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Abstract—This article studies distributed algorithms to con-
trol self-organizing swarm drone hotspots with massive MIMO
networking capabilities - a network scenario referred to as
OrgSwarm. We attempt to answer the following fundamental
question: what is the optimal way to provide spectrally-efficient
wireless access to a multitude of ground nodes with mobile base
stations/aerial relays mounted on a swarm of drones and endowed
with a large number of antennas; when we can control the position
of many-antenna-enabled drones, access association of ground
nodes to drones, and the transmit power of ground nodes?

The article first derives a mathematical formulation of the
problem of spectral efficiency maximization through joint control
of the movement of many-antenna-enabled aerial drones, access
association of single-antenna ground nodes to many-antenna
drones, and transmit power of ground nodes. It is shown that the
resulting network control problem is a mixed integer nonlinear
nonconvex programming problem (MINLP). We then first design
a distributed solution algorithm with polynomial computational
complexity. Then, a centralized but globally optimal solution
algorithm is designed based on a combination of the branch
and bound framework and convex relaxation techniques to
provide a performance benchmark for the distributed algorithm.
Results indicate that the distributed algorithm achieves a network
spectral efficiency very close (over 95% on average) to the global
optimum.

I. INTRODUCTION

The proliferation of innovative Internet of Things (IoT) ap-

plications, including intelligent transportation, wireless video

surveillance, augmented reality, among others, has resulted

in increasing demand for faster wireless communication links

with higher spectral efficiency; as well as techniques to reduce

interference between co-located links operating on the same

spectrum bands and hence to increase the spectral efficiency

[1]–[6]. This paper studies OrgSwarm, a new approach to

provide ground connectivity by exploring infrastructure-less

self-organizing swarm drone hotspots with massive MIMO

networking.

With OrgSwarm, a swarm of many-antenna-enabled aerial

drones collaboratively provide data collection/forwarding ser-

vices to a group of single-antenna ground ad hoc nodes, and

send to ground nodes control commands that are generated

either locally at the drones or in a remote fusion center.

This work is based upon material supported in part by Air Force Research
Laboratory under Contract FA8750-14-1-0074 and Grant ARMY W911NF-
17-1-0034.

We attempt to provide an answer to the following question:

What is the best way to provide spectrally-efficient wireless
access/networking to a group of ground nodes with mobile
base stations/aerial relays mounted on drones and endowed
with a large number of antennas; when you can control the
movement of drones, access association, and transmit power of
ground nodes? We attempt to answer this compelling question

by maximizing the spectral efficiency of OrgSwarm by jointly

considering three tightly coupled network control strategies:

• Movement control of drones. Compared to infrastructure-

based cellular networks with static massive MIMO base

stations as in [7], [8], a peculiar feature of OrgSwarm

is that many-antenna-enabled aerial drones need to move

dynamically to adapt to changes in the location or traffic

demands of ground nodes; nodes leaving or joining the

network; as well as time and spatially-varying interfer-

ence level, among others, to provide coverage with higher

spectral efficiency.

• Access association of ground nodes to drones. This is

jointly determined by several factors, including network

topology (i.e., the relative locations of aerial drones

and ground nodes), wireless channel quality currently

experienced by ground nodes and transmit power of

ground nodes, among others. Moreover, in a massive

MIMO setting, a transmission is typically conducted

in two phases: pilot-based channel estimation and data

transmission. The maximum number of ground nodes

associated to an aerial drone is constrained by the length

(in symbols) of the pilot sequences used in the channel

estimation phase [9], [10].

• Massive-MIMO power control. In OrgSwarm, all ground

nodes are allowed to operate over the entire available

spectrum band and at any transmission time. Therefore,

it is imperative to regulate the transmit power of ground

nodes to eliminate mutual interference in both channel

estimation and data transmission phases caused by im-

perfect channel orthogonalization in the case of limited

number antennas at each aerial drone, and hence to

maximize the achievable SINR and spectral efficiency.

Clearly, the above three network control problems are tightly

coupled and should therefore be jointly considered to obtain

the optimal network operating point. Because of the binary

ground-drone association variables (which will be clearerISBN 978-3-903176-05-8 c© 2018 IFIP



in Section III), the resulting OrgSwarm control problem is

a mixed integer nonlinear nonconvex programming problem

(MINLP), which is generally NP-hard and there is no existing

solution algorithm that can be used to obtain the globally

optimal solution with polynomial computational complexity.

This paper makes the following main contributions:

• OrgSwarm control formulation. We formulate mathemat-

ically the OrgSwarm control problem with control objec-

tive of maximizing the spectral efficiency of OrgSwarm

by jointly controlling the movement of aerial drones,

ground-drone association and transmit power of ground

nodes.

• Distributed solution algorithms. Distributed solution al-

gorithms are designed to solve the formulated OrgSwarm

control problem based on primal decomposition, which

decomposes the resulting MINLP problem into three dis-

tributed sub-problems: single-antenna-to-many-antennas
access association, massive MIMO power control, and
drone movement.

• Globally optimal solution algorithm. To provide a perfor-

mance benchmark for the distributed solution algorithm,

we design a centralized but globally optimal solution

algorithm based on a combination of the branch and
bound framework and of convex relaxation techniques
that result in an ε-optimal solution of the original MINLP

problem, where ε is a predefined level of optimality

precision that can be set arbitrarily close to 1.

• Performance evaluation. The performance of the pro-

posed distributed solution algorithm is evaluated in terms

of network spectral efficiency by comparing it to the

global optimum through extensive simulation experi-

ments.

The reminder of the paper is organized as follows. We review

related work in Section II, and describe the system model

and problem formulation in Section III. In Sections IV and

V, we present the distributed solution algorithm and the

globally optimal solution algorithm, respectively. Performance

evaluation is presented in Section VI, and finally we draw

conclusions in Section VII.

II. RELATED WORK

There is a large and growing body of literature on unmanned

aerial vehicular networking, focusing on UAV-assisted guid-

ance [11], UAV-based data collection [12]–[14] and relaying

[15]–[19], ground-aerial channel measurements [20] as well as

tracking and control of UAV networks [21]–[23]. Readers are

referred to [24]–[27] and references therein for an extensive

survey of this research area. Most of these works focus on

single-antenna aerial vehicles and conventional MIMO, with

very few recent efforts considering massive MIMO [23]. Dif-

ferent from [23], where Chandhar et al. derived the achievable

uplink capacity from a many-antennas ground base stations

to a set of single-antenna aerial drones, in this paper we

maximize the aggregate throughput of single-antenna ground

nodes to a set of aerial drones each endowed with a large

number of antennas.

Compared to conventional multiuser MIMO, massive

MIMO can attain much higher spectral efficiency by using

a large number of antennas with low-complexity linear pre-

coding technologies [9], [28]–[33]. For example, in [29], the

authors derived an exact achievable rate expression in closed-

form for maximum-ratio combining/maximum-ratio transmis-

sion (MRC/MRT) processing and an analytical approximation

of the achievable rate for zero-forcing (ZF) processing for

multi-pair full-duplex massive MIMO relay system. In [30],

Jin et al. derived ergodic rates for the case with a finite

number of antennas and concluded that the ergodic sum-rate

can be maintained while the relay power is scaled down by

a factor of the number of the antennas at the relay over the

number of users. Please refer to [7], [10], [34] for a good

survey and tutorial on massive MIMO networking. These

papers are focused on infrastructure-based cellular networks

with static many-antenna-enabled base stations, and focus

on asymptotic performance analysis with respect to a single

network parameter (e.g., power). Our paper, instead, considers

aerial drone hotspots with massive MIMO capabilities in an

infrastructure-less network scenario.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider infrastructure-less wireless ad hoc networks

with many-antenna-enabled drones, where a set A of many-

antenna-enabled aerial drones are used to collect field infor-

mation from a set G of single-antenna ground nodes. The

goal of the aerial drones is to collect field information, make

action decisions either locally at each drone or by sending

the information fusion results to a remote control center, and

finally send the action commands back to ground nodes. We

focus on information uploading over ground-drone links since

it causes only low-level traffic load to transmit information

fusion results and control commands back to ground nodes.

Our objective is to maximize the network-wide spectral effi-
ciency by jointly controlling the movement of aerial drones,
associating single-antenna ground nodes to many-antenna
drones, and controlling the transmit power of ground nodes.

Ground-Drone Association. We consider single-home ac-

commodation for ground nodes in favor of tractable complex-

ity in modeling and theoretical analysis, i.e., each ground node

is associated with at most one drone. Denote the association

vector as α � (αg)g∈G , where αg � (αga)a∈A is the

association vector of ground node g ∈ G, with αga = 1
if ground node g is associated with drone a and αga = 0
otherwise. Denote Ag ⊂ A as the set of aerial drones ground

node g is associated with, Ga ⊂ G as the set of ground nodes

associated with drone a, and Ag and Ga as the number of

aerial drones in Ag and the number of ground nodes in Ga,

respectively. Then, we have

Ag � {a|a ∈ A, αga = 1}, ∀g ∈ G, (1)

Ag � |Ag| ≤ 1, ∀g ∈ G, (2)

Ga � {g|g ∈ G, αga = 1}, ∀a ∈ A, (3)

Ga � |Ga| ≤ Gmax, ∀a ∈ A, (4)



where Gmax is the maximum number of ground nodes that

can be served by each aerial drone a ∈ A.1

Ground-Drone Link Capacity. In massive MIMO networks,

a transmission is typically accomplished in two phases, i.e.,

channel estimation and data transmission [9], [10], [36]. In

the first phase, ground nodes send a set of orthogonal pilot

sequences to their service aerial drones for channel estimation.

Denote τ as the length (in symbols) of each pilot sequence. For

ground node g ∈ G, let Ig represent the set of ground nodes

using the same pilot sequences as node g, and a(g) denote

the service aerial drone of ground node g. Let p = (pg)g∈G
represent the transmit power vector of ground nodes, with pg
being the power of gth ground node in G. Then, the achievable

signal-to-interference-plus-noise ratio (SINR) of ground node

g ∈ G, denoted as γg , can be written as [37]

γg =

(
M −Ga(g)

)
τρβ2

ggpg/(1 + τρξgg)

1 +
∑
g′∈G

μg′gpg′ +

τρ(M−Ga(g))
∑

g′∈Ig\g
β2
g′gpg′

1+τρξgg

(5)

where M represents the number of antennas available at each

aerial drone, βg′g is the slow fading channel gain between

ground node g′ ∈ G to the service aerial drone of ground

node g, i.e., aerial drone a(g), ρ is transmit signal-to-noise

ratio (SNR), ξg′g �
∑

l∈Ig′
βlg , and μg′g is defined as

μg′g =

⎧⎨
⎩

βg′g, if a(g′) /∈ A(Ig)
βg′g

(
1− τρβg′g

1+τρξg′g

)
, otherwise,

(6)

with A(Ig) � {a(g′)|g′ ∈ Ig} representing the set of service

aerial drones of interfering ground nodes in Ig .

Let x = (xa)a∈A, y = (ya)a∈A, x̃ = (x̃g)g∈G and ỹ =
(ỹg)g∈G respectively represent the coordinate vectors of aerial

drones and ground nodes, with xa, ya being x- and y-axis

coordinates of aerial drone a, and x̃g and ỹg being x- and

y-axis coordinates of ground node g, respectively. Then, the

slow fading channel gain βg′g in (6) can be expressed as

βg′g = Hg′g(x,y, x̃, ỹ)ζg′g, (7)

where ζg′g represents the log-normal slow fading between

ground node g′ and the service aerial drone of ground node

g, i.e., aerial drone a(g), Hg′g � d−χ
g′g(x,y) is location-

dependent path loss with χ being path loss factor and d−χ
g′g

being the distance (in meter) between ground node g′ and

aerial drone a(g). Then, the capacity achievable by ground

node g ∈ G, denoted as Rg(α,p,x,y, x̃, ỹ), can be expressed

as

Rg(α,p,x,y, x̃, ỹ) = B log2(1 + γg), (8)

where B is bandwidth (in Hz) and γg = γg(α,p,x,y, x̃, ỹ)
is the achievable SINR defined in (5).

1The maximum number of served ground nodes cannot exceed the number
of antennas available to each aerial drone and the length of pilot sequences
used in channel estimation [35].

Problem Statement. The network control objective can then

be stated as maximizing the sum capacity of all ground

nodes in G and hence the network spectral efficiency by

jointly determining transmit power vector p for ground nodes,

coordinate vectors x and y for aerial drones, and ground-

drone association vector α. The problem is a mixed integer

nonlinear nonconvex programming problem (MINLP) because

of the nonlinear nonconcave mathematical expression of γg
with respect to α,p,x,y in (5)-(7) and binary association

variables α. Given an arbitrary such problem, how to design

distributed solution algorithms to achieve the global optimum

is still an open problem. In the following sections, we first

present a distributed solution algorithm in Section IV and then

design a centralized but globally optimal solution algorithm

in Section V to provide a performance benchmark for the

distributed solution algorithm.

IV. DISTRIBUTED SOLUTION ALGORITHM

A key step of the distributed solution algorithm design

is to decompose the original network control problem into

a series of subproblems, by solving which in a distributed

manner the original problem can be solved. In our case,

network control variables α,p,x,y are tightly coupled with

each other in the SINR γg expression in (5) and, therefore,

in the achievable capacity in (8). This results in the fact

that the resulting network control problem is architecturally

undecomposable.2 Therefore, we design our distributed solu-

tion algorithm by decomposing the network control problem

following a primal decomposition approach. The core idea is

to divide the feasible set of the original problem into multiple

parts by fixing a subset of variables at each time; and solve

the resulting subproblems iteratively [39]. In our case, primal

decomposition can be accomplished by fixing the aerial drone

location variables x,y, association variables α, and transmit

power vector p, resulting in three subproblems: ground-drone
association, ground node power control and drone movement.
In the following, we design an iterative distributed solution

algorithm, where at each iteration the three subproblems are

solved sequentially.

Massive MIMO Association. Let x(ν) and y(ν) represent the

coordinates of aerial drones and p(ν) be the transmit power

of ground nodes in current iteration ν. Then in iteration ν+1
the objective of the ground-drone association subproblem is

to maximize the aggregate capacity of all ground nodes in

A by determining the association vector α(ν+1) subject to

association constraint (2), which is a nonconvex combinato-

rial problem. Next, inspired by the behaviors of interacting

agents in real-time auctions [40], [41], we present an effective

Distributed Auction-based Association Strategy (DAAS) by

viewing the drones as sellers while the ground nodes as buyers.

The core idea of DAAS is to let ground nodes iteratively

compete for association by reporting their own association

2A problem is architecturally decomposable if its dual problem obtained by
introducing Lagrange multipliers can be rewritten into a set of subproblems,
each of which can be solved locally in a single protocol layer and network
device [38].



preferences to nearby aerial drones, which then make associ-

ation decisions based on the received preference information.

Denote N (ν+1)
g ⊂ A as the set of nearby aerial drones of

ground node g ∈ G (i.e., aerial drones in the communication

range of the ground node). Then, the association preference

of ground node g with respect to aerial drone a ∈ N (ν+1)
g ,

denoted as λga, can be computed as

λga =
log(1 + γga)∑

a′∈N (ν+1)
g

log(1 + γga′)
, (9)

where γga′ represents the interference-free single-input-single-

output (SISO) SINR, i.e., the SINR achievable with single

antenna and without interference from other ground nodes

[35], achievable by ground node g if associated to aerial

drone a′. This can be defined as γga′ � ρβgg|a(g)=a′ with

ρ being the transmit SNR and βgg|a(g)=a′ being the fading

coefficient. Denote λa = (λga)g∈Ña
as the preference vector

aerial drone a receives from its nearby ground nodes in

Ña � {g|g ∈ G, a ∈ Ng}. Then, aerial drone a sorts λa in

descending order and sends association offers to a preferred

set of maximum Gmax of ground nodes, as follows,

λdsc
a = (λg1a, λg2a, · · · , λgGmaxa︸ ︷︷ ︸

Preferred Ground Nodes

, · · · ). (10)

Then, the association offer corresponding to the highest SISO

SINR is accepted by a ground node if it receives multiple

offers. The above procedures are repeated until no ground node

receives multiple association offers.

In (9), the rationale of computing association preference

based on interference-free SISO SINR is as follows. In massive

MIMO settings, particularly when the number of antennas M
is large, the received SINR is dominated by path loss and

large scale shadowing and tends to the interference-free SISO

SINR as M → ∞. Therefore, the capacity with interference-

free SISO SINR can serve as a good indication of association

preference and can be computed with low computational

complexity.

Massive MIMO Power Control. Given the coordinates of

aerial drones x(ν),y(ν) and association vectors α(ν+1), the

ground node power control subproblem can be expressed as

Given : x(ν),y(ν),α(ν+1)

Maximize
p

:
∑
g∈G

Rg(p)

Subject to : 0 ≤ pg ≤ p0, ∀g ∈ G
(11)

where Rg(p) is defined in (5)-(8) and p0 is the maximum

transmit power of ground nodes. As stated in the following

theorem, this problem can be approximated as a convex

programming problem in the setting of massive MIMO net-

working, and hence the optimal power control can be achieved

with poly-nominal computational complexity.

Proposition 1. In a massive MIMO setting, for given coordi-
nates of aerial drones and association strategies, ground node
transmit power control problem in (11) can be approximated
as a convex programming problem.

Proof. According to convexity preserving properties, the log-

arithm of a concave function is a concave function [42].

Therefore, to prove the theorem we only need to show that

the achievable capacity Rg in (8) is a concave function. In

a massive MIMO setting, it is reasonable to assume that the

achievable SINR γg in (5) satisfies γg � 1 since the negative

effects of interference and small scale fading can be largely

smoothed out [35]. Then, it can be shown that the expression

of capacity Rg in (8) has the form of minus-log-sum-exp with

respect to logarithm transformation of transmit power variables

pg , which is a concave function [42].

Drone Movement. In this subproblem, each aerial drone

determines its own best coordinates to adapt to the changes

in association strategies and transmit power of ground nodes

caused by solving the previous two subproblems. With newly

obtained association vector α(ν+1) and transmit power vector

p(ν+1), the subproblem of aerial drone movement can be

written, for each aerial drone a ∈ A, as

Given : α(ν+1),p(ν+1)

Maximize
x,y

:
∑

g∈Ga

Rg(x,y),

Subject to : xmin ≤ xa ≤ xmax,
ymin ≤ ya ≤ ymax,

(12)

where xmin, ymin, xmax and ymax represent the minimum

and maximum x- and y- coordinates, respectively, and Ga

represents the set of ground nodes associated with aerial drone

a with given association vector α(ν+1). In this subproblem,

the mathematical expression of utility function Rg(x,y) in

(12) has a log-convex form, which is in general a nonconcave

function with respect to coordinate variables x and y. In

this paper we solve subproblem (12) using an interior point

method [42] to search for locally optimal coordinates for each

aerial drone in favor of a low-complexity distributed solution.

In Section V, we will design a centralized but globally

optimal solution algorithm at the cost of extra computational

complexity.

Computational Complexity Analysis. In the distributed so-

lution algorithm, the above three subproblems are solved iter-

atively and sequentially at each iteration. In the ground-drone

association subproblem, the association strategy is determined

iteratively. In each iteration, the association variable αga can

be determined for at least one ground node, and therefore

the maximum number of associations is |G|, and the overall

computational complexity of the association is O(|G|). Both

the power control and the aerial drone movement subproblems

can be solved in polynomial computational complexity, i.e.,

O(|G||A|). Therefore, the complexity of the overall distributed

solution algorithm is O(|G|(|A| + 1)) for each iteration. The

convergence of the proposed distributed solution algorithm

will be studied in Section VI based on simulations, where

results indicate that the algorithm can converge very fast, i.e.,

within tens of iterations.

So far, we have presented a distributed solution algo-

rithm to jointly control the movement of aerial drones,

ground-drone association and power control of ground nodes



in infrastructure-less wireless ad hoc networks with many-

antenna-enabled aerial drones. A natural question is: How
does the distributed solution algorithm compare to the global
optimum in terms of aggregate spectral efficiency? In the

remaining of the paper we answer this question by designing a

centralized but globally optimal solution algorithm to provide a

performance benchmark for the distributed solution algorithm.

V. GLOBALLY OPTIMAL SOLUTION ALGORITHM

As stated in Section III, the “social” objective of the

network control problem is to maximize the network spectral

efficiency by jointly controlling movement of aerial drones,

the transmit power of ground nodes and the ground-drone

association strategies. The social OrgSwarm control problem

can be mathematically represented as

Given : A, G, Gmax

Maximize
α,p,x,y

: U �
∑
g∈G

Rg(α,p,x,y)

Subject to : 0 ≤ pg ≤ p0, ∀g ∈ G,
xmin ≤ xa ≤ xmax, ∀a ∈ A,
ymin ≤ ya ≤ ymax, ∀a ∈ A,
(1), (2), (3), (4).

(13)

In (13), the individual throughput Rg is a noncon-

vex/nonconcave function with respect to coordinates variables

x,y and transmit power vector p. Moreover, the association

variables α take only binary values. Therefore the resulting

network control problem is a mixed integer nonlinear non-

convex programming problem (MINLP), for which there is

in general no existing solution algorithm that can be used to

obtain the global optimum in polynomial computational com-

plexity. In this paper, we design a globally optimal solution

algorithm based on a combination of the branch and bound
framework and of convex relaxation techniques [43], [44].

A. Overall Algorithm

Denote Γ0 = {α,p,x,y| constraints in (13)} as the

feasible set of initial problem (13) and let U∗(Γ0) represent

the global optimum of problem (13) over Γ0, then the objective

of our algorithm is to iteratively search for a U so that

U(Γ0) ≥ εU∗(Γ0), (14)

where ε ∈ (0, 1] is predefined optimality precision. To this

end, the algorithm maintains a set Γ = {Γi, i = 0, 1, 2, · · · }
of subproblems by iteratively partitioning feasible set Γ0 into

a series of smaller subsets (see Section V-C).3 The algorithm

also maintains a global upper bound Uglb(Γ0) and a global

lower bound Uglb(Γ0) on U∗(Γ0) so that

Uglb(Γ0) ≤ U∗(Γ0) ≤ Uglb(Γ0) (15)

to drive the iterations of subproblem partitions, as follows.

• Global upper bound Uglb(Γ0): For each subproblem

Γi ∈ Γ, the algorithm computes a local upper bound

3In this paper we use Γi to refer to both subproblem i and the corresponding
feasible set.

U lcl(Γi) on network utility function U via convex relax-
ation (see Section V-B). Then the global upper bound

Uglb(Γ0) can be updated as

Uglb(Γ0) = max
Γi∈Γ

{U lcl(Γi)}. (16)

• Global lower bound Uglb(Γ0): Similarly, for each sub-

problem Γi ∈ Γ a local lower bound U lcl(Γi) is

computed based on the solution obtained by solving the

relaxed convex network control problem. Then the global

lower bound Uglb(Γ0) can be updated as

Uglb(Γ0) = max
Γi∈Γ

{U lcl(Γi)}. (17)

The algorithm terminates if Uglb(Γ0) ≥ εUglb(Γ0) is reached

and the global optimum U∗(Γ0) is set to U∗(Γ0) = Uglb(Γ0)
as a upper-bound benchmark. Otherwise, the algorithm selects

a subproblem from Γ and further partitions its feasible set into

two smaller subsets, computes local upper and lower bounds

and updates the global bounds Uglb(Γ0) and Uglb(Γ0) as in

(16) and (17), respectively. In our algorithm, we select the

subproblem Γi ∈ Γ with the highest local upper bound to

partition, i.e.,

Γi = argmax
Γi

U lcl(Γi). (18)

Based on the global bounds update criterion in (16) and (17),

the gap between the two global bounds converges to 0 as the

partition progresses. Furthermore, from (15), Uglb(Γ0) and

Uglb(Γ0) converge to the global optimum U∗(Γ0).

B. Convex Relaxation

For each subproblem Γi ⊂ Γ, which is MINLP in our case,

a key step is to obtain a relaxed but convex version of Γi so

that it is easy to compute a tight local upper bound U lcl(Γi).
In this paper the convex relaxation is designed following a

two-phase approach as follows.

Phase 1: In this phase the relaxation is accomplished by

assuming i) there is no mutual interference among ground

nodes, i.e., interference items in the denominator of (5) are set

to zero, and that all ground nodes use different pilot sequences

in channel estimation and hence ξgg = 0 in (5); ii) the

maximum number of ground nodes that can be associated to an

aerial drone is not limited to Gmax in (4). Then, the objective

of the relaxed network control problem is to maximize the

aggregate capacity of ground nodes by determining the optimal

coordinate x and y of drones, i.e.,

Maximize
x, y

: U �
∑
g∈G

Rg(x,y)

Subject to : xmin ≤ xa ≤ xmax, ∀a ∈ A,
ymin ≤ ya ≤ ymax, ∀a ∈ A,

(19)

where Rg(x,y) = B log2(1+γg(x,y)) with γg(x,y) defined



in (5). Since γg(x,y) � 1, Rg(x,y) can be approximated as

Rg(x,y) ≈ B log2(γg(x,y)) (20)

≤ B log2
(
Mτρp0ζ

2
ggH

2
gg(x,y)

)
(21)

= B log2

(
Mτρp0ζ

2
gg

dχgg(x,y)

)
(22)

= B log2(Mτρp0ζ
2
gg)− χB log2(dgg(x,y)), (23)

where the inequality in (21) holds since Ga(g) ≥ 0 in (5), χ
is path loss factor and dgg(x,y) is distance (in meter) from

ground node g to its service aerial drone a(g).

Since dgg(x,y) in (23) is a convex Euclidean norm with

respect to x and y [42], log2(dgg(x,y) cannot be theoretically

guaranteed to be concave. In this phase, we obtain a convex

relaxation of (23) based on linear approximation of logarithmic

function. To this end, we first replace dgg(x,y) in (23) with

t, then log2(dgg(x,y) in (23) can be represented as log2(t)
subject to t ≥ dgg(x,y). Then, log2(t) can be further relaxed

using a set of linear functions using a segment and three

tangent lines.

Phase 2: Phase 2 of relaxation is invoked if the algorithm is

done with partitioning coordinate variables x and y, i.e., for

each aerial drone a ∈ A,

xmax,a − xmin,a ≤ Δx, (24)

ymax,a − ymin,a ≤ Δy, (25)

where xmax,a and xmin,a (ymax,a and ymin,a) are upper and

lower bounds of x-axis coordinate xa (y-axis coordinate ya),

and Δx and Δy are predefined movement step size of aerial

drones in x- and y-axis, respectively. The objective in this

phase is to determine the optimal association vector α with

given aerial drones coordinates vectors x∗ and y∗ and without

considering mutual interference among ground nodes as in

Phase 1 relaxation. Let Rga represent the capacity achievable

by ground node g ∈ G if g is associated to aerial drone a ∈ A,

then the optimal association can be obtained by solving the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Network Topology Instances

0

50

100

150

200

250

300

350

400

450

N
et

w
or

k 
Sp

ec
tra

l E
ffi

ci
en

cy
 (b

ps
/H

z)

Distributed
Centralized Global Optimum

Fig. 1: Aggregate network spectral efficiency achievable by dis-
tributed solution algorithm and global optimum.

following linear optimization problem:

Given : x∗,y∗

Maximize
α

:
∑
a∈A

∑
g∈G

αgaRga(α,x∗,y∗)

Subject to : 0 ≤ αga ≤ 1, ∀a ∈ A, g ∈ G,∑
g∈G

αga ≤ Gmax, ∀a ∈ A,∑
a∈A

αga ≤ 1, ∀g ∈ G.

(26)

As variable partition progresses, the association variable αga

becomes fixed either to 0 or 1 in all subproblems, for which

the optimal transmit power p can be obtained by solving a

convex optimization problem as in Section IV.

C. Variable Partition

Variable partition can be conducted by partitioning associa-

tion variable α and movement variables x and y. For example,

given a subproblem Γi ∈ Γ, by fixing association variable

αga subproblem Γi can be partitioned into two subproblems

with feasible sets Γi,1 = {(α,p,x,y) ∈ Γi|αga = 0}
and Γi,2 = {(α,p,x,y) ∈ Γi|αga = 1}, respectively. For

movement variables, say xa ∈ [xmin,a xmax,a] for aerial drone

a ∈ A, the partition can be conducted by splitting xa from

the half, resulting in two subproblems with feasible sets

Γi,1 = {(α,p,x,y) ∈ Γi|xa ∈ [xmin,a xmid,a]}, (27)

Γi,2 = {(α,p,x,y) ∈ Γi|xa ∈ [xmid,a xmax,a]}, (28)

where xmid,a � xmin,a+xmax,a

2 .

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed solution

algorithms by considering a network area of 1000×1000 m2,

with Ng = {4, · · · , 15} ground nodes served by Na = {2, 3}
aerial drones. The altitude of the drones are set to 100

meters. The number of antennas of each aerial drone is set

to Nant = {20, 40, · · · , 160}, the maximum transmit power

of each ground node p0 is set to {100, 200, · · · , 600} mW,

path loss factor is set to χ = 2, and the average noise power
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Fig. 2: Network spectral efficiency in the case of different number
of ground nodes.
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Fig. 3: Network spectral efficiency in the case of different number
of aerial drone antennas.

is set to 10−8 mW. Results are obtained by averaging over

20 independent simulation instances with network topology

randomly generated.

Performance of the proposed distributed solution algorithm

is evaluated by comparing it with the global optimum obtained

by the centralized solution algorithm designed in Section V.

Figure 1 reports the network spectral efficiency achievable by

the distributed solution algorithm and the centralized global

optimum. It can be seen that the distributed solution algorithm

achieves a performance very close to the global optimum in

all the tested 20 instances, where 12 ground nodes and 2

aerial drones each with M = 100 antennas are considered.

The average performance of the achievable network spectral

efficiency is reported in Fig. 2 with different number of

ground nodes. Results indicate that around 95% percent of

the global optimum can be achieved by distributed solution

algorithm, e.g., 94.9% and 95.4% with 6 and 10 ground nodes,

respectively.

The network spectral efficiency is reported in Fig. 3 with

the number of antennas at each aerial drone varying from 20

to 160 at step of 20. It can be seen that over 95% of the

global optimum can be achieved by the distributed solution

algorithm. Results also indicate that the achievable network

spectral efficiency monotonically increases with the number

of antennas but at a decreasing speed. With more than 100

antennas, the effect of increasing the number antennas is

marginal.

In Fig. 4 we plotted the achievable network spectral effi-

ciency against the maximum transmit power of ground nodes.

Over 95% of the global optimum can be achieved by the

distributed solution algorithms. We noticed that the network

spectral efficiency rises only around 10% by increasing the

maximum transmit power by 6 times from 100 to 600 mW.

This is because in massive MIMO setting the network basically

operates at high SINR regime, i.e., in bandwidth-limited

regime. We further studied the effects of different network

control strategies on the achievable network spectral efficiency

in Fig. 5, where the joint network control strategy is compared
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Fig. 4: Aggregate network spectral efficiency against the maximum
transmit power of ground nodes.
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Fig. 5: Achievable network spectral efficiency with different network
control strategies.

to the other three strategies, in which aerial drone movement is

randomly generated in “w/o Aerial Drone movement”, power

control and association are executed only once in “w/o” power

control and “w/o” association, respectively. It can be seen

that the joint network control achieves the highest spectral

efficiency in almost all tested instances. Results also indicate

that a spectral efficiency close to that of joint control can be

achieved by “w/o power control” in most network instances

since the network operates in high SINR regime in massive

MIMO setting.

VII. CONCLUSIONS

We studied infrastructure-less wireless ad hoc networking

with many-antenna-enabled aerial drone hotspots. The network

control objective is to maximize network-wide spectral effi-

ciency by jointly controlling movement of drones, associating

single-antenna ground nodes to many-antenna drones, and

adapting transmit power of ground nodes. The network control

problem was formulated as an integer nonlinear nonconvex

programming problem (MINLP). Both distributed and globally

optimal solution algorithms have been designed and evaluated

with extensive simulation results. Results indicated that the

distributed solution algorithm can achieve around 95% of the

global optimum.
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[34] D. C. Araújo, T. Maksymyuk, A. L. de Almeida, T. Maciel, J. ao
C.M. Mota, and M. Jo, “Massive MIMO: Survey and Future Research
Topics,” IET Communications, vol. 10, no. 15, pp. 1938–1946, October
2016.

[35] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and Spectral
Efficiency of Very Large Multiuser MIMO Systems,” IEEE Trans. on
Commun., vol. 61, no. 4, pp. 1436–1449, April 2013.

[36] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
Overview of Massive MIMO: Benefits and Challenges,” IEEE Journal
of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742–758,
October 2014.

[37] H. Yang and T. L. Marzetta, “Capacity Performance of Multicell Large-
scale Antenna Systems,” in Proc. Allerton Conference on Communica-
tion, Control, and Computing, Monticello, IL, Oct. 2013.

[38] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as Optimization Decomposition: A Mathematical Theory of Network
Architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
January 2007.

[39] D. P. Palomar and M. Chiang, “A Tutorial on Decomposition Methods
for Network Utility Maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, August 2006.

[40] R. McAfee and J. McMillan, “Auctions and Bidding,” J. Economic
Literature, vol. 25, no. 2, pp. 699–738, June 1987.

[41] B. Gerkey and M. Mataric, “Sold!: Auction Methods for Multirobot
Coordination,” IEEE Trans. Robotics and Automation, vol. 18, no. 5,
pp. 758–768, Oct. 2002.

[42] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[43] E. L. Lawler and D. E. Wood, “Branch-And-Bound Methods: A Survey,”
Operations Research, vol. 14, no. 4, pp. 699–719, Jul.-Aug. 1966.

[44] H. D. Sherali and W. P. Adams, A Reformulation-Linearization Tech-
nique for Solving Discrete and Continuous Nonconvex Problems.
Boston: MA: Kluwer Academic, 1999.


