guan, N. Mastronarde, E. S. Bentley, M. Medley, NeXT: A Software-Defined Testbed

with Integrated Optimization, Simulation and Experimentation, in: Proc. of IEEE Future Networks World Forum (FNWF): WS5: Federated
Testbed as a Service for Future Networks: Challenges the State of the Art, Montreal, Canada, 2022.

[55] S. K. Moorthy, Z. Guan, Beam Learning in MmWave/THz-band Drone Networks Under In-Flight Mobility Uncertainties, IEEE Transactions
on Mobile Computing 21 (6) (2022) 1945–1957.

[56] S. K. Moorthy, M. McManus, Z. Guan, ESN Reinforcement Learning for Spectrum and Flight Control in THz-Enabled Drone Networks,
IEEE/ACM Transactions on Networking 30 (2) (2022) 782–795.

[57] https://pypi.org/project/simpy/ (2020).
[58] https://www.sympy.org/en/index.html (2021).
[59] A. Badi, I. Mahgoub, ReapIoT: Reliable, Energy-Aware Network Protocol for Large-Scale Internet-of-Things (IoT) Applications, IEEE

Internet of Things Journal 8 (17) (2021) 13582–13592.
[60] M. La Manna, P. Perazzo, G. Dini, SEA-BREW: A scalable Attribute-Based Encryption revocable scheme for low-bitrate IoT wireless

networks, Journal of Information Security and Applications 58 (2021) 102692.
[61] L. Zhao, T. Zheng, M. Lin, A. Hawbani, J. Shang, C. Fan, SPIDER: A Social Computing Inspired Predictive Routing Scheme for Softwarized

Vehicular Networks, IEEE Transactions on Intelligent Transportation Systems (2021) 1–12.
[62] H. Zeng, H. Pirayesh, P. K. Sangdeh, A. Quadri, VehCom: Delay-Guaranteed Message Broadcast for Large-Scale Vehicular Networks, IEEE

Transactions on Wireless Communications 20 (6) (2021) 3883–3896.
[63] R. K. Sheshadri, E. Chai, K. Sundaresan, S. Rangarajan, SkyHaul: An Autonomous Gigabit Network Fabric in the Sky, arXiv:2006.11307

(2020).
URL https://arxiv.org/abs/2006.11307

[64] D. Bertsekas, R. Gallager, Data Networks, Prentice Hall, USA, 2000.
[65] Z. Guan, N. Cen, T. Melodia, S. Pudlewski, Joint Power, Association and Flight Control for Massive-MIMO Self-Organizing Flying Drones,

IEEE/ACM Transactions on Networking 28 (4) (2020) 1491–1505.
[66] S. K. Moorthy, Z. Guan, S. Pudlewski, E. S. Bentley, FlyBeam: Echo State Learning for Joint Flight and Beamforming Control in Wireless

UAV Networks, in: Proc. of IEEE International Conference on Communications (ICC), Virtual/Montreal, Canada, 2021.

Sabarish Krishna Moorthy is a Ph.D. student in the Department of Electrical Engineering at
State University of New York at Buffalo (SUNY B̃uffalo), NY, USA. He is currently working
in the UB WINGS lab under the guidance of Professor Zhangyu Guan. He received his B.E.
degree in Electronics and Communication Engineering and M.S. in Electrical Engineering from
Velammal Engineering College, Chennai, India and SUNY Buffalo, NY, USA in 2016 and 2018,
respectively. His current research interests are in new spectrum technologies and network design

automation.

Zhangyu Guan (SM’11) received the Ph.D. degree in Communication and Information Systems
from Shandong University in China in 2010. He is c̃urrently an Assistant Professor with the
Department of Electrical Engineering at the State University of New York at Buffalo, where he
directs the W̃ireless Intelligent Networking and Security (WINGS) Lab, with research interests
in network design automation, new spectrum technologies, and wireless network security. He
has served as an Area Editor for Elsevier Journal of Computer Networks since July 2019. He
has served as TPC Chair for IEEE INFOCOM Workshop on Wireless Communications and Net-

working in Extreme Environments (WCNEE) 2020, Student Travel Grants Chair for IEEE Sensor, Mesh and Ad
Hoc Communications and Networks (SECON) 2019-2020, Information System (EDAS) Chair for IEEE Consumer
Communications Networking Conference (CCNC) 2021. He has also served as TPC member for IEEE INFOCOM
2016-2021, IEEE GLOBECOM 2015-2020, IEEE MASS 2017-2019, IEEE IPCCC 2015-2020, among others.

21

This work has been accepted to publish in Elsevier Journal of Computer Networks

Nicholas Mastronarde received the B.S. and M.S. degrees in electrical engineering from the Uni-
versity of California, Davis, CA, USA, in 2005 and 2006, respectively, and the Ph.D. degree in
electrical engineering from the University of California, Los Angeles, CA, USA, in 2011. He is
currently an Associate Professor with the Department of Electrical Engineering, University at Buf-
falo, Buffalo, NY, USA. His research interests include reinforcement learning, Markov decision
processes, resource allocation and scheduling in wireless networks and systems, UAV networks,
and 4G/5G networks.

Elizabeth Serena Bentley received the B.S. degree in electrical engineering from Cornell Uni-
versity, the M.S. degree in electrical engineering from Lehigh University, and the Ph.D. degree in
electrical engineering from University at Buffalo. She was a National Research Council Postdoctoral
Research Associate with Air Force Research Laboratory (AFRL), Rome, NY, USA. She is currently
employed by the AFRL Information Directorate, performing in-house research and development in
the Communication Systems and Technology Branch and managing the Aerial Layer Communica-
tion Technology (ALCT) program. Her research interests are in cross-layer optimization, swarm
networking, directional networking, wireless multiple-access communications, and modeling and
simulation.

Michael Medley (M’91-SM’02) received the BS, MS, and PhD degrees in electrical engineering
from the Rensselaer Polytechnic Institute, Troy, NY, in 1990, 1991, and 1995, respectively. Since
1991, he has been a research engineer for the United States Air Force at the Air Force Research Lab-
oratory, Rome, NY, where he has been involved in communications and signal processing research
related to adaptive interference suppression, spread spectrum waveform design, spectrum manage-
ment, covert messaging, and airborne networking and communications links. In 2002, he joined the
State University of New York Polytechnic Institute in Utica, NY, where he currently serves as an
associate professor in the Electrical and Computer Engineering Department. He is a senior member
of the IEEE.

22

This work has been accepted to publish in Elsevier Journal of Computer Networks

