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ABSTRACT
It is well known that the data transport capacity of a wireless
network can be increased by leveraging the spatial and fre-
quency diversity of the wireless transmission medium. This
has motivated the recent surge of research in cooperative
and dynamic-spectrum-access networks. Still, as of today,
a key open research challenge is to design distributed con-
trol strategies to dynamically jointly assign (i) portions of
the spectrum and (ii) cooperative relays to different traffic
sessions to maximize the resulting network-wide data rate.
In this article, we make a significant contribution in this

direction. First, we mathematically formulate the prob-
lem of joint spectrum management and relay selection for a
set of sessions concurrently utilizing an interference-limited
infrastructure-less wireless network. We then study dis-
tributed solutions to this (nonlinear and nonconvex) prob-
lem. The overall problem is separated into two subprob-
lems, (i) spectrum management through power allocation
with given relay selection strategy, and (ii) relay selection
for a given spectral profile. Distributed solutions for each of
the two subproblems are proposed, which are then analyzed
based on notions from variational inequality (VI) theory.
The distributed algorithms can be proven to converge, un-
der certain conditions, to VI solutions, which are also Nash
equilibrium (NE) solutions of the equivalent NE problems.
A distributed algorithm based on iterative solution of the
two subproblems is then designed. Performance and price
of anarchy of the distributed algorithm are then studied by
comparing it to the globally optimal solution obtained with
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a centralized algorithm. Simulation results show that the
proposed distributed algorithm achieves performance that
is within a few percentage points of the optimal solution.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design ]: Distributed
networks; G.1.6 [Optimization]: Constrained optimization

General Terms
Theory

Keywords
Cooperative networks, spectrum management, relay selec-
tion, Nash equilibrium.

1. INTRODUCTION
The concept of cooperative communications has been pro-

posed to achieve spatial diversity without requiring multiple
transceiver antennas on a wireless device [1–3]. In cooper-
ative communications, in their virtual multiple-input single-
output (VMISO) variant, each node is equipped with a single
antenna, and relies on the antennas of neighboring devices
to achieve spatial diversity. Thanks to the broadcast na-
ture of the wireless channel, signals transmitted by a source
can be overheard by neighboring devices. Therefore, one
(or multiple) relays can forward their received signals to the
destination. Multiple copies of the original signal can then
be received at the destination, which can combine them to
decode the original message.

A vast and growing literature on information and com-
munication theoretic results [4, 5] in cooperative communi-
cations is available. Readers are referred to [6, 7] and ref-
erences therein for excellent surveys in this area. Problems
addressed include the definition of algorithms to establish
when and how to cooperate, and optimal cooperative trans-
mission strategies. For example, [2,8,9] study in depth out-
age probability and capacity of an isolated communication
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link. However, only simple network topologies are studied,
e.g., single source-destination pairs with single and fixed re-
lay nodes, while network-wide interactions among multiple
concurrent cooperative communication sessions are not con-
sidered. Distributed relay selection algorithms are also pro-
posed based on non-cooperative game theory, e.g., auction
theory [10] or Stackelberg games [11, 12]. However, typi-
cally a single channel and no interference among multiple
concurrent communication links is assumed. Only recently,
cooperative communications have been studied in conjunc-
tion with cognitive radio (CR) cellular systems [13–15] and
ad hoc networks [16].
In this article, we look at the fundamental problem of de-

signing algorithms to leverage the spatial and frequency di-
versity of the wireless channel by jointly allocating portions
of the spectrum and cooperative relays to a set of concurrent
data sessions to maximize the overall achievable data rate.
Through our developments, we make the following contribu-
tions:

• Cooperative Networks With Dynamic Spectrum Access:
We study the problem of joint spectrum management
and relay assignment in dynamic-spectrum-access co-
operative networks with decentralized control.

• Effect of Cooperation and Dynamic Spectrum Access in
Interference-Limited Networks: Since cooperative and
cognitive ad hoc networks are inherently interference-
limited, and ideal orthogonal FDMA or TDMA chan-
nels can not be easily established without centralized
control, we consider a general interference model. The
results obtained can be applied to interference-free net-
works as a special case.

• Distributed Algorithms: We design and analyze dis-
tributed algorithms for spectrum assignment and relay
selection, based on best-response local optimizations.
Since the problem formulated in this paper has a rather
complex (combinatorial, non-linear and non-convex)
mathematical formulation, well-studied tools of game
theory, e.g., contraction theory, cannot be applied be-
cause they require critical conditions on the joint util-
ity function of all players. Therefore, we rely on no-
tions from variational inequality (VI) theory (see [17]
for a detailed survey of the theory and its applications
to communications problems), through which we are
able to prove convergence to Nash equilibrium (NE)
under certain conditions and excellent performance in
practice. We evaluate the price of anarchy of our dis-
tributed algorithm by comparing it to the optimal so-
lution obtained through a newly designed centralized
(optimal) algorithm.

The proposed algorithm can be directly applied to a sce-
nario with multiple co-existing pre-established source-destination
pairs. In addition, it can provide an upper bound to the
performance of simpler centralized/distributed algorithms
for spectrum management and relay assignment. Last, in
a multi-hop ad hoc network, the proposed algorithm can be
used to optimally control resource allocation for an inde-
pendent set of transmissions with primary interference con-
straints (i.e., no transmitters and receivers in common) peri-
odically scheduled by a separate scheduling algorithm, where
idle nodes can be used as potential relays.

The rest of the paper is organized as follows. In Section
2 we discuss related work and in Section 3 we introduce
system model and problem formulation. Then, we describe
and analyze the distributed algorithm in Section 4. Finally,
we present performance evaluation results in Section 5 and
conclude the paper in Section 6.

2. RELATED WORK
Relay selection in cooperative wireless networks has been

an important topic of research [10, 11, 11, 18–20]. Shi et
al. [18] studied the relay selection problem in ad hoc net-
works and proposed an algorithm with attractive proper-
ties of both optimality guarantee and polynomial time com-
plexity. Hou et al. [19] investigated the problem of joint
flow routing and relay selection in multi-hop ad hoc net-
works, and proposed an optimal centralized algorithm with
arbitrary predefined optimality precision based on the pow-
erful branch-and-cut framework. Rossi et al. [20] studied
the optimal cooperator selection in ad hoc networks based
on Markov decision processes and the focused real time dy-
namic programming technique. Different from these works,
we jointly study relay selection and spectrum management
and focus on distributed algorithms.

Distributed relay selection based on game theory has also
been an important research topic. For example, [10] studied
the problem of distributed relay selection and relay power
allocation in a single-relay network based on auction theory.
In [11], the authors formulated the problem of distributed
relay selection in a multiple-relay single-session network as a
Stackelberg game. Zhang et al. [12] proposed an important
framework for efficient resource management in cooperative
cognitive radio network and formulated the problem of dis-
tributed relay selection and spectrum leasing as a Stackel-
berg game. In addition to [12], other excellent work on joint
relay selection and spectrum management include [21, 22].
Zhao [21] investigated the power and spectrum allocation for
cooperative relay in a three-node cognitive radio network.
In [22], Ding et al. studied the cooperative diversity for
three low-complexity relay selection strategies in spectrum-
sharing networks. Different from the above work, we focus
on interference-limited ad hoc networks with multiple con-
current sessions and multiple relay nodes.

Finally, the problem of distributed joint routing, relay se-
lection and spectrum allocation in interference-limited ad
hoc networks was investigated in [16], where distributed al-
gorithms were proposed based on a “backpressure” frame-
work. A centralized algorithm with optimality guarantee
for joint relay selection and dynamic spectrum access in
interference-limited video-streaming single-hop ad hoc net-
works was proposed in [23]. In this paper, we design a dis-
tributed algorithm to jointly allocate relays and spectrum
in interference-limited infrastructure-less networks based on
variational inequality theory and evaluate its performance
by comparing it to an optimal centralized algorithm.

3. SYSTEM MODEL AND PROBLEM FOR-
MULATION

A set S of communication sessions compete for spectrum
resources. For each session, say s ∈ S, a source-destination
pair is identified. In this paper, each destination node is as-
sumed to be reachable via one-hop by its source node while
layer-3 routing in multi-hop networks will be investigated
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in our future work. Each source node can transmit to its
destination node either using a direct link or through a co-
operative relay. We refer to a link enhanced by a cooperative
relay as a cooperative link. If a cooperative link is employed,
the source node selects a node as relay from a set R of po-
tential relay nodes. The available spectrum is divided into a
set F of channels. Each channel is potentially shared among
different sessions, i.e., each session can be seen as an inter-
ferer to any other sessions, and each user dynamically selects
the best channels to access to maximize its own utility.
Assumptions. We make the following two assumptions:

• Simultaneous access to a channel. Multiple sessions
are allowed to access a channel at any given time.
Therefore, they will cause interference to one another.
To mitigate the effect of interference, dynamic spec-
trum access is employed, i.e., each session dynamically
selects which channels to use and allocates transmis-
sion power on each channel, based on the channel qual-
ity of the underlying wireless link and on the interfer-
ence measured at the destination node.

• Single relay selection. For the sake of simplicity, we
assume that each relay node can be selected by at most
one session, and one session can select at most one
relay node. It is worth mentioning, however, that the
work in this paper can be easily extended to the case
of multiple relay selection.

Cooperative Link Capacity Model. Denote the power
allocation matrix for the source nodes as P = (P f

s ), s ∈ S,
f ∈ F , where P f

s represents the transmission power for source
node s on channel f . The power allocation matrix for the
relay nodes is denoted with Q = (Qf

r ), r ∈ R, f ∈ F , where
Qf

r is the transmission power for relay node r on channel f .
Further denote the relay selection matrix as α = (αs

r), r ∈
R, s ∈ S, where αs

r = 1 if relay node r is selected by session
s, and αs

r = 0 otherwise.
We let Cs(P , Q, α) represent the capacity available to

session s, which can be expressed as

Cs(P , Q, α) =

(
1−
∑
r∈R

αs
r

)
Cs

dir(P , Q)︸ ︷︷ ︸
direct link

+
∑
r∈R

αs
rC

s,r
cop(P , Q)︸ ︷︷ ︸

cooperative link

, (1)

where Cs
dir(P , Q) represents the capacity available to ses-

sion s if a direct link is used, and Cs,r
cop(P , Q) represents the

capacity of cooperative link if relay r is selected by session
s. For a direct link, Cs

dir(P , Q) can be expressed as

Cs
dir(P , Q) = B

∑
f∈F

log2

(
1 +

Gs,s
s2dP

f
s

δ2s,f + Ifs

)
, (2)

where B is the bandwidth of each channel, δ2s,f represents
the power of additive white Gaussian noise (AWGN) at des-
tination node s on channel f , Gs,s

s2d represents the average
channel gain from source node s to destination node s, and
Ifs represents the interference measured at destination node
s on channel f .

Different forwarding strategies can be employed for coop-
erative relaying, e.g., amplify-and-forward (AF) and decode-
and-forward (DF) [2]. We assume that DF is used at each
relay node, while AF will be addressed in our future work.
Then, Cs,r

cop(P , Q) can be expressed as [2, 18]

Cs,r
cop(P , Q) =

∑
f∈F

Cs,r,f
cop (P , Q)

=
1

2

∑
f∈F

min
{
Cs,r,f

s2r , Cs,r,f
sr2d

}
(3)

where Cs,r,f
s2r represents the capacity of link from source node

s to relay node r on channel f , and Cs,r,f
sr2d represents the

capacity achieved through maximal ratio combining [2] on
the two copies of the signal received by destination node
s from source node s and relay node r on channel f . The
coefficient 1

2
in (3) indicates that the overall capacity for the

cooperative link is averaged over two time-slots. Expressions
for the two capacities are given by

Cs,r,f
s2r (P , Q) = B log2

(
1 +

Gs,r
s2rP

f
s

δ2r,f + Ifr

)
, (4)

Cs,r,f
sr2d (P , Q) = B log2

(
1 +

Gs,s
s2dP

f
s +Gr,s

r2dQ
f
r

δ2s,f + Ifs

)
, (5)

where δ2r,f represents gaussian noise power at relay node
r on channel f , Gs,r

s2r and Gr,s
r2d represents average channel

gain from source node s to relay node r, and from relay
node r to destination node s, respectively, and Ifr represents
interference measured at relay node r on channel f .

Interference model. In (2), (4) and (5), the interference
Ifs and Ifr depends on power allocation and relay selection
at each individual node, but also on the network scheduling
strategy of the whole network (i.e., the relative synchroniza-
tion of transmission start times between different network
communication links). To keep the model tractable, the in-
terference at each receiver can be approximated in different
ways. In the worst-case approximation, the assumption is
that all source and active relay nodes cause interference in
both time-slots. The average-based approximation consid-
ers instead the average effect of each interferer over the two
time slots. Our experiments reveal that the average-based
approximation models reality very well - in-depth validation
of the average-based interference model is discussed in detail
in Appendix A. With this model, Ifs can be expressed as

Ifs =
∑

w∈S−s

[(
1−
∑
r∈R

αw
r

)
Gw,s

s2dP
f
w

+
1

2

∑
r∈R

αw
r

(
Gw,s

s2dP
f
w +Gr,s

r2dQ
f
r

)]
, (6)

where S−s represents the set of all sessions except session
s, and R−r represents the set of all relay nodes except for
relay node r. Ifr has a similar expression.

Problem formulation. We let Us represent the utility
function for session s and define it as

Us = log(Cs(P , Q, α)), (7)

where Cs(P , Q, α) is defined in (1) and a log-capacity util-
ity function is considered to promote fairness among com-
munication sessions. Then, the objective of our problem
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is to maximize a sum utility function of all communication
sessions by selecting for each session: i) which channels to
allocate, ii) transmission power to be used on each selected
channel, iii) whether to use a direct link or cooperative link,
and iv) which relay node to select, i.e.,

maximize
P , Q, α

U =
∑
s∈S

Us(P , Q, α) (8)

subject to αs
r ∈ {0, 1}, ∀s ∈ S, ∀r ∈ R (9)∑

r∈R
αs
r ≤ 1, ∀s ∈ S (10)

∑
s∈S

αs
r ≤ 1, ∀r ∈ R (11)

P f
s ≥ 0,∀s ∈ S, ∀f ∈ F (12)

Qf
r ≥ 0, ∀r ∈ R, ∀f ∈ F (13)∑

f∈F
P f
s ≤ P s

max, ∀s ∈ S (14)

∑
f∈F

Qf
r ≤ Qr

max, ∀r ∈ R, (15)

where U represents sum utility, and Us(P , Q, α) is defined
in (7) (also denoted as Us for conciseness). The expressions
in (9)-(11) impose constraints on relay selection (at most one
relay per session and one session per relay), while (12)-(15)
impose constraints on power allocation and power budget for
each source and relay node. Here, P s

max and Qr
max represent

the maximum transmission power of source node s and relay
node r, respectively.
Contributions of the paper. In the problem formu-

lated in (1)-(15), the expressions defined in (2)-(6) are non-
linear (and non-convex) functions of the problem variables.
Moreover, the relay selection variables αs

r, r ∈ R, s ∈ S, are
constrained to take binary values (0 or 1). Therefore, the ex-
pression in (1) and consequently the objective function in (7)
are both integral and non-convex. This causes the problem
to be a Mixed-Integer and Non-Convex Problem (MINCoP),
which is in general NP-hard (i.e., no existing algorithm can
solve an arbitrary MINCoP in polynomial time). The paper
makes the following contributions:

• Distributed solution algorithms: We propose distributed
algorithms designed to dynamically control node be-
havior based on localized best-response strategies. The
original problem is decomposed into two separate prob-
lems, namely, distributed relay selection with given
power spectral profile, and distributed spectrum al-
location for a given relay selection.

• Convergence analysis: We study the convergence of
iterative algorithms based on iterative solutions of the
two individual problems. We analyze the convergence
and optimality of distributed algorithms for spectrum
assignment and relay selection, based on notions from
variational inequality (VI) theory.

4. DISTRIBUTED ALGORITHM
In this section, we propose a distributed algorithm for

the problem formulated in Section 3 that is amenable to
practical (distributed) implementation. The proposed dis-
tributed algorithm is designed to achieve the Nash equilib-
rium (NE) [24], which is a well-known concept from non-
cooperative game theory often used as a tool for designing

distributed algorithms in complex wireless communication
systems [10–12]. There are two important characteristics of
a NE solution, i) at any NE solution point, no user has in-
centives to deviate from the current transmission strategy
unilaterally, and ii) each user’s utility is maximized, given
the transmission strategies of any other users. In this sec-
tion, we study i) whether a NE solution point exists for our
problem, ii) how to achieve such a NE solution point if it
exits, and iii) the so-called price of anarchy, i.e., we compare
the performance at NE solution point to the global optimal
solution (obtained through a centralized algorithm).

Recall that our problem is a MINCoP and each user’s
utility function is neither linear nor convex. This imposes
major challenges to the NE analysis. Due to the complex
expression of the utility function, traditional mathematical
tools for NE analysis, e.g., contraction mapping theory [25]
are not applicable. We base our NE analysis on variational
inequality (VI) theory [17, 26]. VI theory can be used to
formulate and analyze problems that do not fit within the
narrower scope of game theory. Second, and most impor-
tant, based on VI theory, there are well-developed tools to
analyze the convergence of distributed algorithms. Next, we
first give a brief introduction of VI theory and of the rela-
tionship between VI and game theory. Then, we describe
how to reformulate and analyze our problem using VI the-
ory.

4.1 Basics of VI Theory
For the reader’s convenience, we provide definitions for

a variational inequality problem and Nash equilibrium prob-
lem, respectively. Readers are referred to [17] for a detailed
introduction to the relationship between them and [26] for
a comprehensive overview of VI theory.

Definition 1 (Variational Inequality Problem).
Given a closed and convex set X ∈ R

n and a continuous
mapping function F : X → R

n, the VI problem, denoted
as VI(X ,F ), consists of finding a vector x∗ ∈ X (called a
solution of the VI) such that [26]

(y − x∗)TF (x∗) ≤ 0, ∀y ∈ X . (16)

Definition 2 (Nash Equilibrium Problem). Assume
there are a Q players each controlling a variable xi ∈ Qi.
Denote x as the vector of all variables x � (xi, · · · , xQ), and
let x−i = (x1, · · · , xi−1, xi+1, · · · , xQ) represent the vector
of all player variables except that of player i. Each player i
is also associated with a utility function fi(xi,x−i). Define

the Cartesian product of all Qi as Q �
∏Q

i=1 Qi, the vector
of utility functions as f = (f1, · · · , fQ). Then, a Nash equi-
librium problem, denoted as NE(Q,f), consists of finding
x∗ = (x∗

1, · · · ,x∗
Q) (called Nash equilibrium solution), such

that each player i’s utility function fi(xi,x
∗
−i) is maximized,

i.e., [24]

x∗
i = argmax

xi∈Qi

fi(xi,x
∗
−i), ∀i. (17)

Given a Nash equilibrium problem NE(Q,f), assume that
for each player i, i) the strategy set Qi is closed and convex,
and ii) the utility function fi(xi,x−i) is continuously differ-
entiable with respect to xi in Qi. Then, the Nash equilib-
rium problem NE(Q,f) is equivalent to the VI(Q,F ), where

F � (∇xifi(x))
Q
i=1 [17]. Hence, to achieve a NE solution for

NE(Q,f), we only need to find a VI solution for VI(Q,F ).
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It should be pointed out that, to take advantage of the
well-developed theoretical results and of the existing dis-
tributed algorithms of the VI theory, a condition required
by VI theory is that the mapping function F be at least
component-wise strongly monotonic [26]. Recall that the
utility function in our problem has a rather complex ex-
pression, which makes the monotonicity analysis very hard.
To address this challenge, we decompose the problem for-
mulated in Section 3 into two individual problems: i) dis-
tributed power allocation, for a given cooperative relaying
strategy, and ii) distributed relay selection, for a given spec-
trum profile. Then, we study the problem of joint relay
selection and power allocation based on the two individual
problems.

4.2 Distributed Spectrum Management (DSM)
by Power Allocation

4.2.1 Game Theory Formulation
A problem of DSM with given cooperative relaying strat-

egy can be naturally formulated as a game, in which each
communication session can be seen as a player, and each
player tries to maximize its utility function defined in (7)
by adjusting the transmission power over the available fre-
quencies for its source node and corresponding relay node
if cooperative relaying is employed. Hereafter, we use the
terms of “communication session” and “player” interchange-
ably.
Assume relay node r is selected by session s, and denote

the vector of power allocation for source node s and relay
node r as P s = (P f

s ), f ∈ F and Qr = (Qf
r ), f ∈ F , respec-

tively. Then, any P s or Qr is feasible if it satisfies the con-
straints in (12) and (14), or the constraints in (13) and (15),
respectively. We let Ps and Qr represent the set of all feasi-
ble P s and Qr, and denote the vector of power allocation for
session s as xs = (P s, Qr). Then, the set of transmission
strategies for session s, denoted as Xs, can be defined as the
Cartesian product of Ps and Qs, i.e., Xs � Ps ×Qr. If ses-
sion s uses only direct link, the set of transmission strategies
simply reduces to Xs = Ps.
The utility function for communication session s ∈ S is

defined in (7), where Cs(P , Q) is defined in (2) if only
direct link is used, and in (3) otherwise. Define P−s =
(Pw), w ∈ S, w �= s, and Q−r = (Qq), q ∈ R, q �= r, as
the vectors of power allocation for all other source and relay
nodes. Then, with given fixed α and x−s = (P−s,Q−r),
the utility function of session s can be rewritten as

Us(xs, x−s) = log(Cs(xs, x−s))

= log(Cs(P s, Qr, P−s, Q−r)), (18)

where Cs(P s, Qr, P−s, Q−r) is defined in the same way
as Cs(P , Q) with P = (P s,P−s) and Q = (Qr,Q−r).
According to Definition 2, the DSM problem can be mod-

eled as a game NE(X ,U), where X =
∏

s∈S Xs and U =
(Us)s∈S .

4.2.2 VI Formulation
Recall from Section 4.1 that a given NE problem is equiv-

alent to a VI if the utility function for each player is de-
fined in a closed and convex domain set and is continuously
differentiable. In the DSM problem formulated above, the
domain set of X is closed and convex, since it is defined by
a set of linear constraints in (12)-(15). However, the utility

function for each player is certainly not continuously differ-
entiable. This is because if cooperative relaying is employed
by a communication session, the capacity of the cooperative
link is defined in (3), where the minimum operation leads to
a non-smooth function. Hence, the resulting utility function
is not continuously differentiable.

To facilitate the analysis, we can approximate the cooper-
ative link capacity in (3) using a continuously differentiable

function, denoted as Ĉs,r,f
cop , constructed based on �P -norm

function as follows

Ĉs,r,f
cop = �−1

P ((Cs,r,f
s2r )−1, (Cs,r,f

sr2d )
−1)

=

⎧⎪⎨⎪⎩
⎡⎣( 1

Cs,r,f
s2r

)P

+

(
1

Cs,r,f
sr2d

)P
⎤⎦ 1

P

⎫⎪⎬⎪⎭
−1

(19)

where Cs,r,f
s2r and Cs,r,f

sr2d are defined in (4) and (5), respec-
tively. The �P -norm of a vector with large value of parameter
P emphasizes the larger element in the vector [27], hence,
it also emphasizes the element with the smallest inverse.
The resulting approximation function is continuously dif-
ferentiable in its domain, and the original function in (3)
can be approximated with arbitrary precision by adjust-
ing the value of parameter P . When P → ∞, we have

Ĉs,r,f
cop → Cs,r,f

cop .
Based on the above approximation, the utility function for

each player becomes continuously differentiable, and hence,
we can rewrite the NE problem in Section 4.2.1 as a VI
problem VI(X ,F ), with F = (∇xsUs), s ∈ S.
4.2.3 VI Solution and Distributed Algorithm
After obtaining a VI formulation of the problem, we can

study whether a VI solution (which is also a NE solution)
exists for the problem, and if it exists, how to achieve it in
a distributed fashion. Before developing a distributed algo-
rithm, we give the following two lemmas about the domain
set X and the utility function for each player Us(xs,x−s),
respectively.

Lemma 1. There exists at least one solution for VI(X ,F ).

Proof. The domain set X is closed and convex, and the
mapping function F is continuous. According to the ex-
istence theorem in [26], there exists at least one VI solu-
tion.

Lemma 2. Assume that relay node r is selected by com-
munication session s for cooperative relaying. Then, the util-
ity function Us(xs,x−s) is a strongly concave function if it
satisfies the condition that the signal-to-noise-plus-interference
ratio (SINR) on each channel for the link between source
node s and destination node s, source node s and relay node
r, relay node r and destination node s, is greater than e−1,
where e is the base of natural logarithm.

Proof. Please see Appendix B for proof.

The condition in Lemma 2 is a sufficient condition for the
utility function Us(xs,x−s) to be strongly concave, and re-
quires that the SINR on each channel is not too low1 for a

1A value of e − 1 ≈ 1.71828 for SINR implies that the re-
ceived signal power is comparable to the sum of noise and
interference - which corresponds to very poor channel qual-
ity.
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cooperative link. In practice, a communication session will
never allocate much transmission power to a channel with
very bad channel quality. Moreover, if all available channels
have very bad quality, then even minimum quality of service
(QoS) requirements cannot be guaranteed. In this case, the
communication session should be denied access to the wire-
less network. Alternatively, the session should increase its
maximum transmission power or select another routing path
to avoid channels with poor quality. Therefore, with no loss
of generality for all practical purposes, we assume that the
condition in Lemma 2 can be satisfied.
Notice that, if a communication session uses only a direct

link, we can prove that the utility function Us(xs,x−s) is
also a strongly concave function for any SINR level. The
proof simply follows from the fact that logarithm of a con-
cave and positive function is also a concave function [27].
Here, we omit details of the proof.
Next, we propose an iterative algorithm of dynamic spec-

trum management which is based on the local best-response
of each communication session, and analyze the necessary
and sufficient conditions for the algorithm to converge to a
VI solution of VI(X ,F ).
We give the Gauss-Seidel implementation of the local best-

response based algorithm in Algorithm 1, where S represents
the number of communication sessions in S. In Algorithm
1, a feasible initial power allocation means that the power
level at a subchannel can not be too low. Otherwise, there
would be no guarantee of convergence according to Lemma
2. An infeasible initial power allocation can be avoided by
artificially increasing power values that are too low, while an
infeasible power allocation during iterations in Algorithm 1
can be avoided by allocating zero power to a subchannel
with poor quality (i.e., do not select poor subchannels for
transmission).
It is worth pointing out that the Lemma 1 and Lemma

2 only provide necessary conditions for the Algorithm 1 to
converge. In following Theorem 1 we present a sufficient
condition, under which Algorithm 1 always converges to VI
solution of VI(X ,F ).

Theorem 1. Given the VI problem VI(X ,F ) formulated
in Section 4.2.2, if Lemma 1 and Lemma 2 hold and any
two sessions in S are located sufficiently far away from each
other, then a Gauss-Seidel scheme based on the local best-
response of each communication session converges to a VI
solution.

Proof. In our VI problem, the domain set X is closed
and convex. From Lemma 1, we have that VI(X ,F ) has at
least one solution. From Lemma 2, we have that the util-
ity function Us(xs,x−s) is strongly concave for each player
given fixed transmission strategies. Then, the strong con-
cavity of Us(xs,x−s) implies that Fs = ∇xsUs is strongly
monotonic [26]. In the following, we present a sufficient con-
dition for the most complicated case, i.e., when each session
uses a cooperative relay, that can be derived based on the
framework in [28]. The resulting sufficient condition can be
easily extended to other cases.
If relay node r, with r ∈ R, is selected by session s, with

s ∈ S, then the gradient vector of session s with respect to

xs can be written as Jxs(Us) =

((
∂Us

∂P
f
s

)F
f=1

,
(

∂Us

∂Q
f
r

)F
f=1

)
,

where Us is utility function of session s defined in (7), xs =
((P f

s )
F
f=1, (Q

f
r )

F
f=1) is the power allocation vector of session

s, and F represents the number of sub-channels in set F .
Similarly, we represent the gradient vector of session g, with

g ∈ S, as Jxg (Ug) =

((
∂Ug

∂P
f
g

)F

f=1

,

(
∂Ug

∂Q
f
t

)F

f=1

)
, where t

is the relay node selected by session g. Further, denote the
Jacobi matrix of Jxs(Us) and Jxg (Ug) with respect to xs as
Jxsxs(Us) and Jxgxs(Ug), respectively. Here, Jxsxs(Us) is
namely the Hessian matrix session s. Then, we can define a
matrix [γ]ij as follows

[γ]sg �
{

αmin
s , if s = g,

−βmax
sg , otherwise,

(20)

where αmin
s � inf

x∈X
λleast(Jxsxs(Us)) and βmax

sg � sup
x∈X

‖Jxgxs(Ug)‖,
with λleast(A) representing the eigenvalue of A with the
smallest absolute value. Then, based on the properties of
the P-matrix [29], to guarantee the convergence of the pro-
posed distributed algorithm, we only need to show that the
matrix γsg defined in (20) is a P-matrix [28]. It can be shown
that if any two session in S are located sufficient away from
each other, γsg is a P-matrix. On the contrary, γsg is not a
P-matrix if there exists two or more sessions that are close
to each other.

Algorithm 1 : Gauss-Seidel best-response algorithm for
DSM

Step 1: Initialize to any feasible power allocation x(0) =

(x
(0)
s )s∈S that satisfies the constraints in (12)-(15), and set

iteration index n = 0.
Step 2: For s = 1, · · · , S, calculate x

(n+1)
s by solving

maximize
xs

Us(x
(n+1)
1 , · · · , x

(n+1)
s−1 , xs, x

(n)
s+1 · · · , x

(n)
S )

subject to xs ∈ Xs (21)

Step 3: Set x(n+1) = (x
(n+1)
s )Ss=1 and set n← n+ 1.

Step 4: If x(n+1) is a VI solution of the problem in (16), ter-
minate, and go to step 2 otherwise.

4.3 Distributed Relay Selection (DRS)

4.3.1 Game Theoretic Formulation
The problem of relay selection with given fixed spectrum

profile can also be formulated as a game, in which each com-
munication session selects its best relay node in a competi-
tive fashion to maximize its own utility function in (7). Re-
call that in Section 3 we assumed that only one single relay
is selected by a communication session. Therefore, compe-
tition occurs if a relay node is the best relay for more than
one session. Moreover, as shown in (6), the transmission
strategy of a session, i.e., using only direct link or coopera-
tive link, also affects the interference caused by the session
to the other sessions.

Denote the vector of relay selection variables for commu-
nication session s ∈ S as αs = (αs

r), r ∈ R, and the vector
of relay selection variables for all other communication ses-
sions except s as α−s = (αw

r ), r ∈ R, w ∈ S, w �= s. Then,
α = (αs, α−s). We let Φs represent the set of all possible
αs, and Φ represent the set of all possible α. Given a fixed
spectrum profile and relay selection strategies for all other
communications, the utility function for session s in (7) can
be rewritten as Us(αs, α−s). Denote the vector of all utility
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functions as U = (Us), s ∈ S. Then, the Nash equilibrium
problem of relay selection can be formulated as NE(Φ,U).
Each individual domain set Φs is described by constraints

in (9), and (11), while the overall domain set Φ is described
by constraints in (9), (10) and (11). Since all communication
sessions are coupled through constraint (10), Φ can not be
written in the form of the Cartesian product of Φs. Given
α−s, the set Φs is a function of α−s, i.e., Φs = Φs(α−s).
Hence, the Nash equilibrium problem NE(Φ,U) is not a
standard NE problem as defined in Definition 2 with re-
spect to the domain set. In this case, the NE(Φ,U) is called
a generalized Nash equilibrium (GNE) problem, denoted as
GNE(Φ,U). We propose a penalization-based algorithm to
transform the GNE(Φ,U) into a series of standard NE prob-
lems, which can then be analyzed and solved using the ex-
isting VI theory.

4.3.2 VI Reformulation
In the formulated GNE problem, the domain set Φ is

closed and convex. Moreover, with given spectrum profile
and fixed relay selection strategy for all communication ses-
sions except s, the capacity for session s in (2) and (3) is
fixed. Hence, Us(αs, α−s) becomes a function of αs only.
To cast the GNE problem into a VI problem to make the
theoretical analysis easier, we still need to relax the integer
problem (due to the binary relay selection variables) to a
continuous one. To this end, in the following discussion we
relax the binary requirement and let each αs

r, r ∈ R, s ∈ S
be real. Effects of the relaxation will be analyzed later to-
gether with the proposed distributed algorithm. Then, the
utility function Us(αs, α−s) becomes continuously differen-
tiable, and GNE(Φ,U) can be reformulated as a VI problem
with mapping function F = (Fs)s∈S , where Fs = ∇αsUs.
Corresponding to a GNE, the VI problem with coupled do-
main set Φ is called a quasi-VI (QVI) problem, denoted as
QVI(Φ,F ). Before developing distributed relay selection al-
gorithm based on the QVI reformulation of the GNE prob-
lem, we first give following lemma.

Lemma 3. There exists at least one VI solution (also
Nash Equlibrium) for QVI(Φ,F ).

Proof. For a QVI problem with closed and convex do-
main set and continuous utility function, there exists at least
one VI solution solving the QVI problem [26].

4.3.3 Distributed DRS Algorithm
Each communication session, say s, locally decides its op-

timal relay selection strategy αs for a given α−s. Since the
interference measured at each destination and corresponding
relay nodes are affected by the relay selection strategies of
all other sessions, an update of relay selection for any com-
munication session will trigger update of relay selection for
all other sessions. More importantly, the set of possible re-
lay selection strategies for each communication session also
changes, i.e., αs is a function of α−s.
A natural way to address this case with coupled domain

sets is to set a price for each relay node, and make each com-
munication session pay a price to it [17]. Then, each relay
node updates its price based on the relay selection strate-
gies of all sessions. If more than one session selects the same
relay node, then the price for the relay node is increased.
Otherwise, the relay node keeps its price unchanged. How-
ever, a main concern of the price-based algorithm is how

to guarantee that the algorithm converges to a VI solution,
which is also a NE solution for the NE problem. We propose
to design the price-based algorithm using a penalized ver-
sion of the original utility function for each communication
session such that the resulting algorithm can be proven to
converge to a VI solution of the DRS problem.

The proposed algorithm converges to a VI solution itera-
tively. At iteration k, communication session s has a penal-
ized version of the utility function Us(αs, α−s), denoted as

Ûs(αs, α−s), as follows

Ûs(αs, α−s) = Us(αs, α−s)

− 1

2ρk

∑
r∈R

(
max

(
0, ur

k + ρk

(∑
s∈S

αs
r − 1

)))2

︸ ︷︷ ︸
Penalization

. (22)

In (22), each player’s utility is penalized by subtracting a
value, which is zero if the constraint in (10) is not violated,
and is positive otherwise. {ρk}, k = 0, 1, · · · , is a sequence
of positive scalars and satisfies ρk < ρk+1 and ρk → ∞
as k → ∞. {uk}, k = 1, 2, · · · , is a bounded sequence of
vectors with uk = (ur

k), r ∈ R. We will see later that ur
k

is used as the price for relay node r at iteration k, while ρk
is employed as the stepsize based on which each relay node
updates its price.

Based on the penalized function Ûs(αs, α−s), we can con-

struct a new VI problem VI(Φ̂, F̂ ), where Φ̂ is the Carte-
sian product of each individual domain set Φs, s ∈ S, and
F̂ = (∇αs Ûs), s ∈ S. Moreover, we have that Lemma 4

holds true for each ∇αs Ûs.

Lemma 4. ∇αs Ûs is a strongly monotonic function of
αs for each s ∈ S.

Proof. We only need to show that the penalized utility

function Ûs is a strongly concave function [26]. Then, it is
sufficient to show that on the right hand-side of (22), both
Us(αs, α−s) and the penalization item are strongly concave
functions of αs. This can be proven based on the definition
of strong concavity [26] and composition rules that preserve
concavity [27]: i) component-wise maximum of two affine
functions is a convex function, ii) the Pth power of a convex
and positive function is a convex function if P > 1, and iii)
the opposite of a convex function is a concave function.

Based on Lemma 4 and the Theorem 1, a VI solution

for VI(Φ̂, Û) can be calculated through a best-response
based algorithm similar to Algorithm 1. Denote the VI
solution obtained at iteration k with αk = (αk

s ), where
αk

s = (αk
s,r), s ∈ S, r ∈ R. Then, we can update ρk and

uk as follows

ρk+1 = ρk +Δρ, (23)

ur
k+1 = max

(
0, ur

k + ρk

(∑
s∈S

αk
s,r − 1

))
, (24)

where Δρ is any fixed positive constant.
The proposed algorithm is summarized in Algorithm 2,

and for the algorithm we have that Lemma 5 holds true.

Lemma 5. The proposed penalized algorithm always con-
verges to a VI solution for QVI(Φ,F ), which is also a NE
solution for GNE(Φ,U).
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Algorithm 2: Penalization-Based Algorithm for DRS

Step 1: Initialize ρ0 = 0, u0 = 0, and set k = 0.
Step 2: Calculate VI solution αk by solving VI problem

VI(̂Φ, ̂U), in which each communication session solves

maximize
αs

̂Us(αs, α−s) in (22)

subject to αs ∈ Φs. (25)

Step 4: Update ρk and uk according to (23) and (24), respec-
tively. Set k ← k + 1.
Step 5: If condition (10) is satisfied for each relay node r ∈ R,
stop. Otherwise, go to Step 2.

Proof. To prove the lemma, it is enough to prove i)
the proposed DRS algorithm in Algorithm 2 converges, and
ii) every accumulation point corresponds to a VI solution
of QVI(Φ,F ) formulated in Section 4.3.2. By redefining
the domain set Φ in QVI(Φ,F ) using a set of vectors of
functions, it can be proven that the constraining functions
satisfy the implication condition in the Theorem 3 in [30].
Then, according to the Theorem 3 in [30], we have that
max
(
0, ur

k + ρk
(∑

s∈S αs
r − 1

))
in (22) is bounded and hence

that, the penalization item in (22) tends to zero as ρk tends
to infinity, implying that the proposed iterative algorithm
in Algorithm 2 converges. Moreover, according to Theorem
3 in [30], each accumulation point corresponds to a QVI
solution of QVI(Φ,F ).

4.4 Joint Spectrum Management and Relay Se-
lection

We have so far solved two individual problems: i) power
allocation with given fixed relay selection, and ii) relay se-
lection with given spectrum profile. We can solve the overall
problem formulated in Section 3 by solving the two individ-
ual problems iteratively.
The vectors of power allocation P and Q are initialized

based on any feasible power allocation, e.g., equal power al-
location over all channels for each source and relay node.
Then, based on P and Q, a VI solution of relay selection
α can be obtained through Algorithm 2. Note that in Sec-
tion 4.3, we assume that each αs

r, r ∈ R, s ∈ S is real.
Hence, the VI solution α might not be feasible for the orig-
inal problem formulated in Section 3, where each αs

r takes
only integer values of 0 or 1. To get a feasible α, we perform
a round(·) operation to each αs

r as follows

α̂s
r = round(αs

r), r ∈ R, s ∈ S. (26)

If rounding gives an unfeasible solution, e.g., α̂s
r = α̂w

r =
1, s, w ∈ S, s �= w, the relay is assigned to session s if
αs
r ≥ αw

r , and assigned to session w otherwise. Denote the
resulting vector of feasible relay selection as α̂. Then, with
given α̂, we solve the problem of power allocation using Al-
gorithm 1. The above iteration continues until the objective
function in (7), i.e., sum utility of all communication ses-
sions, does not change any more or the maximum number
of iterations is reached. The overall iterative algorithm is
summarized in Algorithm 3.

4.5 Implementation Issues and Future Work
The proposed algorithm can be directly applied to a sce-

nario with multiple co-existing pre-established source-destination

Algorithm 3: Joint Spectrum Management and Relay Se-
lection

Step 1: Initialize P and Q based on equal power allocation.
Step 2: Given P and Q, calculate QVI solution α using Algo-
rithm 2.
Step 3: Calculate feasible relay selection vector α̂ using (26).
Step 4: Calculate VI solution x = (P , Q) using Algorithm 1.
Step 5: If utility does not change any more for all communi-
cation sessions or, maximum number of iterations is reached,
stop. Otherwise, go to Step 2.

pairs. In addition, it can be used to optimally control re-
source allocation for an independent set of transmissions
with primary interference constraints (i.e., no transmitters
and receivers in common) periodically scheduled by a sepa-
rate scheduling algorithm, where idle nodes can be used as
potential relays.

There are several potential alternative implementations
for the proposed algorithm. To allow each source and po-
tential relay to select the best subchannels, the power level
of noise plus interference on each subchannel need to be mea-
sured at the destination and relay and then fed back to the
source. Alternatively, they can be estimated at the source
based on control information overheard on a control chan-
nel. This can be carried out through a cooperative MAC
protocol. A good example of such protocols is the CoCog-
MAC proposed in [16], which uses a three-way handshake
to exchange Request-to-Send (RTS), Clear-to- Send (CTS)
and Relay-Ready-to-Relay (RTR) frames among the source,
destination and the selected relay to inform the source (and
neighboring devices) of transmitted power chosen on each
channel. For relay selection, each destination node needs
to estimate the quality of all subchannels from itself to the
corresponding source, while each relay needs to measure the
channel quality from itself to each source and to each des-
tination. This can be also carried out through a protocol
similar to CoCogMAC. Additionally, to implement the pric-
ing strategy in relay selection, each potential relay needs to
periodically broadcast a “price” frame to claim its price on
a common control channel that can be implemented out of
band, in a time-sharing or in a code-division fashion.

It is worth pointing out that in the proposed distributed
algorithm it is assumed that the channel condition and the
topology vary slowly with respect to the convergence time
scale of the algorithm. Therefore, the proposed algorithm
can be guaranteed to converge before the obtained CSI in-
formation becomes less exact or outdated. Algorithms that
can track fast variations of the wireless channel in real time,
as well as robustness of the algorithm to incomplete or out-
dated information, will be addressed in our future work.

5. PERFORMANCE EVALUATION
Simulation Scenario. We consider a communication

area of size 1500 × 1500 m2. Source, destination and relay
nodes are randomly placed in the area. The average channel
gain between two nodes, say m, n, is determined by the
distance between m and n, i.e.,

Gm,n = |d(m,n)|−4, (27)

where 4 represents the path loss factor, and d(m,n) repre-
sents the distance between m and n. The maximum trans-
mission power for each source and relay node is set to 0.5 W.
The average noise power is set to 10−10 W. The bandwidth
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Table 1: Simulation Parameters.
Communication Area (m2) AWGN Power (W) B (KHz) ε (%)

1500× 1500 10−10 64 95

Network Topology Index Number of Sessions: S Number of Relays: R Number of Channels: F
1 2 10 4
2 3 5 5
3 5 5 5
4 10 5 5
5 10 5 2
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Figure 1: Convergence performance of the proposed distributed solution algorithm. Network topology index is 4. (a):

Example results of relay selection. Values greater than 1 means that the relay is selected by multiple communication

sessions. (b): Example results of power allocation over channels. (c): Sum utility (top) and examples of individual

utility (bottom).

of each channel is set to 64 kHz. To approximate the cooper-
ative link capacity to a continuously differentiable function,
the approximation parameters P in (19) is set to P = 5.
Different network topology parameters are employed in our
experiments to model sufficient, moderate and scarce radio
resources (relay nodes and spectrum) compared to the num-
ber of communication sessions. These parameters are sum-
marized in Table 1, where S, R, F represent the number
of total communication sessions, relay nodes, and available
channels, respectively.
To evaluate the performance of the proposed distributed

algorithms, we have developed a centralized algorithm based
on the branch-and-bound framework and a combination of
reformulation linearization technique (RLT) and convexifi-
cation of non-convex problems. The centralized algorithm
can be used to obtain a globally optimal solution with ε-
optimality guarantee, with ε being the optimality precision.
In simulations, ε is set to 95% representing that the achieved
sum utility is equal or greater than 95% of the optimum.
To show convergence of the proposed distributed algo-

rithms, results are obtained using one instance of each net-
work topology and channel realization. For performance
comparison among different algorithms, results are obtained
by averaging over 30 simulations with different network topolo-
gies and channel realizations.
Convergence of Distributed Algorithm. The conver-

gence performance of the proposed distributed solution al-
gorithm is illustrated in Fig. 1. Network topology 4 is used
in the simulation. In such a network topology, the number
of relay nodes and also channels is less than, but compara-

ble to, the number of concurrent communication sessions.
Convergence of the distributed relay selection (DRS) algo-
rithm at a relay node is shown in Fig. 1(a) with uniform
power allocation over different channels. All relay selection
variables are initialized to zero, i.e., no transmitter selects
the relay node for cooperative relaying. After one itera-
tion, at least two transmitters select the relay node. Notice
that a transmitter might choose to use a relay node for only
part time of a transmission, but use other relay nodes or di-
rect link for the rest part. Consequently, the relay selection
constraint (10) becomes violated for this relay node and he
increases his price. As a result, the relay selection converges
with all constraints in (10) satisfied. We can see that, the
proposed penalization-based algorithm converges very fast.
Distributed spectrum management (DSM) by power alloca-
tion is shown in Fig. 1(b). In power allocation, results of
the relay selection obtained in Fig. 1(a) is employed. Here,
power allocation for a source node over multiple channels is
shown as an example. We can see that the proposed best-
response algorithm converges within three iterations. Re-
sults of joint DRS and DSM are given in Fig. 1(c). The top
figure shows the sum utility of all communication sessions,
while the bottom figure shows individual utilities for two
communication sessions. Individual utilities become stable
after four iterations of DRS or DSM. To summarize, the pro-
posed algorithms of DRS, DSM, and joint DRS and DSM,
have a good convergence performance.

Performance of Distributed Algorithm and Price
of Anarchy. Performance of the distributed solution algo-
rithm is evaluated by comparing to the ε-optimal solution
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Figure 2: (a) Average performance for the distributed solution algorithm compared to the centralized algorithm in

terms of sum utility. (b) Price of anarchy.
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Figure 3: (a) Average performance for the distributed solution algorithm compared to the centralized algorithm in

terms of sum capacity. (b) Price of anarchy.

achieved by the centralized algorithm. Five network topolo-
gies are used, and results are obtained by averaging over 30
independent simulations for each network topology. The re-
sults of this comparison is shown in Fig. 3(a) in terms of sum
utility, while in Fig. 3(b) the corresponding price of anarchy
is shown. In all cases, the distributed algorithm can achieve
sum utility and sum capacity very close to the ε-optimal so-
lution. The distributed algorithm can achieve 95.8%-99.4%
of the ε-optimal solution in terms of sum utility, with an
average of 97.4%. The maximum price of anarchy is just
less than 4.5%. The two algorithms are also compared in
terms of sum capacity as shown in Fig. 3(a) and Fig. 3(b)
for the corresponding price of anarchy. The distributed algo-
rithm also has good performance in terms of sum capacity.
The distributed algorithm can achieve 89.7%-96.7% of the
ε-optimal solution, with an average of 93.5%. The corre-
sponding price of anarchy varies from 4% to 10%.

6. CONCLUSIONS
In this paper, we have studied distributed spectrum man-

agement and relay selection in cognitive and cooperative
wireless networks. We first formulated the problem of joint
spectrum management and relay selection, and then, decom-
posed it into two individual problems: i) spectrum manage-
ment by power allocation with given fixed relay selection,
and ii) relay selection with given fixed spectrum profile. A
distributed solution algorithm is proposed for each subprob-
lem and analyzed based on the variational inequality (VI)
theory. We prove that the proposed algorithms converge to
a VI solution, which is also a NE solution. Performance
of the distributed algorithm is evaluated by comparing to
the centralized solution. Simulation results indicate that
the distributed algorithm has performance that is very close
to the optimal solution. Convergence of the distributed al-
gorithm is also verified using simulation results. The dis-
tributed algorithm can be used to schedule an independent
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set of transmissions, each of which is scheduled by a separate
algorithm.
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Figure 4: Comparison between the average-based inter-

ference model and exact interference in synchronization-

based cooperative network.

APPENDIX
A. VALIDATION OF THE AVERAGE-BASED

INTERFERENCE MODEL
We validate the average interference model by comparing

it to the exact interference in practical cooperative wireless
networks. Let us consider a cooperative network with global
time-synchronization, in which all source nodes transmit in
the first time-slot while all relay nodes transmit in the sec-
ond. Then, for a wireless link l that uses direct transmis-
sion only, the interference measured at its destination node
comes from all source nodes of a number Nitf of coopera-
tive sessions in the first time-slot, while it comes from all
relay nodes in the second. Then, the average capacity of the
wireless link Crea can be calculated as

Crea =
1

2
(Cslot1 + Cslot2), (28)

where Cslot1 and Cslot2 represent the capacity in the first
and second time-slot, respectively.
Use Cavg to represent capacity of the wireless link l calcu-

lated using the average-based interference model and then
we compare it to Crea. A communication area of 1000 ×
1000 m2 is considered and the number of interfering coop-
erative sessions varies from 2 to 16 with a step of 2. Other
simulation parameters are set as in Section 5. Results of

the comparison in terms of
Cavg

Crea
are shown in Fig. 4. Every

point was plotted by averaging over 103 simulations. The
value of Cavg is slightly lower but very close to that of Crea,
e.g., more than 99% and 98% of Crea can be achieved when
Nitf = 2 and Nitf = 16, respectively. We observe that the

value of
Cavg

Crea
decreases very slightly as the number of in-

terfering sessions increases, implying that the accumulation
of performance degradation caused by the average-based in-
terference model is negligible. Similar results can be also
observed when wireless link l also uses cooperative relay-
ing. Based on the above discussion, we can conclude that
the average-based interference model performs very well in
tracking the cumulative effect of interference from different
sources in practical cooperative wireless networks.

B. PROOF FOR LEMMA OF STRONG CON-
CAVITY

Proof. For our case, the approximation function Ĉs,r,f
cop

in (19) is a monotonically increasing function of the trans-
mission power. The domain set X in the VI problem VI(X ,F )

is bounded. Therefore, the derivative of Ĉs,r,f
cop with respect

to the transmission power for source or relay node on each
channel is positive and cannot be arbitrarily small. Hence,

to prove that Ĉs,r,f
cop is strong concave, we only need to show

that it is a concave function.
For simplicity, we use f(x) = log(1+ax), g(x, y) = log(1+

bx+cy), and h(x, y) = min(f(x), g(x, y)), (x, y) ∈ Λ, to rep-

resent Cs,r,f
s2r , Cs,r,f

sr2d and Cs,r,f
cop in (19), respectively, with Λ

being convex and closed domain set. Then, the approxima-
tion function ĥ(x, y) for h(x, y) can be expressed as

ĥ(x, y) =

⎧⎨⎩
[(

1

f(x)

)P

+

(
1

g(x, y)

)P
] 1

P

⎫⎬⎭
−1

(29)

Take any point (x0, y0) in Λ, and also a direction (Δx,Δy).

Then, ĥ(x, y) can be rewritten as a function of a scaler t, as
follows

ĥ(t) =

{[(
1

f(x0 + tΔx)

)P

+

(
1

g(x0 + tΔx, y0 + tΔy)

)P
] 1

P

⎫⎬⎭
−1

. (30)

Since function is concave if it is concave when restricted to
any line in the domain [27], we only need to show that ĥ(t)
is a concave function of t.

The first derivative of ĥ(t) can be calculated as

ĥ′ =
f ′

f(x0+tΔx)P+1 + g′
g(x+tΔx,y+tΔy)P+1[(

1
f(x0+tΔx)

)P
+
(

1
g(x+tΔx,y+tΔy)

)P ] 1
P

+1
. (31)

Denote numerator and denominator of the right hand-side of
(31) as u and v, respectively. Then, the second of derivative

of ĥ(t) can be calculated as

ĥ′′ =
u′v − uv′

v2
, (32)

where u′v−uv′ can be further expressed in the form of A ·B
with A bing a positive item, and B can be expressed as
follows

B =

(
− (f ′)2

fP+1gP
− (f ′)2

f2P+1gP
− (g′)2

gP+1fP
− (g′)2

g2P+1fP

)
+

(
− (f ′)2

f2P+1
− (g′)2

g2P+1
+ 2

f ′

fP+1

g′

gP+1

)
. (33)

The condition that SINR is greater than e− 1 in Lemma 2
implies that f > 1 and g > 1 hold. Then, we have

B < −
(

f ′

fP+1
− g′

gP+1

)2

≤ 0. (34)

Based on (31), (32) and (34), we can conclude that ĥ′ > 0

and ĥ′′ < 0, and hence, the approximation function ĥ is
concave.
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