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Abstract—Designing efficient medium access control protocols for underwater acoustic sensor networks (UW-ASNs) is a major
challenge because of the spatial and temporal interference uncertainty caused by asynchronous transmissions and by the low
propagation speed of sound. To address these challenges, in this article we propose a new approach for distributed underwater
medium access based on lightweight and asynchronous distributed algorithms that optimize the access probability profile over a series
of time slots based on a new statistical physical interference model. The latter is based on measuring the level of interference at
multiple instants of time in each time slot in order to capture the effects of temporal uncertainty and of unaligned interference. At each
measurement instant, the statistical properties of time-varying interference are represented by a Gamma probability distribution. The
model is validated through extensive channel measurement experiments conducted with an underwater acoustic testbed in Lake
LaSalle.
Based on this model, we formulate the problem of queue-aware stochastic channel access. The objective is to maximize the sum
throughput of a set of concurrent and mutually interfering source-destination pairs by letting the transmitters adjust their own
transmission probability profiles, without collaborating with each other, over a series of time slots based on a statistical characterization
of interference obtained through past observations. We propose an iterative distributed solution algorithm for this problem based on a
best-response strategy. At each iteration, each node individually solves a non-convex optimization problem of logarithmic complexity.
The performance of the proposed distributed algorithm is evaluated by comparing it with two alternative distributed schemes and with
the global optimum obtained through a newly-developed centralized globally optimal solution algorithm. Results indicate that by jointly
taking the queueing and multi-slot optimization into consideration considerable improvement in terms of sum-throughput can be
achieved by the proposed distributed algorithm.

Index Terms—Stochastic Channel Access, Underwater Acoustic Networks, Statistical Interference Model.
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1 INTRODUCTION

ONE of the major challenges in Underwater Acous-
tic Sensor Networks (UW-ASNs) [2] is to design an

efficient medium access control (MAC) protocol, mainly
because of the large propagation delay caused by the low
propagation speed of sound in aqueous media [3]. In ad-
dition to the temporal uncertainty of interference caused by
the asynchronous transmissions of different nodes and the
time-varying wireless channels, in UW-ASNs the large (and
distance-dependent) propagation delay of acoustic signals
generates spatial uncertainty, i.e., it is hard to predict the
current value of interference because acoustic signals simul-
taneously transmitted by different nodes located at different
distances from an intended receiver do not necessarily reach
the receiver at the same time [4]. As a result, in the presence
of both temporal and spatial uncertainty, MAC protocols
originally designed for radio-frequency (RF) in-air wireless
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communications cannot be efficiently applied to underwater
environments directly. For example, it was shown that the
benefits of synchronization of slotted ALOHA are com-
pletely lost in UW-ASNs because of the distance-dependent
delay [5]. Moreover, the large propagation delay makes it
challenging for transmitters to adapt to the time-varying un-
derwater channels; since it is hard to acquire instantaneous
channel state information (CSI), which is usually obtained
through feedback from the receiver [6]. For the same reason,
traditional carrier sensing also requires very long listen
time in underwater acoustic environments, and this may
significantly reduce the channel utilization [7]. Therefore,
the large propagation delay imposes major challenges on
underwater communications at both the transmitter and
receiver sides.

Significant recent efforts have attempted to address these
challenges [5], [8]–[14]. For example, Syed et al. showed
in [5] that, for slotted ALOHA underwater networks, the
packet collision probability can be reduced by adding a
guard band to each time slot, hence limiting the negative
effect of the spatial interference uncertainty1. In [8], Peleato
and Stojanovic proposed a distance-aware collision avoid-
ance protocol (DACAP), which uses different hand-shake
lengths for different receivers with a potential to minimize
the average handshake duration and hence can improve

1. A user transmitting in a given time slot might interfere with
others in two consecutive time slots.
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the throughput. In [9], Guo et al. further improved the
handshaking efficiency by using an adaptive propagation-
delay-tolerant collision-avoidance protocol (APCAP), which
allows a node to utilize its idle time while waiting for
messages to propagate. In these protocols, nodes are ei-
ther required to cooperatively collect the network topol-
ogy information, or to exchange handshaking signals. This
may cause under-utilization of transmission time due to
the inserted time guard or low-speed sound propagation
in the signaling exchanges. Moreover, in heterogeneous
environments, where multiple UW-ASNs coexist sharing
the same spectrum, e.g., the emerging cognitive UW-ASN
[15], the envisioned underwater Internet [16], and UW-ASN
with jammers [17], [18], it is not that easy to implement
network-wide cooperation or global synchronization for
slotted channel sensing [14], especially, if the coexisting UW-
ASNs are deployed and operated separately for different
purposes. It is still not clear, to the best of our knowledge,
how to design light-weight MAC protocols that require
low signaling exchanges among competing transmissions,
while considering both temporal and spatial uncertainty of
interference in the underwater environments.

This paper takes a significant step in this direction by
proposing a light-weight MAC that requires no signaling
exchange among concurrent communication sessions, and
achieves interference avoidance based on only limited local
information. To be specific, we study an optimized dis-
tributed access scheme based on explicit stochastic model-
ing of the temporal and spatial uncertainty of interference.
The main contributions of the paper are as follows.

� Statistical Interference Modeling. With spatial un-
certainty caused by the low-speed of sound in under-
water, interference observed at an intended receiver
at a specific time slot may be caused by interfer-
ing transmissions originated in past time slots. This
motivates us to develop a medium access scheme
in which each transmitter dynamically optimizes a
transmission probability profile based on a statistical
characterization of interference obtained through its
past observations, and then based on the obtained
profile it decides whether to transmit or to enqueue
its packets over a series of time slots. Moreover,
the originated interfering signals might reach the
receiver at different instants during a specific time
slot. Therefore, it is insufficient to characterize inter-
ference using a single interference level for the whole
time slot.
To address these challenges, we propose an L-
measurement method, which measures interference
at multiple time points for each receiver in each
time slot. At each measurement point, the effects of
temporal uncertainty of interference, i.e., the asyn-
chronous transmission times of different nodes or the
time-varying channels, on the interference level at
each measurement point are modeled using Gamma
distribution functions.

� Light-weight Channel Access. Based on this statis-
tical characterization of interference, each node is able
to adapt its transmission strategy proactively to the
time-varying interference to minimize the resulting

packet loss rate. It is desirable for a node to transmit
with high probability only in time slots when the
corresponding interference levels are expected to be
low, and transmit with lower probability in time slots
with high interference. On the other hand, to reduce
the probability that a packet needs to wait for a long
time in the queue and thus becomes useless when
received at the destination, a node should transmit
with high probability in all time slots. By regulating
the transmission probability, each transmitter should
find the optimal operating point along the tradeoff
between transmission and queueing to minimize its
packet loss rate (and therefore to maximize the ex-
pected throughput). The channel access scheme is
light weight because it requires zero signaling ex-
changes among different communication pairs.

� Channel Access Optimization. In the proposed
light-weight MAC framework, we present a mathe-
matical formulation of the problem of dynamic trans-
mission strategy optimization and propose an itera-
tive distributed solution algorithm designed based
on a best-response strategy. At each iteration, each
node individually solves a nonconvex optimization
problem, in which the objective function can be
transformed into a quasi-convex function so that
the global optimum can be efficiently computed
and solved in logarithmic time with respect to the
number of jointly considered time slots. Then, the
performance of the proposed distributed algorithm is
evaluated by comparing it with the global optimum
scheme obtained by a newly-developed centralized
solution algorithm. We also validate the proposed
interference model using actual underwater experi-
ments in a lake and show that the model can capture
the statistical characteristics of underwater interfer-
ence well.

The core novelty of the paper lies in the formulation and
analysis of a distributed MAC scheme that jointly consid-
ers the temporal and spatial uncertainty of interference in
UW-ASNs. Specifically, (i) we propose the first interference
model that captures the low-speed of sound propagation
and time-variability of wireless underwater channels; (ii) we
propose and study a framework to optimize the transmis-
sion strategy of each node based on the statistical characteri-
zation of interference while jointly considering the queueing
behavior. It is worth pointing out that, since the proposed
distributed MAC protocol handles the low-speed of sound
in the time domain directly, its performance can further be
enhanced by integrating it with MAC protocols designed
based on code-division multiple access (CDMA) [19]–[21]
and frequency-division multiple access (FDMA) [11] tech-
niques, or by taking the routing into consideration in a cross-
layer framework [22].

The rest of the paper is organized as follows. In Section 2,
the related work is discussed. In Section 3, we present the
system model. In Section 4, we describe the distributed
solution algorithm and in Section 5, we present the globally
optimal solution algorithm. In Section 6, we evaluate the
proposed algorithm through simulation results and in-field
experiments in Lake LaSalle, and finally we draw the main
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conclusions in Section 7.

2 RELATED WORK

The objective of time scheduling in UW-ASNs is to separate
or align multiple interfering signals and hence to avoid
interference [5], [10], [12], [23]–[34]. For example, in [5] Syed
et al. proposed a modified version of a slotted ALOHA
protocol by adding a guard band to each transmission slot,
and showed that this can considerably improve throughput
in UW-ASNs with short communication ranges and with
global synchronization. In [25], Kredo et al. proposed a stag-
gered TDMA underwater MAC protocol (STUMP), which
is a scheduled, collision free TDMA-based MAC protocol
that leverages the low propagation speed of the underwater
channel and node position diversity. The protocol makes
use of the propagation delay information to overlap node
communication and increase channel utilization. In [26],
Yun and Lim proposed a geometric spatial reuse-TDMA
(GSR-TDMA) MAC protocol for centralized, multihop UW-
ASNs. The underwater nodes are periodically scheduled af-
ter determining their location information. The GSR-TDMA
scheme can increase the number of underwater nodes that
send packets at the same time. Similarly, in [23] Mandal
and De investigated a RSS-ALOHA based slot reservation
protocol, with the objective of maximizing the network uti-
lization by considering centralized UW-ASNs with perfect
synchronization and propagation delay information from
each source node to the common gateway node. In our
previous work [12], we implemented and evaluated a hy-
brid MAC protocol in cluster-based multi-hop UW-ASNs.
The protocol relies on TDMA for intra-cluster centralized
scheduling and on CSMA/CA for inter-cluster distributed
channel access. Different from these MAC protocols, which
mostly attempt to mitigate the negative effect of the spatial
uncertainty of interference, Chitre et al. pointed out in [10]
that the large and distance-dependent propagation delay
can be exploited through interference alignment (IA) in
the time domain to achieve much higher throughput than
achievable without spatial uncertainty. This however largely
relies on exact knowledge of global location information
of all nodes and on centralized control, which is not easy
to implement in practice. Similarly, in our previous work
[35] on underwater CDMA-based analog network coding,
we showed how interference can be leveraged to improve
the channel utilization. Pan et al. proposed in [27] a MAC
protocol based on slotted floor acquisition multiple access
(FAMA) for underwater acoustic WiFi networks. In [28], the
authors proposed an adaptive MAC protocol for TDMA-
based underwater acoustic sensor networks with dynamic
traffic, assuming perfect synchronization among the nodes.
A collision-free depth-based layering TDMA MAC protocol
called DL-MAC is proposed for UWSNs in [29]. Readers
are referred to [36], [37] for comprehensive surveys of the
main research developments in this field. Different from ex-
isting work, which either requires perfect synchronization,
signalling exchange among the nodes or centralized coordi-
nation, this paper focuses on distributed, asynchronous and
light-weight stochastic MAC protocols.

Several of the protocols discussed above also fall within
the class of stochastic underwater MAC protocols with a

focus on time-domain interference avoidance, e.g., [5], [12],
[23], [24]. Additional representative contributions can be
found in [12], [20], [38]–[43] and references therein. In [20],
we proposed a hybrid UW-MAC that jointly exploits the
light weight property of ALOHA and the robustness of
CDMA for frequency selective fading channels, by con-
sidering Rayleigh fading shallow water channel and static
multiuser access interference. In [39], Patil et al. proposed
a stochastic model for the performance evaluation of depth
based routing (DBR) protocol. In [40], Han et al. proposed
a stochastic MAC protocol with randomized power control
for UW-ASNs, called SMARP. A randomized power control
is implemented based on the propagation loss model of
acoustic channels to improve the network throughput. In
[41], Rahmati and Pompili proposed a probabilistic MAC
based on space division multiple access (SDMA) for short
to medium distances that makes use of inherent position
uncertainty of the moving vehicles in underwater. In [42],
Marinakis et al. proposed a stochastic transmission strategy
based on the ALOHA protocol. A stochastic scheduling
is used where time is slotted, and each network node
broadcasts at each time slot according to some probability. A
distributed heuristic based on local network density is pre-
sented and evaluated using numerical simulations. In [43],
Lu et al. presented a random access transmission scheme
that takes into consideration the physical-layer information
of the channel. In [44], Stefanov and Stojanovic analyzed
the throughput performance of ALOHA by characterizing
the statistical behavior of multiuser access interference with
the objective of providing a potential to turn the complex
interference uncertainty into an advantage for underwater
communications. Sharing the same objective as in [44],
in this work, we design an underwater MAC protocol
that jointly considers statistical network interference, the
asynchronous transmission behavior of each node, and the
stochastic nature of random traffic arrivals. We develop a
cross-layer optimization framework and accordingly design
both distributed and centralized solution algorithms.

3 SYSTEM MODEL

We consider an underwater acoustic sensor network con-
sisting of a set N of parallel sessions that share a given
portion of the acoustic spectrum. As shown in Fig. 1, each
session n 2 N consists of a source-destination pair, i.e.,
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Fig. 1: System model for underwater acoustic sensor networks.
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transmitter n and its intended receiver, denoted as receiver
n accordingly. Different sessions do not share the same
transmitter or receiver node. The transmission time is di-
vided into consecutive time slots (aka packet slot, as one
packet can be transmitted in each slot), which are further
organized into consecutive frames each composed of a set
K of time slots with jKj = K . Each transmitter n 2 N
decides its transmission strategy for each time slot in a
frame while using the same strategy for all frames. In the
kth time slot of each frame, transmitter n either transmits a
packet with probability !kn 2 [0; 1], or it stays silent with
probability 1 � !kn and enqueues its incoming packets in
its buffer. We denote the transmission probability profile as
!n = (!kn)k2K for user n 2 N and ! = (!n)n2N for all
users.

Consider finite buffer size for each node, then a packet
from user n 2 N may be lost either because of a trans-
mission error or overflow. If we denote the corresponding
packet loss rates of user n 2 N as P err

n (!) and P o
n (!n),

respectively, then the overall packet loss rate of user n
denoted as P los

n (!) can be represented as

P los
n (!) = P err

n (!) + P o
n (!n)� P err

n (!)P o
n (!n): (1)

Next, we derive an explicit expression for P los
n (!) by de-

scribing the channel model, interference model and queue-
ing model in sequence.

Channel Model. Denote hmn as the channel gain from
transmitter m to receiver n. Then, hmn can be represented
as

hmn = Hmn�
2; (2)

where � represents the fading coefficient2, and Hmn repre-
sents the transmission loss that a narrow-band-acoustic sig-
nal experiences over a given spectrum and can be described
by the Urick propagation model as [45]

Hmn = d�2
mn � 10�

a�dmn+Amn
10 ; (3)

where a [dB=m] represents the medium absorption coef-
ficient, Amn [dB] is the transmission anomaly accounting
for degradation of the acoustic intensity caused by multiple
path propagation, refraction, diffraction, and scattering of
sound [46]–[50], and dmn [m] represents the distance be-
tween the m-th transmitter to the n-th receiver3.

The channel model in (2) is applicable to both shallow
and deep water environments. We focus on the former case,
where the acoustic channel is more affected by multipath.
We therefore assume that the number of rays goes to infinity

2. The fading coefficient is a function of time. We omit the depen-
dence on time to avoid confusion with the slotted structure of the
frame. Moreover, we assume the fading coefficients in different time
slots to be independent of each other, while the time correlation of
fading coefficients will be studied in future work.

3. In (3) we consider spherical spreading model as an example. How-
ever, it is worth pointing out that the stochastic channel access scheme
proposed in this work does not depend on any specific spreading loss
model. Since we focus on characterizing the aggregate interference of
multiple randomly deployed nodes in underwater acoustic networks,
both the resulting communication range and spreading loss are ran-
dom. We propose to fit the shaping parameters of Gamma distribution
function based on the first- and second-order moment information
of the aggregate interference and validate the effectiveness of this
approach using testbed experiments.

Information

Interference 1

Interference 2
Average Noise

Fig. 2: The received signal is sampled at three points during
a time slot. The signal at each sampling point consists of
information signal, noise and interfering signal. Information
signal and noise keep the same for different sampling points.

and therefore consider a worst-case scenario; then, we have
Amn 2 [5; 10] for m;n 2 N [46], [47] and the fading
coefficient � can be modeled using a unit-mean Rayleigh
distributed random variable with cumulative distribution
function expressed as

P[� � x] = 1� exp
�
� �x2

4

�
: (4)

The proposed distributed channel access scheme can also
be extended to the deep water case, where the acoustic
channel is less severely affected by multipath with Am;n 2
[0; 5]; m; n 2 N and � = 1.

Interference Model. Because of the distance-dependent
propagation delay, acoustic signals transmitted simultane-
ously by different devices in general do not arrive at an in-
tended receiver at the same time. As a result, the interference
observed at a receiver and hence its transmission behavior
is nontrivially coupled with the transmission strategy !,
which makes interference modeling rather challenging. To
the best of our knowledge, in the existing literature there
is no interference model that can characterize the statistical
behavior of interference in multiuser underwater networks.

We consider an L-measurement interference model, in
which each receiver n 2 N measures the received signal at
a set Lkn of time instants during the kth time slot of each
frame4. Then, the measured interference can be represented
as a vector, denoted as Ikn = (Ikln )l2Lkn , where Ikln represents
the lth interference measurement. Figure 2 shows an exam-
ple of the L-measurement method with L = 3. Denote gklmn,
with l 2 Ltn, as the time slot in which user m 2 N nn causes
interference to user n at the lth measurement point of the
kth time slot in each frame. Then, the measured interference
power can be expressed as

Ikln (!) =
X

m2Nnn

Pmhmn�(gklmn); (5)

where Pm [W] represents the transmission power of trans-
mitter m, and the indicator function �(gklmn) = 1 if trans-
mitter m sent a packet that is received by receiver n at lth
interference sample of kth time slot, i.e., transmitter n sent
a packet at (gklmn)th time slot, and �(gklmn) = 0 otherwise.

4. The optimal number of measurements during a time slot needs
to be determined through off-line measurement or can be estimated
through online learning techniques. We assume that the number of
measurements is known.
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In this work, we use as in [51], [52] a Gamma distribution
function kln (x; !) to characterize the probability density
function (pdf) of Ikln defined in (5). Then we have,

pdf[Ikln = x] = kln (x; !) =
x�

kl
n (!)�1e�x=�

kl
n (!)

�
�
�kln (!)

��
�kln (!)

��kln (!)
; (6)

where �kln (!) and �kln (!) are shaping parameters that can
be estimated online as explained later in Section 4, and
gamma function �

�
�kln (!)

�
=
R1
0 x�

kl
n (!)�1e�xdx. Later in

Section 6, we will validate the interference model based
on testbed channel measurements using Teledyne Benthos
Telesonar SM-75 underwater modems [53] - extensive ex-
perimental results show that the model captures the sta-
tistical characteristics of interference very accurately. Then,
the cumulative distribution function (cdf) of Ikln , denoted as
#kln (x; !), can be represented as

P[Ikln � x] = #kln (x;!) =
’
�
�kln (!); x

�kln (!)

�
�
�
�kln (!)

� ; (7)

where ’
�
�kln (!); x

�kln (!)

�
=
R x

�kln (ω)

0 s�
kl
n (!)�1e�sds is the

lower incomplete gamma function.
If we let SINRkl

n represent the signal-to-interference-
plus-noise ratio (SINR) at receiver n 2 N at the lth measure-
ment point in the kth time slot of each frame, then SINRkl

n

can be expressed as

SINRkl
n (!) =

Pnhnn
Ikln (!) + �2

n

; (8)

where �2
n represents the noise power at receiver n 2 N .

For given transmission strategies, i.e., transmission rate R0
n,

modulation and coding schemes, a one-to-one mapping
between the resulting bit error rate (BER) before decoding
denoted as BERkl

n and the transmission rate can be estab-
lished as [54]

R0
n = log(1 +Kkl

n SINRkl
n (!)) (9)

where

Kkl
n =

��n;1
log(�n;2BERkl

n (!))
; (10)

in which �n;1 and �n;2 are parameters depending on the
modulation schemes used by session n. Then, we have

BERkl
n (!) =

e

��n;1SINRkln (ω)

e
R0
n�1

�n;2
; (11)

and the average BER of time slot k denoted as BERk
n(!) can

be expressed as

BERk
n(!) =

1

L

LX
l=1

BERkl
n (!): (12)

For a given channel coding scheme, denote BERth the
maximum BER that a packet can successfully be decoded,

and �kn(!) represent the packet decoding success probabil-
ity that occurs when BERk

n � BERth. Then, �kn(!) can be
expressed as

�kn(!) , P(BERk
n � BERth)

=

Z BERth

0
�k1
n (x1)

Z BERth

x1

�k2
n (x2) � � �Z BERth

L�1P
l=1

xl

�kLn (xL) dx1dx2 � � � dxL (13)

where �kln (xl) is the pdf of BER at the lth measurement point
in kth time slot of each frame, and for each 1 � l � L can
be calculated as,

�kln (xl) = kln (SINRkl
n ; !) (14)

(15)

with

SINRkl
n =

log(xl�n;2)eR
0
n � 1

��n;1
: (16)

Then, the overall packet error rate of user n caused by
transmission errors, i.e., P err

n (!) in (1), can be written as

P err
n (!) =

1P
k2K

!kn

X
k2K

!kn(1� �kn(!)); (17)

where �kn(!) is defined in (13).
Queueing Model. Consider a queue with finite buffer

size of Qmax packets for each node. Whenever the queue
length reaches the maximumQmax, newly incoming packets
will be dropped directly. The packet drop rate P o

n for
session n 2 N depends on the packet incoming process
and the packet service process.

We first define the packet service process for session n
based on the transmission profile !n. Let random variable
�n represent the number of consecutive time slots it takes
for user n 2 N to transmit a packet. Then, the pdf of �n can
be expressed as

P[�n = z] =

8>>>><>>>>:

1
K

P
k2K

!kn; z = 1;

1
K

P
k2K

Q
g2Kk

(1� !gn)!kn; 1 < z � K;� Q
k2K

(1� !kn)
�ẑ

P[�n = ~z]; z > K;

(18)

where ẑ =
�
z
K

�
, ~z = z � K � ẑ, and !gn represents the

transmission probability of the gth time slot in a frame with
Kk representing the set of indices of the z � 1 consecutive
time slots before the kth time slot; for example, if z = 3
and each frame consists of at least three time slots, i.e.,
K � 3, then we have Kk = fK � 1; K � 2g for k = K ,
and Kk = fK; K � 1g for k = 1.

We observe from (18) that, the expression of P[�n = z]
is a complex function of the transmission profile !n. To
facilitate theoretical tractability, we approximate P[�n = z]
in (18) through an exponential distribution functioneP[�n = z] = �(!n)e��(!n)z; 8n 2 N ; (19)

where the service rate parameter �(!n), which only de-
pends on !n (the transmission probability profile of user
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n), is set to the average service rate in a frame according to
(18), i.e., �(!n) = 1

K

P
k2K

!kn.

We assume that the incoming packets generated at each
user n 2 N follow a Poisson arrival process with average
packet arrival rate �n [packets/sec]. Then, the queue of each
user n 2 N can be modeled using a truncated M=M=1
queue with buffer size of Qmax packets, and the packet drop
rate of user n due to overflow can be represented as [55,
chap. 2] as follows:

P o
n (!n) =8>><>>:

1� �nP
k2K

!kn

1�( �nP
k2K

!kn
)Qmax+1

( �nP
k2K

!kn
)Qmax ; if �n 6=

P
k2K

!kn;

1
Qmax+1 ; otherwise:

(20)

Expected Throughput. Based on above formulations and
according to (1), the expected packet throughput of user n 2
N , denoted as Rn(!), can be expressed as

Rn(ω) = �n

(
1 − P ofl

n (ωn) − P err
n (ω) + P ofl

n (ωn)P err
n (ω)

)
; (21)

and can be rewritten approximately by neglecting the
second-order term P o

n (!n)P err
n (!) as

Rn(!) = �n
�
1� P o

n (!n)� P err
n (!)

�
: (22)

Then, the ideal objective of our problem would be to max-
imize the sum throughput of all users in N under certain
predefined fairness criterion, by adjusting the transmission
strategy !n of each user n 2 N , i.e.,

Given : P; dmn; Nn; 8m;n 2 N
maximize

!
: U(!) =

P
n2N

logRn(!)

subject to : 0 � !kn � 1; 8k 2 K; 8n 2 N ;
(23)

where the logarithm operation is introduced to achieve
proportional fairness among the users.

However, this objective is clearly not achievable with
distributed control. Furthermore, the centralized optimiza-
tion problem is not convex, which means that, in general,
only suboptimal solutions can be computed in polynomial
time even with centralized algorithms. With this under-
standing, we first propose a low-complexity distributed
solution algorithm, and then present a centralized algo-
rithm to compute the globally optimal solution to provide a
benchmark for the performance of the proposed distributed
algorithm.

4 DISTRIBUTED ALGORITHM DESIGN

Based on the system model developed in Section 3, we
now present a distributed problem formulation and a low-
complexity distributed algorithm. Then, we discuss sev-
eral issues related to the implementation of the algorithm.
The distributed solution algorithm is designed based on
a best-response strategy, i.e., each node iteratively and
asynchronously solves the problem of dynamic queueing
and transmission in UW-ASNs. At each iteration, each
user individually maximizes its own expected throughput
based on the statistical characterization of the interference
obtained through past observations and based on its queue
information.

We let !�n = (!m)m2Nnn represent the transmission
probability profile of all users in N except n. Then, the
expected throughput Rn(!) in (22) can be equivalently
expressed as Rn(!n;!�n), i.e.,

Rn(!n;!�n) = �n
�
1� P o

n (!n)� P err
n (!n;!�n)

�
; (24)

where P err
n (!n;!�n) is the corresponding equivalent rep-

resentation of P err
n (!) given in (17). Then, at each itera-

tion, each user n 2 N optimally chooses its transmission
probability vector !n by solving the following optimization
problem,

Given : Pn; dnn; �
2
n; �n;

�kln (!�n); �kln (!�n); 8k 2 K; 8l 2 Lkn
maximize

!n
: Rn(!n; !�n)

subject to : 0 � !kn � 1; 8k 2 K

(25)

where dnn represents the distance between transmitter n
and receiver n, �2

n is the noise power at receiver n, the
objective function Rn(!n;!�n) is defined through (17) and
(20), �kln (!�n) and �kln (!�n) are the shaping parameters in
(6) depending on the transmission strategies of all other
users in N n n, i.e., !�n.

Individual Optimization. It is nontrivial for each user
n 2 N to determine its own optimal transmission strategy
!n, because the above optimization problem is in general
nonlinear and non-convex due to non-convexity of the ex-
pression in (17). In the following, we propose an efficient
algorithm to search for the globally optimal solution by
taking advantage of the special structure of the objective
function Rn(!n; !�n).

To maximizeRn(!n; !�n) in (25), each user n 2 N only
needs to minimize its overall packet loss rate

P los
n (!) = P err

n (!n;!�n) + P o
n (!n) (26)

where P err
n (!n;!�n) and P o

n (!n) are defined in (17)
and (20), respectively. To this end, we introduce a new
intermediate variable yn ,

P
k2K

!kn. Then, with given yn,

P los
n (!) in (26) can be minimized over !n by solving a
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Fig. 3: Example verification of quasi-convexity of the objective
function in (27) .
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linear optimization problem. Denote the resulting minimum
as min

!n

P los
n (yn;!�n;!n). Then, the optimization problem

formulated in (25) can be equivalently expressed as, for each
n 2 N ,

Given : Pn; dnn; Nn; �n;
�kln (!�n); �kln (!�n); 8k 2 K; 8l 2 Lkn

minimize
yn

: min
!n

P los
n (yn;!�n;!n)

subject to : yn � 0
yn � K
0 � !kn � 1; 8k 2 KP
k2K

!kn � yn:

(27)

We found experimentally that the objective function in (27),
i.e., min

!n

P los
n (yn;!�n;!n), is a quasi-convex function of

yn [56, x3.4] for a wide set of network settings. An exam-
ple verification of the quasi-convexity is shown in Fig. 3.
This implies that the globally optimal solution of yn can
be iteratively calculated in logarithmic time (which is less
than polynomial) by using the bisection method. At each
iteration, the optimal transmission probability vector !n

for a given yn can be obtained by simply solving a linear
optimization problem. The proposed distributed solution
algorithm is summarized in Algorithm 1, and the overall di-
agram of the stochastic channel access scheme is illustrated
in Fig. 4. It is worth pointing out that the optimization al-
gorithm causes only low communication overhead because
there is no need to update the transmission probability
profile frequently, e.g., it may be enough to send an update
once every 100 frames to adapt to the dynamic interference
environment, which accounts for all the interfering trans-
mission activities during each update period.

Algorithm 1: Distributed Solution Algorithm
Data: Input: Pn; dnn; Nn, for all n 2 N , �max,

� = 0:01
1 Initialize: Set � = 0, !n(�) = !0

n; 8n 2 N
2 while jj!n(�)�!n(� � 1)jj > �; 8n 2 N or � < �max

do
3 Each user n 2 N finds !�n to minimize

P los
n (yn;!�n;!n) by searching for the optimal yn

through solving the optimization problem in (27).
4 Set !n(�) = !�n for each n 2 N .
5 Set �  � + 1.
6 end

Implementation Issues. In the proposed distributed access
scheme, each node n 2 N individually maximizes its own
throughput for a given transmission strategy of the interfer-
ing users !�n. However, in a fully distributed algorithm,
!�n is in general unavailable to user n. A nice property of
our proposed algorithm is that for practical implementation
each user n only needs to estimate the two shaping param-
eters �kln (!�n) and �kln (!�n) of the interference probability
distribution based on the past observations of interference
at the receiver side.

For this purpose, let E[Ikln ] and D[Ikln ] represent mean
and variance of Ikln , respectively. Then, we can derive them
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Fig. 4: Diagram of the stochastic channel access scheme.

as

E[Ikln ] = E

� X
m2Nnn

Pmhnm�(gklnm)

�
=

X
m2Nnn

Pm!
gklnm
m HnmE[�2];

(28)

D[Ikln ] = D

� X
m2Nnn

Pmhnm�(gklnm)

�
=

X
m2Nnn

P 2
m!

gklnm
m (Hnm)2D[�2];

(29)

where E[�2] = 4
� and D[�2] = 16

�2 according to (4).
According to the probability density function of the

interference Ikln in (6), E[Ikln ] and D[Ikln ] can also be rep-
resented as

E[Ikln ] = �kln (!)�kln (!); (30)

D[Ikln ] = �kln (!)[�kln (!)]2; (31)

where �kln (!) and �kln (!) are the two shaping parameters in
(6). Then, from (28)-(31), we have

�kln (!) = D[Ikln ]=E[Ikln ]; (32)

�kln (!) = (E[Ikln ])2=D[Ikln ]; (33)

where E[Ikln ] and D[Ikln ] are given in (28), (29), respectively.
Therefore, it is sufficient for each user to fully charac-

terize the statistical behavior of interference at its receiver,
by recording the observed interference levels and then cal-
culating the mean and variance. In case of variations in
the network topology, e.g., when nodes join or leave the
network, �kln (!) and �kln (!) need to be re-estimated, which
might trigger another round of transmission probability
adaptation. To measure the mean in (28) and variance in
(29), as illustrated in Fig. 4, each receiver node can first
estimate the power of the received useful signal and then
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Fig. 5: Example illustration of the solution algorithm.

subtract it from that of the overall signal. Given the trans-
mission power of the transmitter, this can be accomplished
by letting the transmitter send a predefined PN sequence.
The receiver can then estimate the channel state information
(CSI) through PN sequence cross-correlation.

5 CENTRALIZED SOLUTION ALGORITHM

As discussed in Section 3, an ideal objective would be to
maximize the sum throughput of all users in the network.
The objective can not be achieved trivially due to lack of
centralized control and non-concavity of the utility function
Ri(!i;!�i) in (22). In this section, we develop a centralized
but globally optimal solution algorithm based on the com-
bination of branch and bound framework [57], [58] and convex
relaxation techniques [59] to solve the social optimization
problem in (23).

Algorithm Overview. The proposed algorithm searches
for a globally optimal solution that satisfies the predefined
precision of optimality " 2 (0; 1). Denote the global op-
timum of the objective function in (23) as R�, then the
algorithm iteratively searches for an "-optimal solution R
such that R � "R�. The optimality precision " can be set as
close to 1 as we wish, at the cost of higher computational
complexity for larger ". For this purpose, the algorithm
maintains a global upper bound UPglb and a global lower
bound LRglb on sum-throughput R in (23), then it must be

LRglb � R� � UPglb: (34)

We use UPglb and LRglb to drive the branch and bound
iteration, and to check how close the obtained solution
is to R� and decide when to terminate the iteration. If
LRglb � "UPglb, the algorithm terminates and sets the
optimal objective value to R = LRglb.

The algorithm also maintains a set of sub-domains
Ω = fΩ� � Ω0; � = 1; 2; � � � g, with Ω0 = f!g being
the initial domain that includes all possible ! = (!n)n2N ,
and � representing the iteration index. At the beginning of
iterations, there is only one element in Ω, i.e., Ω0. In each
iteration, the algorithm selects a sub-domain Ω�� from Ω
and partitions it into two smaller ones through domain parti-
tion (as discussed later), say Ω1

�� and Ω2
�� . For each of them,

the algorithm calculates a local upper bound UP(Ωi
��) and

local lower bound LR(Ωi
��) on sum-throughput R over

the sub-domain, with � = 1; 2, by relaxing the associated
subproblem to be convex (as discussed later). Then, if

UP(Ωi
��) < LRglb, it implies that it is impossible for the

global optimal solution to be located in Ωi
�� , and hence

the associated subproblem will not be considered any more
in the following iterations. Otherwise, the domain set Ω is
updated as Ω  Ω [Ωn

�� , and the global lower and upper
bounds can then be updated as

UPglb = max
Ω�2Ω

UP(Ω�); (35)

LRglb = max
Ω�2Ω

LR(Ω�): (36)

As the problem partition progresses, the gap between UPglb

and LRglb converges to 0, and from (34), they converge
to the globally maximal sum-throughput R�. An example
illustration of the algorithm is shown in Fig. 5, where the
global upper bound UPglb is updated from UP(Ω0) to
UP(Ω1), and the global lower bound LRglb is updated from
LR(Ω0) to LR(Ω2), and as a result, the two global bounds
get closer to the global optimum R�.

Convex Relaxation. To relax the objective function in
(23) to be convex, we only need to relax the individual
utility function of each user. It can be proven that, P dly

n (!)
defined in (22), i.e., the packet loss rate due to exceeding
the maximum delay, is a convex function of !. The proof
is based on the fact that the second derivative of P dly

n (!)
with respect to ! is positive, and on the property that affine
mapping preserves convexity of functions [56, x3.2.2]. Then,
we only need to relax the transmission error probability
P err
n (!) defined in (22) to be convex.

This can be done in different ways, and users are re-
ferred to [59] for details of possible relaxation techniques.
In this work, we adopt a simple but effective relaxation
method based on the observation that P err

n (!) monotoni-
cally decreases with transmission probability profile of other
sessions !�n. Denote the current domain of the tth trans-
mission probability variable !km of !m as [(!km)L; (!km)U].
Then, based on the above observation, P err

n (!) can be
relaxed to P err

n (!n;!
U
�n) with !U

�n = ((!km)U)m2Nnn;k2K,
and finally we obtain a relaxation of Rn(!) that provides
an upper bound on the individual objective function in
(23), as illustrated by the red dash line in Fig. 5. Based
on the solution obtained through solving the relaxed social
optimization problem, we are able to obtain a lower-bound
sum throughput using the unrelaxed objective function (23).
The two local bounds are then used to update the global
upper and lower bounds as in (35) and (36), respectively.

Variable Partition. We select the subproblem that cor-
responds to the highest local upper bound, and partition
it into two new subproblems by partitioning the associ-
ated transmission probability variables. In favor of faster
convergence, hence lower computational complexity, we
consider the effects of variable partition on the level of
mutual interference among concurrent sessions. That is, if
a session causes only very little interference to the others,
the corresponding transmission probability variables will be
selected for partition with lower priority, and vice versa.
For this purpose, we use the average distance from the
source node of a session to the receiver nodes of the other
sessions as an indicator, i.e., the smaller the distance, the
lower the average interference. Then, by jointly considering
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(a) (b)

Fig. 6: (a) Deployment of the six underwater acoustic modems in Lake LaSalle at the University at Buffalo; (b) Aerial view of the
underwater acoustic testbed.

the current range of variables, we select ! k �

n � for partition
such that

(n� ; k� ) = arg max
n 2N ;k 2K

�
(! k

n )U � (! k
n )L � 1

dist (n)
; (37)

where dist (n) represents the average distance between
source node n and the receivers of other sessions. Fi-
nally, by partitioning ! k �

n � from the middle, i.e., (! k �

n � )M =
( ! k �

n � )U +( ! k �
n � )L

2 , we obtain two new subproblems correspond-
ing to [(! k �

n � )L ; (! k �

n � )M ] and [(! k �

n � )M ; (! k �

n � )U ], respectively.

6 PERFORMANCE EVALUATION

We �rst experimentally verify the effectiveness of the chan-
nel model, interference model and the queueing model
adopted from Section 3. Then, we study the performance
of the channel access algorithms designed in Sections 4 and
5 in terms of achievable throughput.

In the throughput analysis, we consider an UW-ASN
of ocean-bottom sensor nodes deployed over an area of
3000� 3000 m2. The number of source-destination pairs is
set to N = 2 ; 4; 6; 8; 10. The positions of the nodes are gen-
erated randomly with the distance for each communicating
pair varying in [1000; 1500]meters in the simulation. In the
testbed validation of the interference model, the distances
between the transmitter and the receiver varies from 120 m
to 160 m. The number of jointly optimized time slots is set to
K = 1 to 15 with a step of 2. The number of measurement
points in each time slot is set to L = 1 ; 2; 3 in the L -
measurement-based interference modeling method. We con-
sider a narrow-band UW-ASN with bandwidth of 0:5 kHz at
central carrier frequency 10 kHz.5 The modulation scheme
is set to BPSK, raised-cosine �lter with roll-off factor of
� = 0 :5 is used for pulse shaping, BCH(511; 259) is selected
as the channel coding corresponding to coding rate 0.5, and
CRC� 16 is adopted for parity check. PN sequences are used
for packet synchronization and interference estimation (as

5. In this work, we consider a narrow-band UW-ASN, so that the
resulting underwater channel is frequency-non-selective. In the case
of wideband channels, the spectrum can be divided into a set of
subchannels and the proposed stochastic channel access scheme can
be applied to the subchannels independently.

discussed at the end of Section 4). Speci�cally, we consider
PN sequences of duration 25 ms. In the case of L > 1, i.e.,
the interference is measured more than one time in each time
slot, L PN sequences need to be inserted into a time slot.
This results in a time slot duration of roughly 1 + 0:025L s
and raw data service rate of Rsvc = 259� 16

1+0 :025L bits=s. The
data arrival rate (in bits=s) is set to Rarv = �R svc with �
increases from 0.1 to 2 with a step of 0.2.

Four schemes are implemented for performance com-
parison: i) Centralized multi-slot channel access (Centralized
Multi-slot) as an upper bound, obtained using the developed
centralized solution algorithm in Section 5 with optimality
precision " = 0 :95 and maximum iteration number 5000;
ii) Aloha with centralized optimizer (Centralized Aloha)as a
performance bottom line, with transmission probability set
to be 1 in each time slot to highlight the effects of statistical
interference - Aloha with the optimal transmission proba-
bility is also considered as a special case of the centralized
solution algorithm; iii) Without Queueing (w/o Queueing),
which corresponds to the distributed solution algorithm
without considering the queueing behavior; and iv) Single
Interference Measurement (Single Meas.), which uses only one
single measurement point to represent the interference level
for a whole time slot.

Interference Model Validation . We conducted under-
water interference measurement in Lake LaSalle at the
University at Buffalo using six Telesonar SM-75 SMART
modems by Teledyne Benthos [53]. The actual deployment
of the six underwater acoustic modems is shown in Fig. 6(a),
with six orange buoys �oating on the surface of the lake,
each attached to the Telesonar SM-75 modem along with
an anchor. The modem uses an omnidirectional transducer
that operates in the 9 kHz� 14 kHz low frequency (LF)
band. The waveform-play feature of the modem enables
transmissions of baseband complex data with a bandwidth
of 5:120 kHzsampled at 10:240 kHz. The data packets were
generated of�ine using direct-sequence CDMA (DS-CDMA)
modulation scheme, and converted into a stereo WAV �le
in 16 bit format, and uploaded on the modems through
the RS-232 interface. DS-CDMA chip waveforms were se-
lected from the columns of a Sylvester-Hadamard matrix of


