
Crowdsourcing Access Network Spectrum Allocation
Using Smartphones

Jinghao Shi†, Zhangyu Guan†§, Chunming Qiao†, Tommaso Melodia§

Dimitrios Koutsonikolas† and Geoffrey Challen†

†Department of Computer Science and Engineering, University at Buffalo
§Department of Electrical and Computer Engineering, Northeastern University

†{jinghaos,zguan2,qiao,dimitrio,challen}@buffalo.edu, §melodia@ece.neu.edu

ABSTRACT
The hundreds of millions of deployed smartphones provide
an unprecedented opportunity to collect data to monitor, de-
bug, and continuously adapt wireless networks to improve
performance. In contrast with previous mobile devices, such
as laptops, smartphones are always on but mostly idle,
making them available to perform measurements that help
other nearby active devices make better use of available
network resources. We present the design of Pocket-
Sniffer, a system delivering wireless measurements from
smartphones both to network administrators for monitoring
and debugging purposes and to algorithms performing real-
time network adaptation. By collecting data from smart-
phones, PocketSniffer supports novel adaptation algo-
rithms designed around common deployment scenarios in-
volving both cooperative and self-interested clients and net-
works. We present preliminary results from a prototype and
discuss challenges to realizing this vision.

Categories and Subject Descriptors
C2.3 [Network Operations]: Network management

General Terms
Management; Performance

Keywords
Smartphones; crowdsourcing; monitoring

1. INTRODUCTION
The rapid proliferation of smartphones creates both

challenges and new opportunities for wireless networks.
On one hand, smartphones compete for the same lim-
ited spectrum already crowded with other devices. On

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

HotNets-XIII, October 27–28, 2014, Los Angeles, CA, USA
Copyright 2014 ACM 978-1-4503-3256-9/14/10 ...$15.00
http://dx.doi.org/10.1145/2670518.2673866

the other hand, because smartphones are always on but
mostly idle, they are ideal for observing other nearby ac-
tive wireless devices—such as laptops, tablets, or other
smartphones. When used for continuous network adap-
tation, offloading measurements from active to inactive
clients allows data collection to avoid disturbing active
sessions, a capability that has not been adequately ex-
ploited by other systems using client-side feedback [14,
6, 5, 7, 9, 8, 10, 11]. When used for network moni-
toring and debugging, smartphones provide more valu-
able measurements than planned site surveys, since the
data that smartphones provide is continuous and rep-
resentative of wireless conditions experienced by users
while surveys are neither. We refer to these approaches
collectively as crowdsourcing access network spectrum
allocation using smartphones, or CANSAS.

Realizing CANSAS requires novel integration be-
tween smartphones and an adaptive network along with
new algorithms enabling cooperative spectrum alloca-
tion on both short and long timescales. This paper de-
scribes a prototype system implementing CANSAS for
Wifi networks called PocketSniffer. Implemented
as a smartphone app, PocketSniffer is simple to
deploy. It uses a pub-sub architecture to collect mea-
surements from passive smartphones and use them to
improve network performance. PocketSniffer also
captures the large number of measurements made nat-
urally by smartphones as they discover and connect to
networks, valuable data that is currently discarded.

To enable short-term adaptation, measurements are
triggered by and used as inputs to new algorithms that
can alter channel assignments, control AP power levels
and rate selection, and alter client associations in order
to improve network performance and allocate available
spectrum more effectively. PocketSniffer allows dif-
ferent algorithms to be deployed to support a variety
of different network structures, including both fully-
cooperative settings and cases where multiple networks
overlap and compete for the local spectrum resources,
scenarios representative of both typical home and en-
terprise Wifi deployments. To enable long-term adap-
tation, measurements are provided to network adminis-
trators in order to perform network monitoring, main-
tenance, and capacity planning. Realizing Pocket-

1

Sniffer, however, requires addressing a set of open re-
search challenges: determining how to incentivize client
measurements, ensuring that client measurements are
accurate, ensuring fairness in the energy consumed by
the measurement process, and dealing with differences
in smartphone wireless measurement capabilities.

The rest of this paper is structured as follows. Sec-
tion 2 describes the design of PocketSniffer while
Section 3 describes algorithms using PocketSniffer
data to perform cooperative network adaptation to sup-
port several common deployment scenarios. We con-
tinue by presenting results from a prototype Pocket-
Sniffer system in Section 4. We discuss some open
challenges in Section 5 and related works in Section 6,
before concluding in Section 7.

2. POCKETSNIFFER DESIGN
This section describes the design of Pocket-

Sniffer, a system enabling CANSAS for Wifi networks
by providing the client-side measurements needed to en-
able the coordination algorithms described in the next
section. We begin with an overview of the Pocket-
Sniffer system from the perspective of a network user.

2.1 Overview
When Alice and Bob register for their campus WLAN

they are required to install the PocketSniffer moni-
toring app on their smartphones. As they travel around
campus, their smartphones collect measurements on the
health and performance of the campus network based on
queries established by network administrators, report-
ing these measurements in an energy-neutral way by
uploading data only when their smartphones are charg-
ing. Network administrators can use this data to iden-
tify poorly-served areas of campus, locate APs that are
over- or underutilized, and for other network monitor-
ing and debugging purposes.

In addition, as Alice and Bob sit together in a campus
cafe using the campus WLAN to surf the web—Alice
on her tablet, Bob on his smartphone—suddenly a new
source of interference begins to disrupt their network
performance. Unfortunately this interfering client can-
not be overheard at the AP they are associated with,
but the AP can tell that Alice’s and Bob’s networking
environment has degraded. At this point, it triggers the
PocketSniffer app on Alice’s inactive smartphone to
search for a less-congested channel. Based on the results
PocketSniffer may move their active devices to a
different channel, adjust the AP power level, or suggest
they associate with a different campus AP, all with-
out performing measurements on their active clients
that could interrupt their web browsing. Without col-
lecting measurements directly from Bob’s smartphone,
PocketSniffer is still able to exploit the proximity
between Alice and Bob and use Alice’s nearby inactive
smartphone to estimate the impact of changes on Bob’s
active smartphone to ensure that any spectrum adap-
tation benefits both devices.

Later, when Alice and Bob return home to neighbor-
ing apartments their overlapping home Wifi networks

use PocketSniffer measurements as inputs to per-
form cooperative spectrum allocation. Despite the lack
of centralized control, their two networks jointly adapt
to allocate spectrum in a way that improves perfor-
mance for both users.

2.2 Performing Measurements
PocketSniffer collects two types of measurements

from clients—scan results and spectrum utilization
information—in two different ways—asynchronously
and synchronously.

2.2.1 Measurement types
Scan results are inexpensive to collect and provide a

high-level view of the network including visible APs and
their signal strengths. Android smartphones already
perform Wifi scans at regular intervals, even while asso-
ciated with a Wifi network. Recovering this data incurs
no energy overhead for clients as long as the measure-
ments are only uploaded while the battery is charging,
and our recent analysis of 89 million scan results col-
lected from 139 smartphones over 5 months [13] has
demonstrated the value of these measurements for net-
work monitoring and debugging.

However, because smartphones are frequently idle,
periodic scans may not reflect either locations where
users actually use their devices or locations where their
devices use the network. To better connect Wifi scans
with interactive usage and network activity, Pocket-
Sniffer annotates each scan with two pieces of infor-
mation: (1) whether the scan was performed during in-
teractive use as estimated by the screen state, and (2)
the timestamp since device’s last data transfer, because
not every interactive session includes Wifi usage and be-
cause smartphones perform background data transfers
with the screen disabled.

In contrast, spectrum utilization measurements are
expensive to collect and may not be possible to collect
on all clients, but provide a very detailed view of spec-
trum usage. The ability of Wifi chipsets to observe link-
layer signaling traffic and packets sent by other devices
varies from device to device, and because these measure-
ments require disabling the power-save mode used by
mobile Wifi chipsets they consume extra energy even if
measurement upload is performed in an energy-neutral
way. We discuss several research challenges caused by
Wifi chipset heterogeneity in Section 5.

2.2.2 Query types
Asynchronous measurements are used to perform net-

work monitoring and as a replacement for expensive site
surveys in order to do spatial and temporal spectral
capacity planning. For asynchronous queries Pocket-
Sniffer allows clients to publish measurements to sub-
scriptions set up by network administrators, each of
which contains one or more queries describing requested
measurements.

PocketSniffer’s queries allow administrators to
configure both asynchronous and synchronous data col-
lection by restricting the type of data collected, the

2

devices that participate, APs or active devices to ob-
serve, and times during which to perform measure-
ments. Pushing queries to clients allows Pocket-
Sniffer to limit the energy overhead of the measure-
ment process, even for asynchronous queries when the
data can probably be collected during charging sessions.
PocketSniffer avoids disturbing active sessions by
waiting to perform asynchronous data collection until a
certain amount of time has elapsed since the last inter-
active session.

To support both network monitoring and debugging
over long timescales as well as rapid network adapta-
tion PocketSniffer uses both synchronous and asyn-
chronous queries. Asynchronous queries are configured
by network administrators, long-running, and satisfied
through delay-tolerant upload. Synchronous queries
are initiated on-demand by APs, short-lived, and sat-
isfied immediately by participating clients. When a
synchronous query arrives, PocketSniffer clients can
decide whether they should collect and return the re-
quested measurements, a decision that is determined
by several factors:

• Usage status. Because the goal of PocketSniffer
is to avoid disturbing active sessions active clients will
ignore synchronous queries.

• Relationships between devices. Pocket-
Sniffer allows users to configure their app to always
return data about other devices that they own. Rela-
tionships between devices can be manually configured
through the app, or a list of other devices associated
with a given user can be retrieved from the Pocket-
Sniffer service.

• Proximity to active clients. PocketSniffer
clients must determine whether they can provide mea-
surements approximating the network conditions ex-
perience by the active clients included in the query.
We return to the challenge of proximity detection in
Section 5.

• Battery level. Because PocketSniffer runs on
energy-constrained devices clients are free to not par-
ticipate if they are low on energy. The Pocket-
Sniffer app allows users to configure separate bat-
tery thresholds for queries related and unrelated to
their other devices.

If the client decides to participate in the synchronous
query, it performs the measurements and sends them
directly to the AP. Note that if measurements made to
satisfy synchronous queries also match existing asyn-
chronous queries, they will also be uploaded to the
PocketSniffer subscription by the AP.

2.3 Network Adaptation
Finally, in the case of synchronous adaptation, syn-

chronous query results must consumed by CANSAS al-
gorithms that are capable of adjust network parameters
accordingly. For large enterprise network deployments,
these algorithms might run at a central location capa-
ble of adjusting AP channels and power levels, similar to

what is already done today albeit using only data from
APs and not from clients. For home networks, smart
PocketSniffer APs might run these algorithms lo-
cally, or users could connect them to CANSAS algo-
rithms running as services in the cloud, with this last
approach enabling coordination between neighbors with
overlapping wireless networks.

3. COORDINATION SCENARIOS
When performing network adaptation Pocket-

Sniffer is designed to support multiple different co-
ordination patterns between clients sharing the same
WLAN and between overlapping WLANs. In all cases
PocketSniffer algorithms utilize crowdsourced mea-
surements from inactive smartphones to attempt to im-
prove performance for active client by controlling AP
channel assignments, client associations, and AP power
levels and transmission rates. Depending on the sce-
nario, clients may behave selfishly or provide incorrect
data in hopes of either avoiding the energy overhead of
performing measurements or improving their own net-
work performance at the expense of others.

We are using PocketSniffer to explore several dif-
ferent CANSAS coordination algorithms including max-
imization and game-theoretic approaches designed to
enable cooperation in each of the following common
scenarios. Because we are still determining which al-
gorithms work best at achieving the objectives appro-
priate to each scenario, we focus the discussion below on
describing the objective and the associated challenges.

3.1 Single Network, Cooperative Clients
In the first case a single network serves a set of clients

that are cooperative in the sense that they are willing
to work together to achieve a single common objec-
tive. Thus, PocketSniffer can assume that clients
are willing to provide truthful measurements. Typical
home Wifi networks serving multiple mobile devices fall
into this category. Because clients are cooperative and
a global objective is shared, this scenario lends itself to
the simplest coordination algorithms. One example uses
PocketSniffer measurements to select a set of net-
work parameters maximizing the aggregate throughput
of all clients; a variant prioritizes interactive sessions by
maximizing throughput to interactive clients.

3.2 Single Network, Selfish Clients
In the second case a single network serves a set of

clients each of which wishes to maximize its own per-
formance. Typical enterprise Wifi networks fall into this
category. This scenario presents two new complications
compared with the previous one. First, we must for-
mulate a notion of social utility balancing both perfor-
mance and fairness. Second, PocketSniffer cannot
assume that clients are willing to provide truthful mea-
surements. They may intentionally mislead the system
to try to improve their own performance at the expense
of other clients, or attempt to avoid the energy over-
head of performing measurements. We are addressing
these challenges in two ways, both by designing mecha-

3

nisms that incentivize clients to perform accurate mea-
surements and by utilizing PocketSniffer’s control
of the network APs to validate client measurements.

3.3 Multiple Networks, Cooperative Clients
In the third case multiple independently-

administered networks serve clients that will cooperate
within each network. Thus, PocketSniffer can
assume that clients provide truthful measurements but
that each network acts in a self-interested fashion.
Overlapping home Wifi networks each serving multiple
mobile devices fall into this category. We are ad-
dressing this scenario by formalizing the problem as a
noncooperative game between the competing networks
where each attempts to selfishly maximize one of the
local objectives described in the first scenario.

3.4 Multiple Networks, Selfish Clients
In the final case multiple independently-administered

networks serve sets of self-interested clients. Thus,
PocketSniffer can neither assume that clients will
provide truthful measurements nor that the networks
will not act selfishly. Overlapping enterprise Wifi net-
works fall into this category. Because PocketSniffer
must arrange cooperation both between clients within
each network and between the overlapping networks,
this represents the most challenging scenario. We are
attempting to address it by framing it as a two-level
noncooperative game where coordination occurs first
between the networks and then between clients.

4. PRELIMINARY RESULTS
As mentioned previously, we have performed a de-

tailed analysis of 89 million scan results collected from
139 smartphones over 5 months in order to validate
the usefulness of these measurements already being col-
lected by smartphones [13]. Encouraged by these re-
sults, we have built a prototype PocketSniffer sys-
tem including both an Android smartphone app and
adaptive AP. Because we have already explored asyn-
chronous analyses that can be performed using scan re-
sults, our preliminary results below focus on what ad-
ditional offline analyses can be done with more detailed
channel utilization information (§4.1) and on a basic
form of online channel adaptation (§4.2).

To collect detailed channel utilization information,
Wifi cards need to be put in monitor mode so that ev-
ery packet is delivered to upper layer—not just ones
addressed to the client. Unfortunately, few smartphone
Wifi chipsets currently support this feature out of the
box1, a challenge we return to in Section 5. As a
workaround allowing us to explore the potential inclu-
sion of this feature on next-generation smartphones,
we equipped several Galaxy Nexus [15] smartphones
with external Wifi dongles including chipsets support-
ing monitor mode. Table 1 describes the Wifi dongle
used in our experiments.

1In some cases monitor mode support can be achieved by
modifying the firmware or device driver [3].

Model ALFA Network AWUS036H
Chipset RTL8187L
Connector 1× 2.4GHz SMA
Antenna 2.5dBi rubber duck
Wifi Support 802.11b/g

Table 1: Wifi dongle specification.

4.1 Rogue Access Points
Rogue APs (RAPs) are unauthorized APs deployed

in areas designed to be covered by existing enterprise
wireless networks. RAPs are of concern to network ad-
ministrators both for security reasons and due to the un-
wanted interference they may cause by competing with
the official network for spectrum resources. However,
RAPs may be set up by users that feel poorly-served
by the official wireless network and if properly config-
ured they may not cause harmful interference. And
realistically, our typical campus network consisting of
several thousand APs also contains hundreds of RAPs,
many more than available IT staff can deal with. A
system like PocketSniffer provides the ability to de-
termine the impact of RAPs on clients’ network perfor-
mance, allowing administrators to prioritize those that
are actually causing problems and ignore those that
may be filling coverage holes. To investigate the im-
pact of RAPs, network administrators would establish
a PocketSniffer query asking devices to record short
(∼1 s) full packet traces after scan results indicated the
presence of a previously-identified RAP.

Our department contains several RAPs. To investi-
gate their impact, we deployed 6 PocketSniffer de-
vices: three were deployed statically in public areas,
with the remaining three carried by investigators for
several hours each day. All devices were put in continu-
ous monitor mode in order to capture all packet traffic,
thus providing a superset of the data that would be
provided by actual PocketSniffer clients. In total,
38 device-hours worth of data containing 37 M packets
were recovered. We first inspect beacon frames to iden-
tify APs. Then we exclude campus APs and temporary
hotspots with less than 1000 beacon frames. 56 RAPs
were detected in this way. For each RAP, we calcu-
late the total traffic volume (both down and up link)
by summing up the length of all data frames. Figure 1
shows 15 RAPs with most traffic, as well as the number
of devices that ever exchange data frames with them.

Among these 15 RAPs AP1 and AP2 are both operated
by one of the coauthors. AP1 is unsecured which likely
accounts for its higher traffic volume and larger number
of users, as it is available to users that may not be able
to authenticate to the campus network. AP2 is secured
and only used by students in a particular room, and
the large amount of traffic it is serving might indicate a
place where the campus network’s coverage could be im-
proved. Other RAPs, such as Parkhaven-Olewnik and
26capemay, also generated large traffic volume yet all
of them are with one device, indicating personal RAPs
that are secured and only used by the owner.

4

104 105 106 107 108

Traffic (bytes)

NGVCL
netgear-dsnl
DDW36118E
17bocaplace

DVW3201BE8
Gotwifi

b2fb
26capemay

Erik’s Wi-Fi Network
CFA Portable1

AP2
Parkhaven-Olewnik

PocketSniffer
CGD24GF2

AP1
R

A
P

7
5
3
10
17
13
6
1
16
13
25
1
14
13
66

#
of

D
ev

ic
es

C
on

ne
ct

ed

Figure 1: Measured Bandwidth to Rogue APs.

4.2 Channel Assignment
To demonstrate how PocketSniffer can enable re-

altime network adaptation to improve the performance
of nearby active clients, we ran an experiment using a
sniffer device and an adaptive AP. The AP periodically
requests channel measurements from all available chan-
nels from the sniffer and uses the data to determine the
least-congested channel.

The experiment is designed as follows. We first set
up a constant iperf UDP session between Pocket-
Sniffer-AP AP and device D1 on channel C1. Then
another device D2 starts jamming the channel using
UDP traffic to simulate a new and serious source of
interference. However, because the AP is periodically
retrieving channel utilization statistics from the sniffer
device it can react to the interference by determining
which other available channel is the least congested. All
of this happens without disturbing D1, which continues
transferring data. All devices in this experiment are
using 802.11g at 2.4GHz band. In the particular run
shown in Figure 2, from 0–8.5 s A and D1 establish
stable UDP traffic on channel 11.

When D2 starts jamming the channel at 8.5 s the
link bandwidth between A and D1 decreases and be-
gins to fluctuate. At 75 s, when A and D1 switch to
a less congested channel (1), the bandwidth resumes to
the level obtained before the interference began. The
latency between the onset of the interference and the
channel switch is due to several factors, including the
time required for the AP to initiate measurements, for
the device to perform the measurements, and for the de-
vice to transmit measurements to the AP, all of which
can be easily reduced in future prototypes.

5. OPEN CHALLENGES
Realizing the PocketSniffer system at scale re-

quires research addressing several new and existing chal-
lenges, each described in more detail below.

5.1 Proximity Detection
To estimate performance for active clients without

disturbing their active sessions PocketSniffer at-
tempts to collect data from nearby inactive smart-
phones. Unfortunately, energy-efficient physical prox-

0 20 40 60 80 100

Time (s)

4

6

8

10

12

14

16

18

B
an

dw
id

th
(M

bp
s)

Figure 2: Bandwidth between A and D1 after jam-
ming (8.5 s) and channel switching (75 s).

imity detection on smartphones remains an open re-
search problem [4], may disrupt network performance
for the clients involved, and may also not be sufficient
to determine how an active client will be affected by
potential changes to the network configuration. It may
be more appropriate to utilize a signal-based notion of
proximity, alone or in combination with physical prox-
imity. We are designing PocketSniffer clients to be
able to utilize multiple notions of proximity when de-
ciding whether to participate in synchronous queries in
order to determine the most effective approach.

5.2 Measurement Availability and Energy
Consumption

As discussed earlier many smartphone Wifi chipsets
do not allow detailed measurements, either due to hard-
ware, firmware, or driver limitations. Our current pro-
totype PocketSniffer implementation utilizes spe-
cial hardware and future versions may take advantage
of modified firmware or drivers, but broader adoption
will require better support for channel measurements on
many smartphone devices. This may be more feasible
than it sounds, given that PocketSniffer’s detailed
channel measurements require much less information
than that provided by full monitor mode packet scans,
which are typically seen to represent a potential security
threat. Ideally, some form of channel utilization estima-
tion could be implemented directly in Wifi hardware de-
vices and activated as needed. Better hardware support
would also provide an opportunity to lower the energy
overhead of performing detailed channel measurements,
another obstacle to deploying PocketSniffer.

However, because detailed channel utilization mea-
surements will always require the radio to be on contin-
uously the energy consumption incurred will always be
greater than when the radio is disabled or power-cycled.
Thus, we are exploring several other ways to address
this energy overhead by limiting the amount of data
clients need to provide. One way is to limit these mea-

5

surements to support synchronous adaptation by active
client operated by the same user: i.e., by Bob’s smart-
phone only to help Bob’s laptop locate a better channel
in the example above. In the second part of the previous
example, if Bob has forgotten his smartphone, Alice’s
device may be unwilling to incur the battery drain nec-
essary to help Bob and only agree to provide scan results
rather than detailed channel utilization measurements.

5.3 Incentivizing Data Collection
While measurements collected from PocketSniffer

clients should improve network performance, the over-
head of performing measurements—particularly de-
tailed channel utilization measurements—requires that
PocketSniffer incentivize participation. Some users
may not want to install the PocketSniffer app re-
quired to collect data. To avoid this problem, it may be
appropriate for PocketSniffer networks with long-
term registered users, such as enterprise networks, to
require users install the PocketSniffer app as part
of the network registration process. The authentica-
tion required by network providers in this scenario also
helps during synchronous queries by naturally identify-
ing sets of related clients. For each user operating a set
of devices—attaching a smartphone, laptop, and tablet
to the PocketSniffer network—a single instance of
the PocketSniffer app running on a smartphone is
sufficient to provide measurements allowing all of their
other devices to access the network.

For temporary sessions at wireless “hotspots”, it may
be more appropriate for the network to suggest—but
not require—installing the PocketSniffer app and
provide improved quality-of-service to clients who do so,
essentially trading measurements for bandwidth. Other
providers that operate multiple networks serving mobile
clients, such as Boingo, may want to require measure-
ments from long-term subscribers or integrate Pocket-
Sniffer into their preexisting apps such as the Boingo
Wifi Finder [2].

5.4 Validating Measurements
Related to the problem of incentivizing installation is

ensuring that clients return accurate measurements. In
most cases we believe that users will be unwilling or un-
able to tamper with the PocketSniffer app in ways
that would cause it to return faulty measurements, but
there is still the potential for more sophisticated users
to break the app to either try to improve their own per-
formance at the expense of other clients or avoid the
energy overhead of performing measurements at all by
returning bogus data in response to PocketSniffer
queries. From the perspective of designing Pocket-
Sniffer to resist these behaviors we do not distinguish
between malicious and lazy clients. Instead, we focus
on designing measurement validation mechanisms that
will identify both types of misbehavior.

The easiest way for PocketSniffer to detect incor-
rect measurements is by manipulating trusted network
devices such as APs. As an example, to prevent clients
from returning falsified scan results, PocketSniffer

APs include a random nonce in each beacon message
that clients must report allowing the network to ver-
ify that the device actually heard the scan it is report-
ing. PocketSniffer networks may also manipulate
AP power levels to verify that these changes are re-
flected by client measurements, to prevent clients from
inaccurately reporting low AP signal strengths in at-
tempt to receive better service. Similar techniques can
be applied to verify detailed measurements, since the
messages clients overhear can be validated by network-
controlled APs.

A second approach assuming that most clients will co-
operate with PocketSniffer is to compare measure-
ments from several different devices. Without a large
number of co-located clients to compare against it may
be difficult to immediately identify false measurements,
but over time noncooperative clients may be identified
using reputation mechanisms.

6. RELATED WORK
Using client side measurements to either monitor or

reconfigure wireless networks has received a lot of atten-
tion recently. Mishra et al. proposed to collect client-
side measurements called site-reports, which represent
the client’s visibility to near-by APs and other devices.
This information is then used to determine AP channel
assignment [6, 5, 8], or joint channel assignment and
terminal association [7]. Sen et al. proposed to use mo-
bile devices to measure and improve the performance of
wide-area cellular networks [12]. Finally, the DARPA
RadioMap [1] project aims to provide real-time aware-
ness of radio spectrum using idle radios on user devices.

Our approach differs from previous ones in several
ways. First, we identify smartphones as an ideal van-
tage point for both long-term network monitoring and
short-term network reconfiguration, due to their always
on and mostly idle nature. Second, we distinguish be-
tween active and passive clients only collect measure-
ments from passive clients, exploiting device proxim-
ity detection to jointly optimize network performance
for both. Third, we consider incentives for clients to
provide measurement data and measurement validation
mechanisms, which are missing in previous works.

7. CONCLUSIONS
Today millions of smartphones represent a perva-

sive, highly-available, but also woefully-underutilized
wireless monitoring network. We have presented the
PocketSniffer system which harnesses the power of
always-on but mostly-idle smartphones to improve net-
work performance for nearby active clients by using net-
work measurements to drive both short-term network
adaptation and long-term monitoring and debugging.

Acknowledgments
This work is supported in part by NSF through awards
CNS-1218717 and CNS-1205656.

6

8. REFERENCES
[1] Advanced RF Mapping (Raido Map). http:

//www.darpa.mil/Our_Work/STO/Programs/
Advanced_RF_Mapping_(Radio_Map).aspx.

[2] Boingo wifi finder.
https://play.google.com/store/apps/
details?id=com.boingo.boingowifi.

[3] Monitor mode for broadcom wifi chipsets.
https://code.google.com/p/bcmon/.

[4] Bakht, M., Trower, M., and Kravets,
R. H. Searchlight: Won’t you be my neighbor? In
Proceedings of the 18th Annual International
Conference on Mobile Computing and Networking
(New York, NY, USA, 2012), Mobicom ’12, ACM,
pp. 185–196.

[5] Dasilva, T., Eustice, K., and Reiher, P.
Johnny Appleseed: Wardriving to Reduce
Interference in Chaotic Wireless Deployments. In
Proc. of the 11th international symposium on
Modeling, analysis and simulation of wireless and
mobile systems (MSWiM 2008) (October 2008).

[6] Mishra, A., Banerjee, S., and Arbaugh, W.
Weighted coloring based channel assignment for
wlans. ACM SIGMOBILE Mobile Computing and
Communications Review 9, 3 (July 2005), 19–31.

[7] Mishra, A., Brik, V., Banerjee, S.,
Srinivasan, A., and Arbaugh, W. A
client-driven approach for channel management in
wireless lans. In Proc. of the 25th IEEE
International Conference on Computer
Communications (INFOCOM 2006) (April 2006).

[8] Mishra, A., Shrivastava, V., Agarwal, D.,
Banerjee, S., and Ganguly, S. Distributed
channel management in uncoordinated wireless
environments. In Proc. of the 12th annual

international conference on Mobile computing and
networking (MobiCom 2006) (September 2006).

[9] Mishra, A., Shrivastava, V., Banerjee, S.,
and Arbaugh, W. Partially overlapped channels
not considered harmful. In Proc. of the Joint
international conference on Measurement and
modeling of computer systems (SIGMETRICS
2006/Performance 2006) (June 2006).

[10] Murty, R., Wolman, A., Padhye, J., and
Welsh, M. An Architecture for Extensible
Wireless LANs. In Proc. of the 7th ACM
Workshop on Hot Topics in Networks
(HotNets-VII) (October 2008).

[11] Rayanchu, S., Shrivastava, V., Banerjee,
S., and Chandra, R. FLUID: improving
throughputs in enterprise wireless lans through
flexible channelization. In Proc. of the 17th annual
international conference on Mobile computing and
networking (MobiCom 2011) (September 2011).

[12] Sen, S., Yoon, J., Hare, J., Ormont, J., and
Banerjee, S. Can they hear me now?: a case for
a client-assisted approach to monitoring wide-area
wireless networks. In Proceedings of the 2011
ACM SIGCOMM conference on Internet
measurement conference (2011), ACM,
pp. 99–116.

[13] Shi, J., Qiao, C., Koutsonikolas, D., and
Challen, G. Using smartphones to monitor and
debug enterprise wireless network, submitted,
2014.

[14] Vasan, A., Ramjee, R., and Woo, T. ECHOS
– Enhanced Capacity 802.11 Hotspots. In Proc. of
the 24th IEEE International Conference on
Computer Communications (INFOCOM 2005)
(April 2005).

[15] Wikipedia. Galaxy Nexus.
http://en.wikipedia.org/wiki/Galaxy_Nexus.

7

http://www.darpa.mil/Our_Work/STO/Programs/Advanced_RF_Mapping_(Radio_Map).aspx
http://www.darpa.mil/Our_Work/STO/Programs/Advanced_RF_Mapping_(Radio_Map).aspx
http://www.darpa.mil/Our_Work/STO/Programs/Advanced_RF_Mapping_(Radio_Map).aspx
https://play.google.com/store/apps/details?id=com.boingo.boingowifi
https://play.google.com/store/apps/details?id=com.boingo.boingowifi
https://code.google.com/p/bcmon/
http://en.wikipedia.org/wiki/Galaxy_Nexus

	Introduction
	PocketSniffer Design
	Overview
	Performing Measurements
	Measurement types
	Query types

	Network Adaptation

	Coordination Scenarios
	Single Network, Cooperative Clients
	Single Network, Selfish Clients
	Multiple Networks, Cooperative Clients
	Multiple Networks, Selfish Clients

	Preliminary Results
	Rogue Access Points
	Channel Assignment

	Open Challenges
	Proximity Detection
	Measurement Availability and Energy Consumption
	Incentivizing Data Collection
	Validating Measurements

	Related Work
	Conclusions
	References

