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Abstract—This paper aims at designing high-data-rate swarm
UAV networks with distributed beamforming capabilities. The
primary challenge is that the beamforming gain in swarm UAV
networks is highly affected by the UAVs’ flight altitude, their
movements and the resulting intermittent link blockages, as well
as the availability of channel state information (CSI) at individual
UAVs. To address this challenge, we propose FlyBeam, a learning-
based framework for joint flight and beamforming control in
swarm UAV networks. We first present a mathematical formula-
tion of the control problem with the objective of maximizing the
throughput of swarm UAV networks by jointly controlling the
flight and distributed beamforming of UAVs. Then, a distributed
solution algorithm is designed based on a combination of Echo
State Network learning and online reinforcement learning. The
former is adopted to approximate the utility function for individ-
ual UAVs based on online measurements, by jointly considering
the unknown blockage dynamics and other factors that affect the
beamforming gain. The latter is used to guide the exploitation and
exploration in FlyBeam. The effectiveness of FlyBeam is evaluated
through an extensive simulation campaign. Results indicate that
significant (up to 450%) beamforming gain can be achieved by
FlyBeam. We also investigate the effects of blockages and UAV
flight altitude on the beamforming gain. It is found that, which
is somewhat surprising, higher (rather than lower) beamforming
gain can be achieved by FlyBeam with denser blockages in swarm
UAV networks.

Index Terms—Swarm UAV Networks, Distributed Beamform-
ing, Echo State Network, Reinforcement Learning.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been envisioned as

an enabling technology for a wide set of new applications,

because of their features of fast deployment, high mobility

and small size [1]–[3]. Examples of these applications include

small cells with flying base stations, UAV-aided guidance,

swarm networking for battlefield sensing and data collection,

emergency wireless networking in the aftermath of disasters,

among others. While UAVs can certainly enable a wide set

of new applications, their wide deployment will impose a
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significant burden on the capacity of the underlying wireless

networks. In this work, we focus on designing high-data-rate

wireless UAV networks by exploring spatial diversity through

collaborative beamforming among the UAVs.
Since it is not easy to mount many antennas on individual

UAVs because of their small size, in this work we consider

a swarm of UAVs collaborating with each other to perform

distributed beamforming. One of the primary challenges is in

the formation of UAV clusters for collaborative beamform-

ing. In swarm UAV networks, beamforming can be typically

accomplished in two phases. In the first phase, the UAVs

estimate the channel state information (CSI) of the wireless

links from them to the users they serve and then share the

obtained CSI among the UAVs; in the second phase, the UAVs

collaborate with each other to perform distributed beamform-

ing for data transmission. While higher beamforming gain

can be achieved by forming a larger UAV cluster with more

antennas, it takes longer for the CSI sharing in the first phase

and hence reduces the time available for data transmission in

the second phase. Therefore, a tradeoff needs to be achieved

between beamforming gain and channel utilization. Moreover,

the beamforming gain is closely coupled with the statistical

behaviors of the wireless channels, which are affected by the

flight altitude of the UAVs, the dynamic movements of UAVs

and the resulting intermittent existence of blockages. Roughly

speaking, the wireless communication is dominated by Non-

line-of-sight (NLOS) transmissions when the UAVs fly lower,

while line-of-sight (LOS) channels are dominant when they

fly higher. Additionally, the interference level in the network

can be effectively lowered with more and larger blockages,

and this also affects the beamforming gain.
To account for these coupled factors that jointly affect the

beamforming gain in swarm UAV networks, in this paper

we propose FlyBeam, a learning-based framework for joint

flight and beamforming control in swarm UAV networks with

unknown blockage dynamics. The main contributions of the

paper are as follows.

• We first present a mathematical formulation of the Fly-
Beam control problem, where the objective is to max-

imize the aggregate capacity of swarm UAV networks

with a set of single-antenna UAVs collaborating with

each other to perform distributed beamforming, by jointly



considering the movements of the UAVs, the blockage-

and altitude-dependent wireless channels as well as CSI

sharing among the UAVs.

• We then design a distributed solution algorithm to solve

the FlyBeam control problem based on a combination of

Echo State Network (ESN) learning and reinforcement

learning (RL). ESN provides an approximation of the

utility functions of the UAVs with unknown blockage

dynamics based on online measured data, and RL is

adopted to achieve a good tradeoff between exploitation

and exploration in FlyBeam.

• We evaluate the effectiveness of FlyBeam by conducting

an extensive simulation campaign. Results indicate that

that up to 450% capacity gain can be achieved by

enabling collaborative beamforming among UAVs. It is

also shown that the beamforming gain can be increased

(rather than decreased) in swarm UAV networks with

denser blockages. The effects of periodic training of ESN

on the capacity achievable by FlyBeam are also studied.

To the best of our knowledge, FlyBeam is the first reinforce-

ment learning framework for swarm UAV networks with ESN-

based utility function approximation jointly considering UAV

movement, blockage- and altitude-dependent wireless channels

as well as CSI sharing in distributed beamforming.

II. RELATED WORK

Wireless UAV networking has drawn significant research

attention over the past years [4]–[9]. For example, in [4]

Azari et al. study power control for wireless communications

among single-antenna UAVs in cellular networks. In [5] the

authors maximize the throughput in UAV-enabled orthogonal

frequency-division multiple access (OFDMA) systems with

delay-constrained data traffic. The authors of [6] jointly opti-

mize the trajectory and communication in multi-UAV wireless

networks to achieve better fairness among users. In [7], we

propose a new framework for automated control of swarm

UAV networks based on the recent results on principled

software-defined wireless networking. Readers are referred to

[8], [9] and references therein for a good survey of the main

results in this area. Different from these works, which focus
on non-collaborative single-antenna UAV communications, in
this paper we explore spatial diversity in swarm UAV networks
by allowing the UAVs to perform distributed beamforming.

Distributed beamforming has also been extensively studied

in wireless networks [10]–[19]. For example, in [10], Mohanti

et al. propose an experimental framework that uses software-

defined radios to assign beamforming weights that ensure a

high level of directivity. In [11], the authors study beamform-

ing vector generation and updating based on recursive channel

estimation and updating. The beamforming algorithms for

UAV swarm is studied in [12] where the swarm is modeled as

a morphing volumetric random array with an assumption that

each element is enabled with orientation awareness. However,

different from our work, [12] did not consider the dynamic

movements and the effects of blockages on the beamforming

gain. The authors of [13] present a cooperative communication

for cache-enabled UAVs to jointly decide the UAV placement

and transmit beamforming based on outdated CSI information.

Similar to [12], [13] did not consider the effect of blockages

either. In [14] Yuan et al. consider single UAV-user pair and

develop a deep learning-based predictive beamforming scheme

that can recover from beam misalignment caused by UAV

jittering. Position-based beamforming is studied in [15] to en-

hance the capacity of UAV communications in LTE networks

in the presence of direction-of-arrival estimation errors. In

[16], the authors discuss the feasibility and enabling techniques

for distributed beamforming in swarm UAV networks. In

our previous work [17], we design distributed algorithms for

joint power, association and flight control in swarm UAV

networks with each UAV endowed with a large number of

antennas. Please refer to [18], [19] and references therein for

an extensive survey of the latest results in this area. None of
these of work has studied distributed beamforming in swarm
UAV networks by explicitly considering all the factors that
affect the beamforming gain discussed in Section I, including
the flight of UAVs, the resulting dynamic blockages, and CSI
sharing among UAVs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider swarm UAV networks with a set M of single-

antenna UAVs collaborating with each other to serve a set

U of ground users. The UAVs are allowed to form a virtual

MIMO UAV cluster to enhance the quality of the aerial-ground

wireless links through distributed beamforming. Focusing on

the downlink communications in this setting, our objective

is to investigate the effects of those factors that affect the

beamforming gain, including blockages in the network, flight

altitude of the UAVs as well as the altitude-dependent fading

channels, among others. The results obtained in this paper

can also be extended to uplink scenarios. Next we describe

the blockage, channel and beamforming models sequentially.

Blockage Model. Denote S and |S| as the set and the

number of blockages in the network, respectively. For each

blockage s ∈ S , let Cs, Ls, Ws, Hs and θs represent the

center, length, width, height and orientation of the blockage,

respectively. The orientation θs is considered to be uniformly

distributed in [0, 2π], and the other blockage parameters are

randomly generated with the average corresponding to the typ-

ical size of blockages in real networks, e.g., the buildings. Let

Pblk
s (Cs, Ls,Ws, Hs, θs) represent the set of points contained

in blockage s ∈ S .

Denote the location vector of user u ∈ U as codu =
(xu, yu, zu), with xu, yu, zu representing the x-, y- and

z-axis coordinates, respectively. Similarly, denote codm =
(xm, ym, zm) as the location vector of UAV m ∈ M.

Let Plink
mu denote the set of points on the line connecting

UAV m ∈ M and user u ∈ U . Further denote Pxt
mus =

Plink
mu ∩Pblk

s (Cs, Ls,Ws, Hs, θs) as the resulting intersection

set of points. Then, given the set S of blockages, the total

number of blockages on the link between user u and UAV m,



denoted as Smu, can be expressed as

Smu =
∑
s∈S

I(codm, codu, s), ∀m ∈ M, ∀u ∈ U , (1)

where I(codm, codu, s) =

{
1, if Pxt

mus �= φ

0, otherwise
is the indica-

tor function taking the value of 1 if blockage s is blocking the

link and 0 otherwise.

Channel Model. Denote Hmu(f) as the path loss for the

link between UAV m ∈ M and ground user u ∈ U operating

in frequency band f ∈ F . Then we model Hmu(f) as in [20]

as follows:

Hmu(f) = ηSmu
0

(
4πf

C

)2

(dmu)
αmu(f), (2)

where C is the speed of light, αmu(f) is the path-loss expo-

nent for the link between UAV ∈M and ground user u ∈ U in

frequency band f , Smu defined in (1) represents the number of

blockages in the link, η0 ∈ [0, 1] is the per-blockage absorp-

tion coefficient [21], and finally dmu = dmu(codm, codu)
denotes the distance between UAV m ∈ M and user u ∈ U .

The transmission time is divided into a set of consecutive

time slots. We consider block fading channels in each time

slot, i.e., the channel coefficient is considered to be fixed in

each time slot and change to another random value following

certain distribution in the next. Rician fading model is adopted

to characterize the fading behavior of the wireless channels,

with the Rician factor K depending on whether the link is

blocked or not. For NLOS links, i.e. Smu �= 0 in (2), factor

K is set to 0; for LOS transmissions, i.e., Sm,u = 0, factor K
is given as K = 13 − 0.03 × dmu [22]. Denote the resulting

channel fading coefficient as hmu for the wireless link between

UAV m ∈ M and ground user u ∈ U .

We further consider pilot-based channel estimation, which

can be accomplished in either sequential or simultaneous

manner. In the former case, the ground users broadcast their

pilot signals in each time slot sequentially, and hence the

problem of pilot contamination can be avoided but at the

cost of more estimation time. In contrast, with simultane-

ous channel estimation all the users broadcast their pilot

signals at the same time, and hence it takes less time at

the cost of lower estimation accuracy. In this work, we take

sequential channel estimation as an example, while the results

can be easily extended to the simultaneous case. Denote

ym = [ym1, · · · , ymNplt
] as the pilot signal received by

UAV m ∈ M, with ymν , ν = 1, · · · , Nplt being the vth

symbol of the received pilot signal. Then ym can be given as

ym =
√
Hmuhmupu + n0

m, where pu = [pu1, · · · , puNplt
] is

the pilot sequence of user u ∈ U , and n0
m = (n0

mν)
Nplt

ν=1 is the

vector of Additive White Gaussian Noise (AWGN) at UAV

m ∈ M. Let h̃mu represent the estimated channel gain for

the link between UAV m ∈ M and user u ∈ U . Then, if a

least-square estimator [23] is considered, we have

h̃mu = ym × p†
u(pu × p†

u)
−1, (3)

where (·)† denotes the conjugate transpose and (·)−1 repre-

sents the matrix inverse operation.

Let test,u denote the time overhead for the channel esti-

mation for user u ∈ U and test as the total time overhead

for all the users in U . Then we have test =
∑
u∈U

test,u. where

test,u = Nplt/r with Nplt being the number of bits in each

pilot sequence and r the data rate for pilot transmission.

Beamforming Model. Each UAV m ∈ M sends its

CSI obtained above to a pre-selected leading UAV of the

swarm, denoted as m′ with m′ ∈ M/m, which will then

calculate the beamforming weights for the whole swarm.

Denote tcsi as the resulting time overhead, then we have

tcsi =
∑

m∈M/m′
Ncsi/Cmm′ , where Cmm′ represents the ca-

pacity of the link between UAVs m and m′, and Ncsi is the

amount of CSI data in bits to be shared by UAV m ∈ M, i.e.,

h̃m = (h̃mu)u∈U with h̃mu obtained in (3). Here, we consider

again sequential transmission for CSI sharing. Based on the

collected CSI, the beamforming weights can be calculated at

the leading UAV. Denote the resulting beamforming weight

vector as w = (wm)m∈M, where wm = (wmu)u∈U with

wmu being the beamforming weight of UAV m for ground

user u. For example, based on Zero Forcing (ZF) beamform-

ing [24], wm can be given as wm = h†
m (hmh†

m)−1, where

(·)† denotes the conjugate transpose and (·)−1 is the matrix

inverse operation. The obtained beamforming weight is then

sent back to the corresponding UAVs for the actual use in

the following data transmission. Denote the resulting time

overhead as tbeam. Then, the overall time overhead denoted

as tovhd can be written as

tovhd = test + tcsi + tbeam, (4)

where test, tcsi and tbeam are the above defined time overhead

for channel estimation, CSI sharing and beamforming weight

feedback, respectively.

FlyBeam Control Problem. For a given frequency f , band-

width B and coordinates codu, u ∈ U , as well as the set of

blockages S , the control objective of FlyBeam is to maximize

the aggregate network capacity by jointly controlling the flight

and beamforming of the UAVs, as formulated as follows.

maxγB
∑
u∈U

log2

(
1 +

∑
m∈M

PmuĤmu|ĥmuŵmu|2
∑

u′∈U/u

∑
m∈M

Pmu′ Ĥmu′ |ĥmu′ ŵmu′ |2+N0
u

)
,

s.t. :
∑
u∈U

Pmu ≤ Pmax, ∀m ∈ M,
(5)

where Ĥmu = Hmu(codm), ĥmu = hmu(codm) and

ŵmu = wmu(codm, π) denote the path loss, channel fading

and beamforming weights for user u and UAV m, respectively,

with π denoting the beamforming strategy; Pmu and Pmu′ are

the transmission power of UAV m ∈ M allocated to users u
and u′, respectively; Pmax is the maximum transmission power

of each UAV; N0
u is the power of noise at ground user u ∈ U ;

and finally γ = tslt−tovhd
tslt

represents the channel utilization

coefficient with tslt being the duration of each time slot and

tovhd defined in (4).



IV. FLYBEAM ALGORITHM DESIGN

The primary challenge in solving problem (5) is that the

wireless channel hence the beamforming weight wmu and

the channel utilization coefficient γ are closely coupled with

the UAV location variables codm and hence the resulting

dynamic blockages, for which the complete information is

unknown to the UAVs. To address this challenge, in this

work we solve the problem by designing distributed control

algorithms based on a combination of ESN learning [25] and

reinforcement learning techniques. Particularly, the ESN is

used to approximately model the mapping from the input

signals to the output signals of a system, by training its input

weights Win, the reservoir weights W and output weights

Wout using a sigmoidal transfer function (e.g., hyperbolic

tangent). Compared to traditional Neural Networks, which

are computationally expensive, it is incredibly simple to train

ESNs, while they are still able to model the complex time-

varying behaviors of dynamical systems. In this work, we

use ESN to approximate the utility function in (5), by, as

described in Sec. III, jointly considering the UAV flight, the

channel estimation and beamforming strategies, as well as

the effects of blockages on beamforming. Based on the ESN

approximated utility function, online reinforcement learning is

then adopted to guide the exploitation and exploration in favor

of higher aggregate capacity. The ESN module consists of four

components: Agent, Input, Action and Reward Function. In

FlyBeam, the ESN is implemented in individual UAVs, i.e.,

each UAV is an Agent.
ESN Input Design. Let T denote the total network running

time. In each time slot t ∈ T , each UAV m ∈ M feeds

an Input (denoted as ρtm) and a candidate Action (denoted as

ξtm) to its ESN module, which will then output the expected

Reward Function value of the UAV in the next time slot. For

UAV m the input to FlyBeam’s ESN module in time slot t,
defined as ρtm � {codt

−m}, comprises of the locations of

all the other UAVs codt
−m = (codt

m′)m′∈M/m with codt
m′

being the coordinate vector of UAV m′ in time slot t. The

dimension of ρtm increases quadratically with the scale of

the network which can slow down the training of FlyBeam’s

ESN module and hence degrade the utility approximation

accuracy in large-scale networks. To address this challenge,

the network area is divided into a number Nx × Ny × Nz

of three-dimensional rectangles, each with Lx

Nx
,

Ly

Ny
and Lz

Nz

for width, length and height, respectively. Denote N as the

set of the resulting rectangles. Each rectangle n ∈ N is

represented using a vector rn = (c̃odn, Γn), where c̃odn is

the coordinate vector of the center point of rectangle n ∈ N ,

and Γn = 0, 1, · · · , Nx × Ny × Nz − 1 is the index of the

rectangle. Based on this policy the input of FlyBeam’s ESN

module can be rewritten as ρtm = (Γ t
m′)m′∈M/m, with Γ t

m′ is

the the index of UAV m′’s rectangle in time slot t.

ESN Action and Reward. Given input ρtm for FlyBeam’s

ESN module for UAV m in time slot t, UAV m makes its

action decisions and observes an output of the action. To this

end, UAV m chooses to move to a new rectangle in N except

those occupied by other UAVs. The set of actions for UAV m,

denoted as ξtm for time slot t, can be written as ξtm = {Γv|v ∈
N/{nt(m′), m′ ∈ M/m}}, where nt(m′) represents the

rectangle index of UAV m′ in time slot t. The corresponding

reward is defined as the aggregate network capacity achievable

through distributed beamforming as defined by (5). Denote the

resulting output capacity as Ct for time slot t.
ESN Training and RL Control. We train the designed ESN

module based on online collected capacity data. In the training

phase, the objective of the FlyBeam ESN module is to learn

a model with output Ct that minimizes the root-mean-square

error (RMSE) between Ct (i.e., predicted sum capacity) and

Ct
tgt (i.e., target sum capacity) defined as

E(Ct, Ct
tgt) =

1

Nout

Nout∑
i=1

√√√√ 1

|T |

|T |∑
t=1

(Ct − Ct
tgt)

2, (6)

where Nout denotes the output units of the ESN, |·| represents

the cardinality of a set and T denotes the number of time slots

in the training phase. To this end, we measure the sum capacity

based on (5) and the measured sum capacity is used as the

Ct
tgt in (6).

Based on the trained ESN-module, each UAV m ∈ M
can determine its own optimal next-step location m as Γ t∗

m .

However, this may lead to a local optimum for our swarm

control problem defined in (5), which is not desirable. In

this work we use reinforcement learning (RL) to guide the

exploration and exploitation in the flight control of the UAVs.

Reinforcement learning [26] has been widely used to solve

complex problems that cannot be solved by conventional

techniques. In this work, we consider RL algorithm with ε-
greedy exploration strategy [26]. As the network runs, the

online collected data will be used to update the training dataset

and then retrain the ESN module. The details of the algorithm

for RL control and ESN updating are omitted due to lack of

space.

V. PERFORMANCE EVALUATION

We consider a swarm UAV network with area of 200 ×
200 × 200 m3. The frequency and bandwidth are set to

2.1 GHz and 40 MHz, respectively. The transmission power

of each UAV is set to 1 W. The LOS and NLOS path-loss

exponents are considered to be 2 and 4, respectively. The

duration of each time slot is set to 100 ms. Two beamforming

schemes are considered: Zero Forcing (ZF) and Maximum
Ratio Transmission (MRT) [24]. The corresponding FlyBeam
schemes are referred to as FlyBeam-ZF and FlyBeam-MRT,

respectively. We set T and Tupdt as 3000 and 1000 for initial

training and training update phases, respectively. The simu-

lations have been conducted over SimBAG, an event-driven
Simulator for Broadband Aerial-Ground wireless networks
that has been developed in our recent research [2]. Based

on SimBAG, a benchmark scheme has been implemented

for performance comparison. In the benchmark scheme, no

collaborative beamforming is considered, and the UAVs access

the channel in a frequency division multiple access (FDMA)



(a) (b)

Fig. 1: (a) Average sum capacity with different number of UAVs;
(b) Capacity gain with different number of users.

manner and further serve their users based on time division

multiple access (TDMA). Each UAV maximizes the aggregate

capacity of the users it serves based on Sequential Least

Squares Programming (SLSQP) [27], to dynamically allocate

their transmission power among different sub-channels to

avoid mutual interference.

Performance Analysis. In the first experiment, we evaluate

the capacity performance of FlyBeam. The number of UAVs

is varied from 2 to 30 in step of 2 and the number of

ground users is set to 10. The results are reported in Fig. 1.

It can be seen from Fig. 1(a) that significant capacity gain

can be achieved by FlyBeam. For example, average capacities

of 915.20 Mbps and 960.12 Mbps can be achieved with

FlyBeam-ZF and FlyBeam-MRT, respectively, which are 3.56
and 3.73 times higher than that achievable by the benchmark

scheme (257 Mbps). The effectiveness of distributed beam-

forming in swarm UAV networks is further verified in Fig. 1(b)

in terms of average capacity gain with 10 UAVs and the

number of users varying from 2 to 22 in step of 4. We can see

that both FlyBeam-ZF and FlyBeam-MRT are able to achieve

a capacity gain between 312% and 457% with an average of

380%.

Next, we investigate the effects of the UAVs’ flight altitude

on the beamforming gain, considering 10 ground users and

10 UAVs. The flight altitude of the UAVs is varied from

10 m to 100 m in steps of 10 m. The results are plotted

in Fig. 2(a). Similar to that in Fig. 1, significant capacity

gains can be achieved by FlyBeam in all the tested cases.

It can also be found that the sum capacity achievable by

FlyBeam is only slightly affected by the UAV flight altitude.

For example, an average sum capacity of 854 Mbps can be

achieved by FlyBeam-ZF with a flight altitude of 10 m, which

is 816 Mbps for an altitude of 100 m. Similar results can

also be achieved by the FlyBeam-MRT. This is not without

reasons. As discussed in Section I, while flying lower can

reduce the propagation distance to the ground users, the

transmissions may experience higher attenuation because of

a higher probability of being blocked.

The effects of blockages on the beamforming gain is further

studied in Fig. 2(b). The number of blockages is varied

from 0 to 500 in steps of 100. The minimum and maximum

dimensions of the blockages are set to 2 m and 8 m for

length and width, respectively. The height of the blockages

is fixed to 15 m, and the UAV flight altitude is set to 30 m.

(a) (b)

Fig. 2: Average sum capacity with (a) varying flight altitude (b)
varying number of blockages.

It can be found that FlyBeam-ZF and FlyBeam-MRT can

yield an average capacity of 1106.9 Mbps and 1127.5 Mbps,
respectively, which are 6.74 and 6.87 times larger than the

benchmark scheme. The sum capacity achievable with the

benchmark scheme decreases monotonically with the number

of blockages because of larger signal attenuation with more

blockages. A surprising observation is that a higher rather
than lower sum capacity can be achieved by FlyBeam with

more blockages in the network. For example, an average sum

capacity of 786 Mbps can be achieved by the FlyBeam-ZF
with no blockages, which are 1025 Mbps and 1301 Mbps
with 200 and 500 blockages, respectively. This is primarily

because denser blockages introduce more diversity in the

wireless channels, and hence higher spatial diversity gain can

be achieved through beamforming.

Complexity and Convergence. We study the computational

complexity and communication overhead of FlyBeam control

in Fig. 3. The experiments are conducted on a workstation with

Intel(R) Core(TM) i7−10510U CPU @ 1.80 GHz 2.30 GHz,

memory of 16.0 GB, and 64-bit Windows Operating System.

We fix the number of users as 10 and vary the number of

UAVs from 3 to 10 at a step of 1. In Fig. 3(a) we report the

average computational time taken by the UAVs’ FlyBeam ESN

module, with the confidence interval indicated by the shaded

area. It can be seen that the computational time ranges from

0.14 ms to 0.21 ms and is barely affected by the network scale.

Figure 3(b) plots the corresponding communication overhead,

i.e., the time taken for CSI and beamforming weights sharing.

Results indicate that the communication overhead of individual

UAVs varies only slightly with the number of UAVs, from

0.43 ms to 0.46 ms with an average of 0.443 ms. This verifies

the good scalability of FlyBeam.

We further study the effects of periodic updating of the

ESN training on the network’s sum capacity, taking FlyBeam-

(a) (b)
Fig. 3: (a) Computational complexity and (b) Communication over-
head of FlyBeam.



Fig. 4: Convergence of FlyBeam with different updating periods.

MRT as an example. The results are plotted in Fig. 4, where

each curve is obtained by averaging over 20 simulations. The

updating period is varied from 100 to 1000 time slots at steps

of 300 time slots. It can be seen that the convergence speed is

significantly affected by the updating period. In most of the test

cases, FlyBeam converges faster with shorter updating periods.

For example, FlyBeam converges in around 400 time slots with

an updating period of 100 time slots, which is twice as fast as

with updating periods of 700 and 1000 time slots. However,

interestingly, we found that there is no monotonic mapping

between the convergence speed and the updating period. This

can be seen when the updating period is set to 400 time

slots. In future work, we will investigate the optimal updating

frequency for online reinforcement learning by considering

the involved interaction between ESN-based utility function

approximation and RL-based state exploration.

VI. CONCLUSIONS

In this paper we designed a high-data-rate swarm UAV with

distributed capabilities by taking into account different factors

that affect the beamforming gain. We proposed FlyBeam
by jointly controlling the flight and beamforming in swarm

UAV networks, based on a combination of ESN learning and

reinforcement learning. Simulation results indicate that i) up

to 450% capacity gain can be achieved by enabling distributed

beamforming in swarm UAV networks, and ii) with distributed

beamforming, higher (rather than lower) network capacity can

be achieved with denser blockages. In future work we will

further verify these findings based on testbed experiments over

the aerial network experimentation facilities that have been

developed at University at Buffalo [28].
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