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Abstract—Wireless Multimedia Sensor Network (WMSN) is increas-
ingly being deployed for surveillance, monitoring and Internet-of-Things
(IoT) sensing applications where a set of cameras capture and com-
press local images and then transmit the data to a remote controller.
Such captured local images may also be compressed in a multi-view
fashion to reduce the redundancy among overlapping views. In this
paper, we present a novel paradigm for compressed-sensing-enabled
multi-view coding and streaming in WMSN. We first propose a new
encoding and decoding architecture for multi-view video systems based
on Compressed Sensing (CS) principles, composed of cooperative
sparsity-aware block-level rate-adaptive encoders, feedback channels
and independent decoders. The proposed architecture leverages the
properties of CS to overcome many limitations of traditional encoding
techniques, specifically massive storage requirements and high compu-
tational complexity. Then, we present a modeling framework that exploits
the aforementioned coding architecture. The proposed mathematical
problem minimizes the power consumption by jointly determining the
encoding rate and multi-path rate allocation subject to distortion and
energy constraints. Extensive performance evaluation results show that
the proposed framework is able to transmit multi-view streams with
guaranteed video quality at lower power consumption.

Index Terms—Compressed Sensing, Multi-view Video Streaming, Net-
work Optimization, Internet of Things.

1 INTRODUCTION

Wireless Multimedia Sensor Networks (WMSNs) are
composed of low-cost, battery-operated wireless camera
sensors with the ability of acquiring, processing and
transmitting visual data. By extending the capability of
traditional Wireless Sensor Networks (WSNs), WMSNs
play a paramount role in the evolution of the Internet-
of-Things (IoTs) paradigm by enabling multi-media data
gathering, processing and analysis, for example, disaster
monitoring, pervasive surveillance, traffic and infras-
tructure monitoring [2] in the scenario of smart cities.
However, WMSN poses additional challenges compared
to traditional WSN because it requires intense processing
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ability and high-bandwidth availability. Given the fact
that the sensor nodes in WMSNs are characterized by
tight energy, limited processing and bandwidth, how to
design a low-complexity low-power framework pertain-
ing to data compression, processing and networking is
a critical issue.

Recently, compressed sensing (CS) has been proposed
as a possible solution to enable video streaming in re-
source constrained WMSNs. CS-based imaging systems
are able to reconstruct image or video signals from a
relatively “small” number of (random or deterministic)
linear combinations of original image pixels, referred to
as measurements, without collecting the entire frame [3],
[4], thereby offering a promising alternative to traditional
video encoders by acquiring and compressing video or im-
ages simultaneously at very low computational complexity for
encoders [5]. This attractive feature motivated a number
of works that have applied CS to video streaming in low-
power wireless surveillance scenarios. For example, [6]–
[8] mainly concentrate on single-view CS-based video
compression, by exploiting temporal correlation among
successive video frames [6], [7] or considering energy-
efficient rate allocation in WMSNs with traditional CS
reconstruction methods [8]. In [9], we showed that CS-
based wireless video streaming can deliver surveillance-
grade video for a fraction of the energy consumption of
traditional systems based on predictive video encoding
such as H.264. In addition, [8] illustrated and evaluated
the error-resilience property of CS-based video streaming,
which results in graceful quality degradation in wireless
lossy links. A few recent contributions [10]–[13] have
proposed CS-based multi-view video streaming tech-
niques, primarily focusing on an independent-encoder
and joint-decoder paradigm, which exploits the implicit
correlation among multiple views at the decoder side to
improve the resulting video quality using complex joint
reconstruction algorithms.

From a system view of multi-view video streaming,
besides visual data acquiring and compressing, how to
achieve power-efficient quality-assured data transmis-
sion over a multi-hop wireless sensor network is another
important open problem. Very limited work has been
reported in the literature to address this issue, especially
for CS-based streaming system. For example, [14] and
[15] have looked at this problem by considering tradi-
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tional encoding paradigms, e.g., H.264 or MPEG4; these
contributions focus on video transmission in single-hop
wireless networks and provide a framework to improve
power efficiency by adjusting encoding parameters such
as quantization step (QS) size to adapt the resulting rate.

To the best of our knowledge, we propose for the first
time a holistic paradigm of coding and transmitting for
low-complexity low-power compressed-sensing-enabled
multi-view video streaming in multi-hop wireless sensor
networks. The objective is to efficiently deliver high-
quality video on resource-limited video sensors. To
achieve this objective, we first propose a novel CS-based
multi-view coding and decoding architecture composed
of cooperative encoders and independent decoders. Un-
like existing works [10]–[12], the proposed system is
based on independent encoding and independent de-
coding procedures with limited channel feedback in-
formation and negligible content sharing among cam-
era sensors. Furthermore, we propose a power-efficient
quality-guaranteed rate allocation algorithm based on
a compressive Rate-Distortion (R-D) model for multi-
view video streaming in multi-path multi-hop wireless
sensor networks with lossy links. Our work makes the
following contributions:
CS-based multi-view video coding architecture with
independent encoders and independent decoders. Dif-
ferent from state-of-the-art multi-view coding architec-
tures, that are either based on joint encoding or on
joint decoding, we propose a new CS-based sparsity-
aware independent encoding and decoding multi-view
structure, that relies on lightweight feedback and inter-
camera cooperation.
- Sparsity estimation. We develop a novel adaptive ap-
proach to estimate block sparsity based on the recon-
structed frame at the decoder. The estimated sparsity is
then used to calculate the block-level measurement rate
to be allocated with respect to a given frame-level rate.
Next, the resulting block-level rates are transmitted back
to the encoder through the feedback channel. The en-
coder that is selected to receive the feedback information,
referred to as reference view (R-view), shares the content
with other non-reference views (NR-views) nearby.
- Block-level rate adaptive multi-view encoders. R-view and
NR-views perform the block-level CS encoding indepen-
dently based on the shared block-level measurement rate
information. The objective is to not only implicitly lever-
age the considerable correlation among views, but also to
adaptively balance the number of measurements among
blocks with different sparsity levels. Our experimental
results show that the proposed method outperforms
state-of-the-art CS-based encoders with equal block-level
measurement rate by up to 5 dB in terms of Peak Signal-
to-Noise Ratio (PSNR).
Modeling framework for CS-based multi-view video
streaming in multi-path multi-hop wireless sensor
networks. We consider a rate-distortion model of the
proposed streaming system that captures packet losses
caused by unreliable links and playout deadline vio-

lations. Based on this model, we propose a two-fold
(frame-level and path-level) rate control algorithm de-
signed to minimize the network power consumption
under constraints on the minimum required video qual-
ity for multi-path multi-hop multi-view video streaming
scenarios.

The rest of the paper is organized as follows. In
Section 2, we discuss related works. In Section 3, we
review a few preliminary notions. In Section 4, we
introduce the proposed CS-based multi-view video en-
coding/decoding architecture. In Section 5 we present a
modeling framework to design optimization problems of
multi-view streaming in multi-hop sensor networks and
propose a solution algorithm. Finally, simulation results
are presented in Section 6, while in Section 7 we draw
the main conclusions and discuss future work.

2 RELATED WORKS

CS-based Multi-view Video. More recently, several pro-
posals have appeared for CS-based multi-view video
coding based on Distributed Video Coding (DVC) 1 ar-
chitecture [10] [13] [18] [19] [20] [21] [22] [23] [24]. In [10],
a distributed multi-view video coding scheme based
on CS is proposed, which assumes the same measure-
ment rates for different views, and can only be applied
together with specific structured dictionaries as sparse
representation matrix. A linear operator [20] is proposed
to describe the correlations between images of different
views in the compressed domain. The authors then use
it to develop a novel joint image reconstruction scheme.
In [18], the authors propose a novel CS joint multi-view
reconstruction method guided by the spatial correlation
and low-rank background constraints. [19] presents a
joint optimization model (JOM) for compressed sensing
based multi-view image reconstruction, which jointly
optimizes an adaptive disparity compensated residual
total variation (ARTV) and a multi-image nonlocal low-
rank tensor (MNLRT). The authors of [21] propose a
CS-based joint reconstruction method for multi-view im-
ages, which uses two images from the two nearest views
with higher measurement rate of the current image
(the right and left neighbors) to calculate a prediction
frame. The authors then further improve the perfor-
mance by way of a multi-stage refinement procedure
[22] via residual recovery. The readers are referred to
[21] [22] and references therein for details. Disparity-
based joint reconstruction for multi-view video is also
proposed in [23] and [24], where different reconstruction
methods, i.e., residual-based and total variation based
approaches are adopted, respectively. In our previous
work [13], we proposed a motion-aware joint multi-
view video reconstruction method based on a newly
designed interview motion compensated side informa-
tion generation approach. Differently, in this article, we
propose a novel CS-based independently encoding and

1. DVC algorithms (aka Wyner-Ziv coding [16] [17]) exploit the
source statistics at the decoder, thus shifting the complexity from the
encoder side to the decoder side.
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independently decoding architecture for multi-view video
systems based on new cooperative sparsity-aware-block-
level rate adaptive encoders.
Energy-efficient CS-enabled Video streaming.
Few articles have investigated energy-constrained
compressively-sampled video streaming. [25] presents a
low-complexity and energy efficient image compressive
transmission scheme for camera sensor networks,
where the authors use residual energy of camera sensor
nodes to control the image quality to balance energy
consumption of nodes. In [9], an analytical/emperical
rate-energy-distortion model is developed to predict the
received video quality when the overall energy available
for both encoding and transmission of each frame is
fixed and limited and the transmissions are affected
by channel errors. The model determines the optimal
allocation of encoded video rate and channel coding
rate for a given available energy budget. [26] proposes
a cooperative relay-assisted compressed video sensing
systems that takes advantage of the error resilience
of compressively-sampled video to maintain good
video quality at the receiver side while significantly
reducing the required SNR, thus reducing the required
transmission power. Different from the previous works,
which mainly aims at single-view single path CS-based
video streaming, in this article, we consider CS-based
multi-view video streaming in multi-path multi-hop
wireless sensor networks.

3 PRELIMINARIES

3.1 Compressed Sensing Basics

We first briefly review basic concepts of CS for signal
acquisition and recovery, especially as applied to CS-
based video streaming. We consider an image signal
vectorized and then represented as x ∈ RN , where
N = H×W is the number of pixels in the image, and H
and W represent the dimensions of the captured scene.
Each element xi denotes the ith pixel in the vectorized
image signal representation. Most natural images are
known to be very nearly sparse when represented using
some transformation basis Ψ ∈ RN×N , e.g., Discrete
Wavelet Transform (DWT) or Discrete Cosine Transform
(DCT), denoted as x = Ψs, where s ∈ RN is sparse rep-
resentation of x. If s has at most K nonzero components,
we call x a K-sparse signal with respect to Ψ.

In CS-based imaging system, sampling and compres-
sion are executed simultaneously through a linear mea-
surement matrix Φ ∈ RM×N , with M � N , as

y = Φx = ΦΨs, (1)

with y ∈ RM representing the resulting sampled and
compressed vector.

It was proven in [3] that if A , ΦΨ satisfies the
following Restricted Isometry Property (RIP) of order K,

(1− δk)||s||2`2 ≤ ||As||2`2 ≤ (1 + δk)||s||2`2 , (2)

with 0 < δk < 1 being a small ”isometry” constant and
`2 denoting `2 norm, then we can recover the optimal
sparse representation s∗ of x by solving the following
optimization problem

P1: Minimize ||s||0
Subject to: y = ΦΨs

(3)

by taking only

M = c ·Klog(N/K) (4)

measurements, where c is some predefined constant.
Afterwards, x can be obtained by

x̂ = Ψs∗. (5)

However, problem P1 is NP-hard in general, and in
most practical cases, measurements y may be corrupted
by noise, e.g., channel noise or quantization noise. Then,
most state-of-the-art work relies on l1 minimization with
relaxed constraints in the form

P2: Minimize ||s||1
Subject to : ||y −ΦΨs||2 ≤ ε

(6)

to recover s. Note that P2 is a convex optimization
problem. Researchers in sparse signal reconstruction
have developed various solvers [27]–[29]. For example,
the Least Absolute Shrinkage and Selection Operator
(LASSO) solver [28] can solve problem P2 with compu-
tational complexity O(M2N). We consider a Gaussian
random measurement matrix Φ in this paper.

3.2 Rate-Distortion Model for Compressive Imaging
Throughout this paper, end-to-end video distortion is
measured as mean squared error (MSE), which is a
widely used performance measure in the field of signal
processing, especially for objective image quality mea-
surement where the quality of images are measured
algorithmically [30]. Since Peak Signal-to-Noise Ratio
(PSNR) is a more common metric in the video cod-
ing community, we use PSNR = 10log10(2552/MSE)
to illustrate simulation results. The distortion at the
decoder Ddec in general includes two terms, i.e., Denc,
distortion introduced by the encoder (e.g., not enough
measurements and quantization); and Dloss, distortion
caused by packet losses due to unreliable wireless links
and violating playout deadlines because of bandwidth
fluctuations. Therefore,

Ddec = f(Denc, Dloss). (7)

To the best of our knowledge, there are only a few works
[8] that have investigated rate-distortion models for
compressive video streaming, but without considering
losses. For example, [8] expands the distortion model in
[31] to CS video transmission as

D(R) = D0+
θ

R−R0
, (8)

where D0, θ and R0 are image- or video-dependent
constants that can be determined by linear least squares
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fitting techniques; R = M
N is the user-controlled mea-

surement rate of each video frame.

4 CS-BASED MULTI-VIEW CODING
ARCHITECTURE DESIGN

In this section, we introduce a novel encoding/decoding
architecture design for CS multi-view video streaming.
The proposed framework is based on three main com-
ponents: (i) cooperative sparsity-aware block-level rate
adaptive encoder, (ii) independent decoder, and (iii) a
centralized controller located at the decoder. As illus-
trated in Fig. 1, considering a two-view example, camera
sensors acquire a scene of interest with adaptive block-
level rates and transmit sampled measurements to the
base station/controller through a multi-path multi-hop
wireless sensor network. Then, the centralized controller
calculates the relevant information and feeds it back to
the selected R-view. The R-view then shares the limited
feedback information with the other one - NR-view. The
architecture can be easily extended to V ≥ 2 views.

Different from existing compressive encoders with
equal block measurement rate [7], [8], the objective of
the proposed framework is to improve the reconstruction
quality by leveraging each block’s sparsity as a guideline
to adapt the block-level measurement rate. We next
describe how to implement the proposed paradigm by
discussing each component in detail.

4.1 Cooperative Block-level Rate-adaptive Encoder

To reduce the computational burden at encoders embed-
ded in power-constrained devices, most state-of-the-art
multi-view proposals focus on developing complex joint
reconstruction algorithms to improve the reconstruction
quality. Differently, in our architecture we obtain im-
proved quality only through sparsity-aware encoders.

To illustrate the idea, Figure 2(b) depicts the sparse
representation of Fig. 2(a) with respect to block-based
DCT transformation. We can observe that sparsity differs
among blocks, e.g., the blocks within the coat area are
more sparse than others. According to basic compressed
sensing theory in Section 3.1, (4) indicates that the num-
ber of required measurements is inversely proportional
to the sparsity K. Therefore, we propose to adapt the
measurement rate at the block level according to sparsity
information, i.e., more measurements will be allocated to
less-sparse blocks, and vice versa.

In our work, the number of required measurements
M i
vf for block i in frame f of view v, 1 ≤ i ≤ B, is

calculated based on the sparsity estimated at the cen-
tralized controller and sent back via a feedback channel.
Here, B = N

Nb
denotes the total number of blocks in one

frame with N and Nb being the total number of pixels in
one frame and block, respectively. Assume that we have
received {M i

vf}Bi=1. Then, the encoding process is similar
to (1), described as

yivf = Φi
vfx

i
vf , (9)

where yivf ∈ RM
i
vf and Φi

vf ∈ RM
i
vf×Nb are the mea-

surement vector and measurement matrix for block i in
frame f of view v, respectively; xivf ∈ RNb represents the
original pixel vector of block i. From (9), we can see that
M i
vf varies among blocks from 1 to Nb, thereby imple-

menting block-level rate adaptation. In real applications,
the block-level rate adaptive encoding process can be
implemented by using block-wise lensless compressive
camera [32]. In Section 6, the simulation results will show
that this approach can improve the quality by up to
5 dB compared with using an independent encoder and
independent decoder.

Mean value subtraction. The CS-based imaging sys-
tem acquires and compresses each frame simultaneously
through simple linear operations as in (1). Therefore, it
can help reduce the energy consumption compared with
traditional signal acquisition and encoding approaches
(e.g., H.264, MJPEG) as validated in [33]. In traditional
video coding techniques, frequency transform (e.g., 8×8
block of DCT transform) is one must-have component,
while inter-view prediction (e.g., disparity estimation)
and inter-frame prediction (e.g., motion estimation) are
additions, which will all together result in higher compu-
tation complexity compared to linear operations in CS-
based imaging systems, thus consuming more power.
In this paper, we exploit the inter-view correlation by
using the estimated sparsity from R-view feedbacked
from the receiver. However, the compression rate of CS
is not as high as traditional encoding schemes [9]. There
is clearly an energy-consumption trade-off between the
compression rate and the bit transmission rate. [9] an-
alyzes the rate-energy-distortion for compressive video
sensing encoder. To improve the compression rate, we
perform mean value subtraction, which can further help
reduce the number of transmitted bits. How to obtain
the mean value m̄ will be discussed in Section 4.3. Since
the original pixels are not available at the compressive
encoder, we perform the mean value subtraction in the
measurement domain. First, we establish a mean value
vector m ∈ RNb with dimensions the same as xivf , and
where each element is equal to m̄. Then, we use the same
block-level measurement matrix Φi

vf to sample m and
then subtract the result from yivf as

ỹivf = yivf −Φi
vfm = Φi

vf (xivf −m). (10)

After sampling, ỹivf is transmitted to the decoder. From
(10), we can see that the proposed mean value sub-
traction in the measurement domain is equivalent to
subtraction in the pixel domain.

Next, to validate the effectiveness of mean value sub-
traction, we take the Vassar sequence as an example.
We select a uniform quantization method. The forward
quantization stage and the reconstruction stage can be
expressed as q = sgn(x) · b |x|∆ + 1

2c and q̂ = ∆ · q,
respectively. Here, x, q, q̂ and ∆ represent original signal,
quantized signal, de-quantized signal and quantization
step size, respectively. Figure 3 shows a comparison of
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Fig. 2: Block Sparsity: (a) Original image, (b) Block-based DCT coefficients of (a).
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Fig. 3: Comparison of (a) PSNR, (b) the number of transmitted bits, and (c) the compression rate between approaches
with and without mean subtraction.

PSNR, the number of transmitted bits and the compres-
sion rate with and without mean subtraction, where
a measurement rate 0.2 is used, and the total bits in
the original frame are 320 × 240 × 8 = 614400 bits.
Quantization step sizes from the set {1, 2, 3, 4, 8, 16,

32, 64, 128, 256} are selected. From Fig. 3(a), we can
observe that mean subtraction has a negligible effect
on the reconstruction quality and there is no significant
quality degradation when the quantization step size is
less than 32. This is because the value of measurement
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is up to thousand and tens of thousand compared to
original pixel value with maximum 255. Figures 3(b)
and (c) illustrate that with mean subtraction the total
number of bits transmitted for one frame is significantly
reduced by up to 30 kbits compared to not using mean
subtraction, which corresponds to an improvement in
compression rate (defined as the ratio between the num-
ber of transmitted bits and the number of total bits
in the original frame) from 0.2391 to 0.1902. Besides
mean value subtraction, we can explore the temporal
correlation [9] between successive frames in our future
work to further improve the performance with respect
to compression ratio.
Cooperation via sparsity pattern sharing. Multi-view
video streaming is based on reducing the redundancy
among views captured by arrays of camera sensors that
are assumed to be close enough to each other. Most state-
of-the-art literature adopts the concept of distributed sys-
tem coding architecture [16], [17], where a reference view
transmits more measurements than other non-reference
views and then the receiver jointly decodes by exploiting
the implicit correlation among views. Instead, we allow
the encoders to explicitly cooperate to a certain extent.
For example, the R-view selected by the centralized
controller will periodically receive feedback information,
i.e., {Mi}Bi=1 and m̄, and then share it with the NR-views
in the same group. Since camera sensors in the same
group are assumed to be close enough to each other, the
block sparsity among views will be correlated. By using
the same sparsity information, we can directly exploit
multi-view correlation at the encoders, thus resulting in
a clean-slate compressive multi-view coding framework
with simple encoders and simple decoders but with
improved reconstruction quality.

4.2 Independent Decoder

As mentioned above, the proposed framework results in
relatively simple decoders. At each decoder, the received
ŷivf , distorted version of ỹivf because of the joint effects
of quantization, transmission errors, and packet drops,
will be independently decoded. The optimal solution si,?vf
can be obtained by solving

P3 : Minimize ||sivf ||1
Subject to: ||ŷivf −Φi

vfΨbs
i
vf ||2 ≤ ε,

(11)

where Ψb ∈ RNb×Nb represents the sparsifying matrix
(2-D DCT in this work). We then use (5) to obtain the
reconstructed block-level image x̂ivf , by solving x̂ivf =

Ψbs
i,?
vf . Afterward, {x̂ivf}Bi=1 can be simply reorganized

to obtain the reconstructed frame x̂vf .

4.3 Centralized Controller

The centralized controller is the key component at the
receiver, which is mainly in charge of selecting the R-
view and estimating sparsity and mean value required
to be sent back to the transmitter via a assumed delay-

negligible [34] [35] and error-free feedback link.2 How to
implement a fast feedback channel in practical scenarios
is important and feasible, which can help further im-
prove the performance of the proposed framework and
is currently beyond the scope of the paper. Addition-
ally, the controller is also responsible for implementing
the power-efficient multi-path rate allocation algorithm
discussed in Section 5. Next, we introduce the three
key functions executed at the controller in sequence,
i.e., R-view selection, sparsity estimation, and mean value
estimation.
R-view selection. The controller selects a view to be
used as reference view (R-view) among views in the
same group and then sends feedback information to
the selected R-view. For this purpose, the controller first
calculates the Pearson correlation coefficient among the
measurement vectors of any two views as

ρmn = corr(ŷmf , ŷnf ), ∀m 6= n, m, n = 1, . . . , V, (12)

where ŷmf is the simple cascaded version of all ŷimf and
corr(ŷmf , ŷnf ) , cov(ŷmf ,ŷnf )

σmfσnf
. Then, view m?, referred to

as R-view, is selected by solving

m? = argmax
m=1,...,V

ρ̃m, (13)

where ρ̃m , 1
V−1

∑
n 6=m

ρmn denotes the average Pearson

coefficient for view m. From (13), we can see that the
view with the highest average Pearson coefficient is
selected as R-view 3. The reconstructed frame x̂vf of the
R-view is then used to estimate the block sparsity Ki

and the frame mean value m̄ for block i.
Table 1 shows the calculated ρ̃m for Vassar, Exit and

Ballroom 5-view sequences with lower resolution (i.e.,
320 × 240, represented as L) and higher resolution (i.e.,
640 × 480, represented as H), respectively. We can see
that the average Pearson correlation coefficient of view
3 is the largest for all scenarios while the correlation
degree decreases as resolution increases. Therefore, view
3 is selected as R-view. Moreover, we take the Vassar 5-
view sequences as an example to elaborate how much
quality gain we can obtain if the other views except
view 3 are selected as R-view with respect to lower
resolution and higher resolution, respectively, as shown
in Table 2. We can observe that the improved average
PSNR is proportional to ρ̃m, where selecting view 3 as
R-view results in the highest improved average PSNR
gain, i.e., 1.6674 dB and 1.3132 dB for lower and higher
resolution scenarios, respectively. We can also see that

2. Since we mainly consider a slow block-fading environment, the
feedback delay is significantly less than the coherence time of the
fading channels concerned. Thus, the effect of feedback delay can be
negligible. Moreover, with a small data rate, efficient error control
coding techniques over feedback link can be used to achieve error-free
feedback [36] [37].

3. The adopted Pearson correlation just considers the linear relation
among views. We believe that more advanced correlation algorithms
which also consider the features in the correlation will result in more
accurate R-view selection and better performance gain based on our
proposed CS-based multi-view coding/decoding architecture.
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the quality gain slightly decreases for higher resolution
Vassar sequences because of the decreased correlation
degree. For this case, because the Vassar multi-view
sequences used here is captured by parallel-deployed
cameras with equal spacing, we obtain the same result,
i.e., view 3 as R-view, as if we were to choose simply the
most central sensor. However, for scenarios with cameras
that are not parallel-deployed with unequal spacing,
selecting the most central sensor is not necessarily a good
choice.
Sparsity estimation. Most natural images are character-
ized by large smooth or textured regions and relatively
few sharp edges. Signals with this structure are known
to be very nearly sparse when represented using DWT or
DCT domain [38], where lowest frequency components
provide a coarse scale approximation of the image, while
the higher frequency components fill in the detail and
resolve edges. Moreover, most DWT or DCT coefficients
are very small. Hence, we can obtain a good approxi-
mation of the signal by setting the small coefficients to
zero, or thresholding the coefficients, to obtain k-sparse
representation. Moreover, in CS-based imaging system,
the original frame in the pixel domain is not available,
therefore, we propose to estimate sparsity based on
the reconstructed frame x̂vf as follows. By solving the
optimization problem P3 in (11), we can obtain the block
sparse representation si,?vf and then reorganize {si,?vf }Bi=1

to get the frame sparse representation s?vf periodically.
The sparsity coefficient Ki is defined as the number
of non-zero entries of s?vf . However, natural pictures in
general are not exactly sparse in the transform domain.
Hence, we introduce a predefined percentile ps

4, and
assume that the frame can be perfectly recovered with
N · ps measurements. Based on this, one can adaptively
find a threshold T above which transform-domain coef-
ficients are considered as non-zero entries. The threshold
can be found by solving

||max(|s?vf | − T, 0)||0
N

= ps, (14)

which is a `0 counting norm problem. Since the sample
space of the above-mentioned problem is small and
limited, we employ an exhaustive search approach to
solve it. Then, we apply T to each block i to estimate
the block sparsity Ki as

Ki = ||max(|si,?vf | − T, 0)||0. (15)

According to (4) and given the frame measurement rate
R, M i

vf can then be obtained as

M i
vf =

Kilog10(Nb

Ki
)∑B

i=1K
ilog10(Nb

Ki
)
NR. (16)

4. ps represents the number of the largest original coefficients that
are kept for video reconstruction. We can set it to an empirical well-
performing value, e.g., 15%, and then slightly tune it during the video
streaming. If the estimated sparsity is too small and cannot result in
good reconstruction quality, then we can gradually increase ps till we
reach a satisfied point.

Mean value estimation. Finally, the mean value m̄ can
be estimated from x̂vf as

m̄ =
1

N

N∑
i=1

x̂vf (i). (17)

With limited feedback and lightweight information
sharing, implementing block-level rate adaptation at the
encoder without adding computational complexity can
improve the reconstruction performance of our proposed
encoding/decod-ing paradigm. This claim will be vali-
dated in Section 6 in terms of Peak Signal-to-Noise Ratio
(PSNR) and Structure Similarity (SSIM) [39].
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Fig. 4: Rate-Distortion curve fitting for Vassar view 2
sequence.

5 NETWORK MODELING FRAMEWORK

We consider compressive wireless video streaming over
multi-path multi-hop WMSNs. We first formulate a
video-quality-assured power minimization problem, and
then solve the resulting nonlinear nonconvex optimiza-
tion problem by proposing an online solution algorithm
with low computational complexity.
Network model. In the considered WMSN there are a set
V of camera sensors at the transmitter side, with each
camera capturing a video sequence of the same scene
of interest, and then sending the sequence to the server
side through a set Z of pre-established multi-hop paths.
Denote Lz as the set of hops belonging to path z ∈ Z ,
with dz,l being the hop distance of the lth hop in Lz . Let
V = |V|, Z = |Z|, and Lz = |Lz| represent cardinality
of sets V , Z and Lz , respectively. The following three
assumptions are considered:
- Pre-established routing, i.e., the set of multi-hop paths
Z is established in advance through a given routing
protocol (e.g., AODV [40]) and does not change during
the video streaming session.
- Orthogonal channel access, i.e., there exists a pre-
established orthogonal channel access, e.g., based on
TDMA, FDMA, or CDMA, and hence concurrent trans-
missions do not interfere with each other [41].
- Time division duplexing, i.e., each node cannot transmit
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TABLE 1: Average Pearson correlation coefficient ρ̃m for Vassar, Exit and Ballroom five views.

View 1 View 2 View 3 View 4 View 5
Vassar-L 0.8184 0.8988 0.9243 0.8973 0.8435
Vassar-H 0.7655 0.8464 0.8815 0.8551 0.7920

Exit-L 0.5703 0.6787 0.7038 0.6838 0.5078
Exit-H 0.5358 0.6281 0.6643 0.6315 0.4745

Ballroom-L 0.8366 0.8713 0.8812 0.8627 0.8135
Ballroom-H 0.7574 0.7961 0.8099 0.7922 0.7484

TABLE 2: Improved average PSNR (dB) when selecting different Vassar views as R-view.

R-view View 1 View 2 View 3 View 4 View 5
Vassar-L 1.2312 1.6241 1.6674 1.6167 1.3833
Vassar-H 0.6686 0.8865 1.3132 1.2138 0.9019

and receive simultaneously, implying that only half of
the total air-time is used for transmission or reception.

At the receiver side, the video server concurrently
and independently decodes each view of the received
video sequences, and based on the reconstructed video
sequences it then computes the rate control information
and sends the information back to camera sensors for
actual rate control. For this purpose, we define two types
of video frames, Reference Frame (referred to as R-frame)
and Non-Reference Frame (referred to as NR-frame). A
R-frame is only periodically transmitted by the R-view,
which is encoded at fixed block-level rate and used for
sparsity and mean value estimation in the centralized
controller. All other frames sent out by the R-view and
all frames transmitted by the NR-views are categorized
as NR-frames, which are encoded at adaptive block-
level rate based on the estimated sparsity. Compared
to an NR-frame, an R-frame is encoded with equal or
higher sampling rate and then sent to the receiver side
with much lower transmission delay. Hence, an R-frame
can be reconstructed with equal or higher video quality
and used to estimate sparsity pattern information, which
is then fed back to video cameras for rate control in
encoding the following NR-frames. For the R-view, we
consider a periodic frame pattern, meaning that the
R-view camera encodes its captured video frames as
R-frames periodically, e.g., one every 30 consecutive
frames.

In the above setting, our objective is to minimize
the average power consumption of all cameras and
communication sensors in the network with guaranteed
reconstructed video quality for each view, by jointly
controlling video encoding rate and allocating the rate
among candidate paths.

To handle CS-based multi-view video streaming with
guaranteed quality, a rate-distortion model to measure
the end-to-end distortion that jointly captures the effects
of encoder distortion and transmission distortion as
stated in (7) is needed. To this end, we modify the R-
D model (8) proposed in [8] by adding a packet loss
term to jointly account for compression loss and packet

loss 5 in compressive wireless video streaming systems,
described as

Ddec = f(Denc, Dloss) = D0 −
θ

R− κploss −R0
. (18)

The parameters D0, θ, and R0 can be estimated from
empirical rate-distortion curves via a linear least squared
curve fitting [42]. Next, we describe how to derive them
in compressive multi-view streaming systems.

Since the original pixel values are not available at the
receiver end and even not available at the transmitter side in
compressive multi-view streaming systems, we let the R-
view periodically transmit a frame at a higher measure-
ment rate, e.g., 60% 6. In this way, after reconstruction at
the decoder side, the reconstructed frame is considered
as the original image in the pixel domain. We then re-
sample it at different measurement rates and perform the
reconstruction procedure to obtain several rate-distortion
sample pairs which are then used to complete the linear
least squared curve fitting to obtain. Figure 4 illustrates
the effectiveness of the above-mentioned online rate-
distortion estimation approach, where Vassar view 2
sequence is used. We can observe that the fitted rate-
distortion curve (depicted in black solid line) matches
well the ground-truth distortion values (depicted in red
pentagrams, blue squares and green pluses for frames 1,
4 and 80, respectively).

Besides determining the fitting parameters in (18), next
we derive the packet loss probability ploss and packet loss
rate to measurement rate reduction converter κ in (18)
to formalize the network optimization problem.
Packet loss probability. According to the proposed
modified R-D model (18), packet losses affect the video
reconstruction quality because they introduce an effec-
tive measurement rate reduction. Therefore, effective
estimation of packet loss probability at the receiver side

5. Different from traditional predictive-encoding based imaging sys-
tems, each packet in CS-based imaging systems has the same impor-
tance, i.e., it contributes equally to the reconstruction quality. Therefore,
the packet loss probability can be converted into a measurement rate
reduction through a conversion parameter and considered into the
rate-distortion performance.

6. Based on CS theory [38], image reconstructed by using 60% measurement
can result in basically the original image, i.e., the differences between the
reconstructed image and the original image cannot be perceived by human eyes.



9

has significant impact on frame-level measurement rate
control.

In real-time wireless video streaming systems, a video
packet can be lost primarily for two reasons: i) the packet
fails to pass a parity check due to transmission errors
introduced by unreliable wireless links, and ii) it takes
too long for the packet to arrive at the receiver side,
hence violating the maximum playout delay constraint.
Denoting the corresponding packet loss probability as
pper and pdly, respectively, the total packet loss rate ploss
can then be written as

ploss = pper + pdly. (19)

In the case of multi-path routing as considered above,
pper and pdly in (19) can be further expressed as

pper =
∑
z∈Z

bz

b
pzper, (20)

pdly =
∑
z∈Z

bz

b
pzdly, (21)

where pzper and pzdly represent the packet loss rate for path
z ∈ Z due to transmission error and delay constraint
violation, respectively; b and bz represent total video rate
and the rate allocated to path z ∈ Z , respectively.

Since each path z ∈ Z may have one or multiple hops,
to derive the expressions for pzper and pzdly in (20) and
(21), we need to derive the resulting packet error rate
and delay violation probability at each hop l of path
z ∈ Z , denoted as pz,lper and pz,ldly, respectively. For this
purpose, we first express the feasible transmission rate
achievable at each hop. For each hop l ∈ Lz along path
z ∈ Z , let Gz,l and Nz,l represent the channel gain
that accounts for both path loss and fading, and the
additive white Gaussian noise (AWGN) power currently
measured by hop l, respectively. Denoting P z,l as the
transmission power of the sender of hop l, then the
attainable transmission rate for the hop, denoted by
Cz,l(P z,l), can be expressed as [43]

Cz,l(P z,l) =
W

2
log2

(
1 +K

P z,lGz,l

Nz,l

)
, (22)

where W is channel bandwidth in Hz, calibration factor
K is defined as

K =
−φ1

log(φ2pber)
, (23)

with φ1, φ2 being constants depending on available set of
channel coding and modulation schemes, and pber is the
predefined maximum residual bit error rate (BER). Then,
if path z ∈ Z is allocated video rate bz , for each hop
l ∈ Lz , the average attainable transmission rate should
be equal to or higher than bz , i.e.,

E[Cz,l(P z,l)] ≥ bz, (24)

with E[Cz,l(P z,l)] defined by averaging Cz,l(P z,l) over
all possible channel gains Gz,l in (22).

Based on the above setting, we can now express the
single hop packet error rate pz,lper for each hop l ∈ Lz of
path z ∈ Z as,

pz,lper = 1− (1− pber)L, (25)

where L is the predefined packet length in bits. Further,
we characterize the queueing behavior at each wireless
hop as in [44] using a M/M/1 model to capture the
effects of channel-state-dependent transmission rate (22)
single-hop queueing delay. Denoting T z,l as the delay
budget tolerable at each hop l ∈ Lz of path z ∈ Z ,
the resulting packet drop rate due to delay constraint
violation can then be given as [45]

pz,ldly = e−(E[Cz,l(P z,l)]−bz)Tz,l

L , (26)

with E[Cz,l(P z,l)] defined in (24). For each path z ∈ Z ,
the maximum tolerable end-to-end delay Tmax can be
assigned to each hop in different ways, e.g., equal as-
signment or distance-proportional assignment [46]. We
adopt the same delay budget assignment scheme as in
[46].

Finally, given pz,lper and pz,ldly in (25) and (26), we can
express the end-to-end packet error rate pzper and delay
violation probability pzdly in (20) and (21) as, for each
path z ∈ Z ,

pzper =
∑
l∈Lz

pz,lper, ∀z ∈ Z, (27)

pzdly =
∑
l∈Lz

pz,ldly, ∀z ∈ Z, (28)

by neglecting the second and higher order product of
pz,lper and of pz,ldly. The resulting pzper and pzdly provide an
upper bound on the real end-to-end packet error rate and
delay constraint violation probability. The approximation
error is negligible if packet loss rate at each wireless hop
is low or moderate. Note that it is also possible to derive
a lower bound on the end-to-end packet loss rate, e.g.,
by applying the Chernoff Bound [47].

Packet loss to measurement rate. After having modeled
ploss, we now concentrate on determining κ to con-
vert ploss to measurement rate reduction (referred to as
Rd = κ · ploss). First, parameter τ = 1

QN is defined to
convert the amount of transmitted bits of each frame to
its measurement rate R used in the (18), with Q being
the bit-depth for each measurement. We assume that b
is equally distributed among F frames within 1 second
for all V views, i.e., the transmitted bits for each frame
is b/F/V . Thus, measurement rate R for each frame of
each view is equal and defined as R = τb/F/V . Then,
we can define κ as

κ = τL
⌈b/F/V

L

⌉
, (29)

and rewrite (18) as

Ddec = D0 −
θ

τb/F/V − κploss −R0
. (30)
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Problem formulation. Based on (30), we formulate, as
an example of applicability of the proposed framework,
the problem of power consumption minimization for
quality-assured compressive multi-view video stream-
ing over multi-hop wireless sensor networks, by jointly
determining the optimal frame-level encoding rate and
allocating transmission rate among multiple paths, i.e.,

P4 : Minimize
P z,l,bz,l∈Lz,∀z∈Z

∑
z∈Z

∑
l∈Lz

P z,l (31)

Subject to: b =
∑
z∈Z

bz (32)

Ddec ≤ Dt (33)
0 < τb/F/V − κploss ≤ 1 (34)
0 ≤ P z,l ≤ Pmax, ∀l ∈ Lz, z ∈ Z, (35)

where Dt and Pmax represent the constraints upon dis-
tortion and power consumption, respectively. Here, (33)
and (34) are the constraints for required video quality
level and total measurement rate not lower than 0 and
higher than 1, respectively. In fact, the optimization prob-
lem P4 is non-convex because the distortion constraint is
non-convex. Solving it directly will be computationally
expensive due to the large space of b. Therefore, in the
following, we design a solution algorithm to find the
solution to the problem in real time.
Solution Algorithm. The core idea of the solution al-
gorithm is to iteratively control video encoding and
transmission strategies at two levels, i.e., adjusting video
encoding rate for each frame (frame level) and allocating
the resulting video data rate among different paths (path
level). In each iteration, the algorithm first determines
at the frame level the minimum video encoding rate re-
quired to achieve predefined reconstructed video quality,
i.e., b in (33); and then determines at the path level the
optimal transmission rate strategy with minimal power
consumption, i.e., bz for each path z ∈ Z .

At the frame level, given the current total video en-
coding rate b and assigned rate bz for each path z ∈ Z ,
the algorithm estimates the video construction distor-
tion Ddec based on (19)-(30). Then, if the video quality
constraint in optimization problem P4 can be strictly
satisfied, i.e., the inequality holds in (33), it means that
power consumption can be further reduced by reducing
the total video encoding rate b, e.g., by a predefined
step ∆b, while keeping the distortion constraint (33) still
satisfied. Otherwise, if constraint (33) is violated, we
need to reduce reconstructed video Ddec by increasing
the video encoding rate b hence transmission power.
Whenever there are changes with the total encoding rate
b, it triggers at the path level rate allocation among
different paths. For example, if b is increased by ∆b,
the increased amount of video data rate is allocated
to the path that results in minimum increase of power
consumption, and vice versa.

As the above procedure goes on, the resulting video
distortion Ddec is maintained fluctuating around, ideally
equal to, the predefined maximum tolerable distortion

Dmax. Hence, we approximately solve the optimization
problem P4 formulated in (31)-(35), and the resulting
power consumption provides an upper bound on the
real minimum required total power. Next, in Section 6
we validate the effectiveness of the proposed solution
algorithm through extensive simulation results.

6 PERFORMANCE EVALUATION

The topology includes a certain number V camera sen-
sors and pre-established paths with random number
of hops between camera sensors and the receiver. The
frame rate is F = 30 fps, and the R-view periodically
sends the R-frame every second. At the sparsity-aware
CS independent encoder side, each frame is partitioned
into 16 × 16 non-overlapped blocks implying Nd = 256.
A measurement matrix Φi

vf with elements drawn from
independent and identically distributed (i.i.d) Gaussian
random variables is considered, where the random seed
is fixed for all experiments to make sure that Φi

vf

is drawn from the same matrix. The elements of the
measurement vector ỹivf are quantized individually by
an 8-bit uniform scalar quantizer and then transmitted
to the decoder. At the independent decoder end, we
use Ψb composed of DCT transform basis as sparsify-
ing matrix and choose the LASSO algorithm for recon-
struction motivated by its low-complexity and excellent
recovery performance characteristics. We consider four
test multi-view sequences, Vassar, Exit, Ballroom, and
Balloons, which are made publicly available [48] [49]
and represent scenarios with slow, moderate and fast
movement characteristics, respectively. In the sequences
considered, the optical axis of each camera is parallel
to the ground, and each camera is 19.5 cm away from
its left and right neighbors. There spatial resolutions of
(H = 240) × (W = 320), (H = 480) × (W = 640), and
(H = 768)× (W = 1024) (in pixel) are considered.

6.1 Evaluation of CS-based Multi-view
Encoding/Decoding Architecture
We first experimentally study the performance of the
proposed CS-based multi-view encoding/decoding ar-
chitecture by evaluating the PSNR of the reconstructed
video sequences. Experiments are carried out only on
the luminance component. Next, we discuss a perfor-
mance comparison among (i) traditional Equal-Block-
Measurement-Rate Independent Encoding and Inde-
pendent Decoding approach (referred to as EBMR-
IEID), (ii) the proposed sparsity-aware Adaptive-Block-
Measurement-Rate Independent Encoding and Indepen-
dent Decoding approach (referred to as ABMR-IEID) and
(iii) Independent Encoding and Joint Decoding (referred
to as IEJD) proposed in [12] which selects one view as
reference view reconstructed by traditional CS recovery
method, while other views are jointly reconstructed by
using a reference frame.

Figures 5 and 6 show the PSNR comparisons of 50
frames for views 1, 2, 3 and 4 of Vassar and Exit multi-
view sequences, where a 0.3 measurement rate for each
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Fig. 5: PSNR against frame index for (a) view 1, (b) view 2 (R-view), (c) view 3, and (d) view 4 of sequence Vassar.
TABLE 3: PSNR and SSIM comparison for Vassar eight views.

View # ABMR-IEID EBMR-IEID IEJD
PSNR (dB) SSIM PSNR (dB) SSIM PSNR (dB) SSIM

1 33.6675 0.8648 30.0883 0.8215 30.2717 0.7887
2 33.7768 0.8686 30.3459 0.8262 30.3355 0.7902
3 34.1934 0.8771 30.6265 0.8323 30.9214 0.8106
4 33.5766 0.8696 30.4168 0.8294 30.4168 0.8294
5 33.3030 0.8624 30.1011 0.8169 30.3641 0.7909
6 34.2191 0.8846 30.6803 0.8382 30.7265 0.8059
7 32.9924 0.8575 29.8250 0.8162 29.6648 0.7772
8 32.3376 0.8472 29.3713 0.8054 29.5466 0.7742

view of ABMR-IEID 7 and EBMR-IEID is selected. To
assure fair comparison, the measurement rate of each
view in IEJD is also set to 0.3. Besides, according to the
R-view selection algorithm, view 2 is chosen as the R-
view for this scenario. Since the R-view transmits the
R-frame periodically which is not encoded based on
sparsity pattern at the encoder, therefore we can observe
drops occurred periodically in Fig. 5(b) and Fig. 6(b).
For the Vassar sequences, as illustrated in Fig. 5, we can
see that the proposed method ABMR-IEID outperforms
the traditional approach EBMR-IEID and IEJD by up

7. Here, we consider a worst case for ABMR-IEID, i.e., the measure-
ment rate of R-frame in R-view is set to 0.3 as the same as NR-frames.
Higher measurement rate of R-view will result in higher performance
gain because the estimated sparsity pattern will be more accurate.

to 3.5 dB and 2.5 dB in terms of PSNR, respectively.
For the Exit sequences, Figure 6 shows improvement
in the reconstruction quality of ABMR-IEID compared
with EBMR-IEID and IEJD fluctuates more than that
of Vassar video, with increased PSNR varying from 5
dB to 2 dB and from 4 dB to 1 dB, respectively. This
phenomenon occurs because of the video-based features,
i.e., the texture of Exit changes faster than in Vassar.
In other words, the proposed scheme is more robust in
surveillance scenarios where the changes of texture are
less severe. However, we can eliminate this phenomenon
by transmitting R-frames more frequently. Figures 5 and
6 also depict performance improvement on NR-views
(views 1, 3 and 4 here), i.e., by sharing the sparsity
information between R-view and NR-views, correlation
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Fig. 6: PSNR against frame index for (a) view 1, (b) view 2 (R-view), (c) view 3, and (d) view 4 of sequence Exit.
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Fig. 7: Rate-distrotion comparison of frame 3 of Ballroom sequences: (a) view 1, (b) view 2, and (c) view 3.

among views is implicitly exploited to improve the
reconstruction quality.

We then illustrate the rate-distortion characteristics of
ABMR-IEID, EBMR-IEID and IEJD. Figures 7, 8 and 9
show the comparisons of 3-view Ballroom, 4-view Vassar
and 4-view Exit scenarios with resolution 240 × 320,
where the 3rd frame of Ballroom, 75th frame of Vassar
and 9th frame of Exit are taken as example, respectively.
Evidently, ABMR-IEID outperforms significantly EBMR-
IEID and IEJD, especially as the number of measure-
ments increases. Since view 2 is selected as reference

view, aka K-view for IEJD, we set a fixed measurement
rate 0.6 for the K-view [12], therefore, a platform is
observed in view 2 for IEJD method. We can observe
that at measurement rate 0.4, ABMR-IEID can improve
PSNR by up to 3.5 dB, 4.4 dB and 2.4 dB, not only on
R-view but also on NR-views for all video sequences. To
further evaluate the impact of resolution, we take 3-view
Ballroom and Balloons with resolution 480× 640 (denoted
as Ballroom-H), and 768 × 1024, respectively as exam-
ples since the textures of both sequences change more
frequently compared to Vassar and Exit. As illustrated in
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Fig. 8: Rate-distortion comparison for frame 75 of Vassar sequences: (a) view 1, (b) view 2, (c) view 3, and (d) view
4.
Fig. 10, we can see that the proposed ABMR-IEID also
outperforms the other two methods by up to 4 dB for
Ballroom although the correlation slightly decreases as
the resolution increases as shown in Table 1. In Fig. 11,
we also observe upto 5 dB PSNR improvement obtained
by ABMR-IEID compared to the other two methods for
Balloons.

Next, we extend the scenario to 8 views on Vassar,
where view 4 is selected as R-view, and the measurement
rate is set to 0.35 for all views. Figure 12 shows the
specific reconstructed image comparison, where the left
column illustrates the reconstructed frame 25 of view
3 and view 7 by ABMR-IEID, respectively. The milldle
column shows the reconstructed images by EBMR-IEID,
and the left columns shows the results obtained by using
IEJD. We can observe that the quality of images located
in the left column is much better than that in the right
two columns (e.g., the curtain in the 2nd floor and person
in the scene, and etc.). Furthermore, Table 3 shows the
detailed PSNR and SSIM value comparison between
ABMR-IEID and EBMR-IEID and IEJD for frame 25 of 8
views. From Fig. 12 and Table 3, we can see that ABMR-
IEID also works well on 8 views compared to ABMR-
IEID and EBMR-IEID, with PSNR and SSIM improve-
ment up to 3.5 dB and 0.05, respectively. However, the
IEJD method proposed in [12] does not perform well on
8 views, where the gain is almost negligible.

6.2 Evaluation of Power-efficient Compressive
Video Streaming
The following network topologies are considered: i) 2-
path scenario with 2-hop path 1 and 1-hop path 2; ii)
3-path scenario with 2-hop path 1, 1-hop path 2 and
2-hop path 3. We assume bandwidth W = 1 MHz for
each channel. The maximum transmission power at each
node is set to 1 W and the target distortion in MSE is
50. We also assume the maximum end-to-end delay is
Tmax = 0.5 s assigned to each hop proportional to the
hop distance. To evaluate PE-CVS (referred to as the
proposed power-efficient compressive video streaming
algorithm proposed in Sec. 5), we compare it with an
algorithm (referred to as ER-CVS) that equally splits
the frame-level rate calculated by PE-CVS onto different
paths.

Figures 13 and 14 illustrate the total power consump-
tion comparison between PE-CVS and ER-CVS and the
saved power by PE-CVS compared to ER-CVS for 2-
path and 3-path topologies, respectively. From Figs. 13(a)
and 14(a), we see that PE-CVS (depicted in red line)
results in less power consumption than ER-CVS (black
dash line) for both cases. At some points, the total
power consumption of PE-CVS and ER-CVS is almost
the same. This occurs because the path-level bit rates
calculated by PE-CVS are equal to each other. Since ER-
CVS uses frame-level rate obtained from PE-CVS and
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Fig. 9: Rate-distortion comparison for frame 9 of Exit sequences: (a) view 1, (b) view 2, (c) view 3, and (d) view 4.
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Fig. 10: Rate-distortion comparison of frame 3 of higher resolution Ballroom sequences: (a) view 1, (b) view 2, and
(c) view 3.

equally allocates it to each path, thereby resulting in the
same power consumption. As shown in Figs. 13(b) and
14(b), the histograms clearly show that PE-CVS saves
more power than ER-CVS, up to 170 mW.

7 CONCLUSIONS

We addressed the problem of compressive multi-view
coding and power-efficient streaming in multi-hop WM-
SNs. We first proposed a novel compressed sensing
based multi-view video coding/decoding architecture,

composed of cooperative sparsity-aware independent
encoder and independent decoder. We also introduced
a central controller to do the sparsity pattern estimation,
R-view selection, mean value estimation and implement
network optimization algorithms. By introducing lim-
ited channel feedback and enabling lightweight spar-
sity information sharing between R-view and NR-views,
the encoders independently encode the video sequences
with sparsity awareness and exploit multi-view correla-
tion to improve the reconstruction quality of NR-views.
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Fig. 11: Rate-distortion comparison of frame 25 of higher resolution Balloons sequences: (a) view 1, (b) view 2, and
(c) view 3.
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Fig. 12: Reconstructed frame 25 of view 3 by (a) ABMR-IEID, (b) EBMR-IEID, (c) IEJD, and reconstructed frame 25
of view 7 by (d) ABMR-IEID, (e) EBMR-IEID, and (f) IEJD.
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Fig. 13: 2-path Scenario: (a) Total power consumption comparison, (b) Saved power consumption by PE-CVS
compared to ER-CVS.
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Fig. 14: 3-path Scenario: (a) Total power consumption comparison, (b) Saved power consumption by PE-CVS
compared to ER-CVS.

Based on the proposed encoding/decoding architecture,
we developed a modeling framework to minimize the
multi-view video transmission power but with guaran-
teed video quality for a multi-hop multi-path sensor
network. Extensive simulation results showed that the
designed compressive multi-view framework can con-
siderably improve the video reconstruction quality with
minimal power consumption.
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