
NeXT: Architecture, Prototyping and Measurement of a

Software-Defined Testing Framework for Integrated RF

Network Simulation, Experimentation and Optimization

Jiangqi Hu1, Zhiyuan Zhao1, Maxwell McManus1,
Sabarish Krishna Moorthy1, Yuqing Cui1, Nicholas Mastronarde1,
Elizabeth Serena Bentley2, Michael Medley2, Zhangyu Guan1∗

1Department of Electrical Engineering, University at Buffalo, USA
2Air Force Research Laboratory (AFRL), Rome, NY 13440, USA
Email: {jiangqih, zzhao24, memcmanu, sk382, yuqingcu, nmastron,
guan}@buffalo.edu, {elizabeth.bentley.3, michael.medley}@us.af.mil

Abstract

To support rigorous and repeatable experimental evaluation of wireless
networked systems, the community has made significant efforts to develop ex-
perimentation platforms. However, existing platforms primarily focus on the
data plane, i.e., the forwarding infrastructure, without explicitly considering
the control plane. To fill this gap, in this work we develop NeXT, a software-
defined playground with integrated wireless network simulation, experimen-
tation and optimization capabilities. We first design the data plane, which
integrates an event-driven broadband wireless network simulator called UB-
Sim and a software-defined wireless network testing facility called RoboNet.

∗Corresponding author
1A preliminary shorter version of this paper appeared in the Proceedings of IEEE

FNWF Workshop on Federated Testbed as a Service for Future Networks: Challenges the
State of the Art.

2ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER: (a) Contractor ac-
knowledges Government’s support in the publication of this paper. This material is based
upon work funded by AFRL, under AFRL Contract FA8750-20-C-1021 and FA8750-21-
F-1012, and in part by the NSF under Grant SWIFT-2229563. (b) Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of AFRL.

3Distribution A. Approved for public release: Distribution unlimited: AFRL-2023-2490
on 22 May 2023.

Preprint submitted to Computer Communications August 18, 2023

This work has been accepted to publish in Elsevier Journal of Computer Communications

We then design NeXT’s control plane, where a software toolchain is devel-
oped and deployed to support both traditional model-based optimization and
new data-driven control techniques. We showcase the experimentation capa-
bility of NeXT considering a series of optimization and control problems in
different wireless networks.

Keywords: Software-defined testbed, Wireless networks, AI/ML

1. Introduction

In the past decades, the evolution of wireless network systems has sig-
nificantly changed and will continue to change the way we live and work,
our commercial activities as well as national security. However, as of today
the wireless research community is still lacking a mature ecosystem to sup-
port rigorous and repeatable experimental evaluation of wireless networked
systems. To fill this gap, significant efforts have been made by the com-
munity. A recent milestone is the NSF Platforms for Advanced Wireless
Research (PAWR) program, which attempts to develop four large-scale out-
door experimentation platforms for advanced wireless research [1]. As of
today, three of them have already been developed and are available to the
wireless community. These are POWDER-RENEW for experiments in the
sub-6 GHz frequency bands [2], COSMOS for experiments in both sub-6 GHz
and mmWave frequency bands as well as edge computing [3], and AERPAW
for experiments with wireless unmanned aerial vehicles (UAVs) [4].

While existing community shared facilities have significantly advanced
experimental research for new wireless systems, it is still challenging to fully
meet the needs of experimental wireless research in the era of data-driven
networking. First, to simplify the modeling, control and optimization of
heterogeneous NextG networks, data-driven control based on Artificial Intel-
ligence (AI) and Machine Learning (ML) has attracted significant research
attention [5, 6]. However, the effectiveness of AI/ML algorithms largely re-
lies on sufficient well-labeled data for policy training [7, 8]. It is typically
time consuming and sometimes unsafe to collect training data in real-world
environments [9, 10]. Second, the design, prototyping and verification of new
network control algorithms require engineers to grapple simultaneously with
mathematical modeling, distributed control, protocol design across different
layers of the protocol stack, as well as their implementation and deployment.
This process is typically complex, tedious and error-prone.

2

This work has been accepted to publish in Elsevier Journal of Computer Communications

Control Plane
WNOS (Sec. 4.1)

WiNAS

OaaS

RL Repository (Sec. 4.1)

𝜖-greedy

UCB Q-Learning

SARSA

Data Plane
UBSim (Sec. 3.1)

NEM
NCM
DEM

RoboNet (Sec. 3.2)

USRP

RobotEdge Server

Beacon

Figure 1: NeXT testbed architecture and paper organization.

To address these challenges, in this paper we present NeXT, a software-
defined wireless Network X-Control Testbed, where “X” refers to optimiza-
tion, simulation and experimentation. In a nutshell, NeXT provides an inte-
grated testing framework, in which researchers are allowed to generate in an
automated manner distributed cross-layer network optimization algorithms,
simulate the generated algorithms in software, and then validate the simula-
tion results based on testbed experiments. The overall architecture of NeXT
is illustrated in Figure 1, where there are two planes, Data Plane and Control
Plane. The former provides simulation and experimentation capabilities, and
the latter implements network optimization and control functionalities.

The main contributions of this work are as follows:

• We first design the data plane for the NeXT testbed. In this plane, we
first integrate UBSim with NeXT for software-based network simula-
tion. UBSim is an event-driven simulator that has been developed at
the University at Buffalo for broadband (microwave, mmWave and ter-
ahertz bands) aerial and ground wireless networking. We also develop
a testing facility for mobile networks based on software defined radios
(SDRs).

• We then design NeXT’s control plane, which supports traditional model-
based control and new data-driven control techniques. For the former,
Wireless Network Operating System (WNOS) [11] has been deployed
to enable automated generation of distributed cross-layer control al-
gorithms. For the latter, a reinforcement learning (RL) repository is
developed supporting various RL algorithms. A scheme to automati-
cally adjust robots’ posture and positions is proposed to mitigate the
error introduced by the mobile hotspots.

• We showcase the optimization, simulation and experimentation capa-

3

bilities of the NeXT testbed considering a series of wireless network
control problems. These include narrow-band multi-hop communica-
tions, srsRAN-based cellular networks and millimeter wave (mmWave)-
band communications. A set of application programming interfaces
(APIs) have been designed to simplify access to NeXT’s data and con-
trol planes.

The remainder of the paper is organized as follows. In Section 2, we discuss
related work. We present the testbed’s data plane in Section 3 and its control
plane design in Section 4. Seven example experiments and results are given
in Section 5. In Section 6, we discuss the new research topics that can be
studied by using our testbed. Finally, we conclude in Section 7.

2. Related Work

With the development of wireless technology, researchers from both in-
dustry and academia are no longer satisfied testing their algorithms in a sin-
gle simulated environment. Thus a lot of testbeds have been proposed and
established to meet the needs of experimentation and verifying algorithms
in the real world. The NSF PAWR program aims to enable experimental
wireless communications research across devices, communication techniques,
networks, systems, and services conceived by the US academic and industrial
wireless research community and deployed in partnership with local commu-
nities [12]. POWDER is a facility for testing future wireless communications
and networking technologies in a city-scale “living laboratory” [2]. COS-
MOS aims at design, development, and deployment of a city-scale advanced
wireless testbed to support real-world experimentation on next-generation
wireless technologies and applications [3]. Colosseum is the world’s largest
network emulator providing researchers with testing at scale, offsetting the
site specificity of a physical testbed [13]. AERPAW is the first aerial wireless
experimentation platform spanning 5G technologies and beyond and with
the potential to create transformative wireless advances for aerial systems
[4]. In [14], the world’s first fully programmable and open-source massive-
multiple input multiple output (MIMO) platform named RENEW is intro-
duced. However, these platforms either do not consider mobile nodes or do
not provide data-driven tools that simplify the experimentation process.

A unique national research infrastructure called FABRIC is proposed in
[15] to enable cutting-edge and exploratory research at-scale in networking,

4

This work has been accepted to publish in Elsevier Journal of Computer Communications

cybersecurity, distributed computing and storage systems, machine learning,
and science applications. DeterLab is a shared testbed providing a platform
for research in cybersecurity and serving a broad user community [16]. An
open-source platform called M3 is designed in [17, 18] to facilitate research
in 5G vehicular networking and automotive sensing. In [19], a community-
shared, open-source, open-architecture infrastructure for mobile underwater
wireless networks called mu-Net is proposed. Readers are referred to [20, 21]
for more information about the aforementioned testbeds. Arena is an open-
access wireless testing platform [22] that can be used to test key wireless
technologies, such as synchronized MIMO transmission schemes, multi-hop
ad hoc networking, multi-cell long term evolution (LTE) networks, and spec-
trum sensing for cognitive radio. The authors in [23] propose the SkyHaul
platform for channel modeling in mobile scenarios. An integrated testbed
TeraNova for ultra-broadband wireless communications is developed in [24],
which supports the testing and validation of new terahertz (THz) channel
models and physical layer solutions. A testbed based on FlockLab [25] de-
ployed in a campus-scale is designed in [26] to better support testing of
long-range communications. However, these primarily focus on the physical
platform’s development, while neglecting the potential benefits of pairing the
physical testbed with a simulator (e.g., using the simulator to accelerate the
training of AI/ML algorithms).

Different from the above discussed testing facilities that primarily focus on
the development of the forwarding infrastructure, i.e., the data plane, in this
work, we focus on both data and control planes and aim to design a software-
defined testbed with integrated simulation, experimentation and optimization
capabilities for mobile wireless networks.

3. Data Plane Design

The data plane provides the forwarding infrastructure for the NeXT
testbed. As illustrated in Figure 1, two forwarding infrastructures have been
designed: UBSim for software-based network simulations and RoboNet for
experiments based on SDRs.

3.1. Software Simulations Based on UBSim

UBSim, evolved from simulators in [6, 27], is a new wireless network
simulator written in Python and based on the SimPy discrete-event simu-
lation framework [28]. The simulator provides a configurable network-layer

5

This work has been accepted to publish in Elsevier Journal of Computer Communications

UBSim Network Instance
Network Element Module (NEM)

Basic Network Element
Parameters:
 Element ID, Type

Functions:
 Add new Element
 Group Elements

Network Class
Parameters:
 Networking area
Mobility

boundaries
 Assoc. registry

Functions:
 Refresh channel
 Calculate dist.
 Update assoc.
 Set boundaries

Node Class
Parameters:
 Physical dimensions
 Transmission params

Functions:
 Initialize channel
 Register with network
 Set TX-RX parameters

LTE User Class
Parameters:
 Serving BS
 Interfering BS
 Noise, SINR, Rate

Functions:
 SINR, interference, RX’d

power
 Update band association
 Detect blockages

Blockage Class
Parameters:
 Abs. coefficient

Functions:
 Set AABB

LTE Base Station Class
Parameters
 Active user registry
 Number of antennas
 Intermediate SINR

Functions
 Record served users

LTE MBS/FBS Class
Parameters:
 Noise, Rate
 Velocity

Functions:
 RX’d power,

interference,
SINR, throughput

UBSim: CAREER

Channel Class
Parameters:
 Coefficients

Functions:
 Generate, refresh

channel

LTE Cognitive BS
Class
Functions:
 Estimate

covariance

Discrete Event Module
(DEM)

- Detect collisions
- Apply learning model
- Execute control decisions
- Record performance

Network Controller
Module (NCM)

- Initialize network
- Configure

environment
- Initialize GUI
- Start/end simulation

Network
Configuration

API

Topology,
TX/RX

parameters

Custom
Algorithm API

Mobility,
Network
control

Environment
Definition API

Blockage
dimensions

Figure 2: Architectural overview of UBSim network simulator.

simulation supported by analytical models for various PHY- and MAC-layer
protocols. This lightweight computational design enables faster-than-real-
time iteration as well as on-the-fly adjustments to the protocol stack of each
simulated node, which sets UBSim apart as a highly effective simulator for
experiments focusing on protocol stack and topology self-configuration. The
various node mobility types supported by UBSim enables investigation into
aerial networking, including both UAV swarm and hybrid aerial-ground net-
work control problems. UBSim supports general AI/ML algorithm deploy-
ments, and has been demonstrated for reinforcement learning (RL), deep RL,
and multi-agent RL experiments.

As depicted in Figure 2, UBSim comprises three primary modules to han-
dle the behavior definition of various network elements, as well as three APIs
to support a wide range of custom networking scenarios. Specifically, the
network element module (NEM) defines the behaviors of all types of com-
munication nodes, environmental blockages, channels, and the network as

6

This work has been accepted to publish in Elsevier Journal of Computer Communications

a whole. The network controller module (NCM) organizes the information
from the NEM and each user API to define the network topology, environ-
ment, and control objective. The discrete event module (DEM) then takes
the resulting full scenario definition and starts the discrete event-driven sim-
ulation process.

The simulator APIs offer full configuration over network behaviors, en-
vironment specification, and control specification. Specifically, the network
configuration API provides control over parameters such as frequency, band-
width, mobility, and location of nodes, as well as networking area and prop-
agation characteristics. The environmental definition API provides control
over the locations and sizes of blockages as well as their RF absorption coeffi-
cients over different frequency bands. In general, all physical environmental
features, including lab benches, server rack, and UAV enclosure as shown
in Figure 3(a), are modeled as blockages within the networking area. Fi-
nally, the custom algorithm API provides access to the run time behavior
of all the nodes, such as mobility, transmission patterns, band association,
among others. Particularly, this API module provides direct support for ex-
perimental applications of AI/ML for tasks such as network automation and
self-configuration.

The parallel deployment of UBSim alongside the NeXT testbed provides
several advantages. The highly configurable nature of UBSim provides a
virtual sandbox in which experiments can be designed and evaluated for
deployment on the NeXT testbed much faster than using SDR hardware
alone. Additionally, the speed of simulation design and execution in UBSim
enables pre-training or parallel training of AI models prior to deployment
on hardware. This is particularly important for models in which significant
amounts of environmental data must be available to generate an optimal
solution, such as those used for deep learning and reinforcement learning.
Furthermore, over-the-air data collected from the NeXT testbed can be used
to improve the accuracy of data generated by UBSim by means of system
identification [29], addressing challenges associated with high-quality data
collection for AI/ML algorithms mentioned in Section 1.

3.2. Software-Defined Forwarding Infrastructure: RoboNet

The design objective of RoboNet is to support experiments in wireless net-
works with mobile robots, such as mobile hotspots [30] and wireless UAVs
[31]. The testbed is located in 238 Davis Hall on the University at Buffalo’s

7

This work has been accepted to publish in Elsevier Journal of Computer Communications

𝑥

𝑦
𝑧

Upper

Middle

Lower 𝑼𝟏𝟏

0.59 m

Server
Rack

𝒃𝟏

𝑥
𝑦

Upper Lower

PDU address:
192.168.10.176

PDU address:
192.168.10.175

Middle Upper Lower

PDU address:
192.168.10.177

Middle

𝒃𝟎

𝒃𝟐

𝒃𝟑
1.825 m

0.6 m

𝑼𝟔𝑼𝟓

𝑼𝟏𝟎
𝑼𝟕

𝑼𝟗

𝑼𝟑

𝑼𝟒
𝑼𝟐

𝑼𝟏𝑼𝟎

𝑼𝟐𝟎

𝑼𝟖

𝑼𝟏𝟗

𝑼𝟏𝟕𝑼𝟏𝟔

𝑼𝟏𝟐 𝑼𝟏𝟑

𝑼𝟏𝟒 𝑼𝟏𝟓

𝑼𝟏𝟖

(a) (b)

Figure 3: (a) Snapshot of the RoboNet testbed; (b) RoboNet network topology.

North Campus. Figure 3 shows a snapshot of RoboNet and the correspond-
ing topology. At the center of RoboNet is a netted enclosure of dimension
6×4×2.1 m3, providing a safe space for robot navigation. For mobile nodes,
three wireless robots have been designed based on SuperDroid vehicles and
universal software radio peripheral (USRP) SDRs. An indoor navigation
system is also designed based on Marvelmind beacons to provide indoor lo-
calization for the robots. For static nodes, a set of USRP SDRs have been
deployed over the shelves on the left and right sides of the netted enclosure.
All the static software radios are controlled by a server rack of five Dell work-
stations. The mobile software radios are controlled by the robots’ onboard
computing hosts.

Static Nodes. The static nodes consist of 19 USRP N210, 5 USRP
B210 SDRs and 1 wAP 60G (AP). Each USRP N210 operates at frequen-
cies from DC to 6 GHz and can process up to 50 mega samples per second
(MS/s). Each USRP N210 is equipped with a CBX daughterboard and two
VERT900/VERT2450 antennas. These USRP SDRs are connected via two
switches to a server rack, comprising four Dell EMC R340 PowerEdge work-
stations for baseband signal processing. Each USRP B210 is designed for
low-cost experimentation with continuous frequency coverage from 70 MHz
to 6 GHz. Each USRP B210 is also equipped with two VERT2450 antennas.
The five USRP B210s provide flexibility because they can be deployed to any
place depending on the requirements. The wAP 60G (AP) router is a prod-
uct from MikroTik [32] and can be used either as a point-to-point primary
or a point-to-multi-point primary.

The USRP SDRs are powered via three remotely accessible CyberPower
Power-Distribution-Units (PDUs), as shown in Figure 4(a). These PDUs

8

PDU address

Edge server 4 address

USRP name and address

(a) (b)

Figure 4: (a) Snapshot of PDU setup; (b) PDU remote management interface.

Mobile Beacon

USRP

Dell Latitude

5491

SDR Antenna
Interstate 12 Volt 8 Ah

Sealed Lead Acid

Battery (SLA)

Arduino UNO Sabertooth dual 5A

motor drivers

Quadruple

LS7366R Encoder

IG32 gear motor

Mecanum wheel

(a) (b) (c)

Figure 5: Snapshots of mobile node. (a) USRP software radio, control host, laptop,
and mobile beacon; (b) Power unit and Arduino controller; and (c) Bottom view:
motors, motor drivers and encoder.

are assigned with Ethernet LAN IP addresses 192.168.10.175, 192.168.10.176
and 192.168.10.177 and connected to edge servers via switches. By getting
access to the three default IP addresses, experimenters can power on, shut
down and make a schedule with all static USRPs remotely. Figure 4(b) shows
the PDU remote management interface, via which experimenters can power
on/off USRPs in real time or at scheduled times.

Mobile Nodes. Three software-defined robot vehicles have been de-
signed for RoboNet based on a combination of SuperDroid robots and USRP
SDRs. Snapshots of the robot vehicles are shown in Figure 5. The Su-
perDroid robot serves as the mobile carrier of the software radios. A pro-
grammable Mecanum wheel vectoring robot has been used in the current de-
sign of the mobile nodes. Each robot comprises 4 Mecanum wheels, 4 IG32
gear motors, 2 Sabertooth dual 5A motor drivers, 1 Quadruple LS7366R
Encoder and 1 Arduino UNO controller. Each robot is powered by two

9

This work has been accepted to publish in Elsevier Journal of Computer Communications

(a) (b)

Figure 6: (a) Controller modem; (b) Super beacon.

18V/2.4A PB (lead-acid) batteries. This allows each robot vehicle to carry
up to 50 lbs of payload, including the USRP SDRs and their controlling
host. Each robot is equipped with USRP SDRs for programmable wireless
communications. Currently, both USRP N210 and B210 can be supported
by mobile nodes. Each robot can also carry a wAP 60G to enable mmWave
communications.

A Dell Latitude 5491 laptop with Intel CoreTM i7-8850H CPU@2.6GHz*12
is used for robot control, USRP SDR control and baseband signal process-
ing. The connection between the controlling laptop and the robot vehicle
is established by an Arduino via USB port “/dev/ttyACM0”. The mobile
beacon is connected to the laptop via USB port “/dev/ttyACM1”. The two
default serial ports provide more flexibility of our testbed. For example, by
accessing the USB serial port, experimenters can access the raw beacon loca-
tion information and design their own position algorithms, rather than using
algorithms that we provide. Finally, the movement of the robot is controlled
and navigated by the Arduino and the beacon via serial communications.

Indoor Positioning System. Because of the poor reception of GPS
signals in indoor environments, an indoor positioning system has been de-
ployed, as shown in Figure 6. The system consists of a controller modem
(Figure 6(a)) and 7 precise (with accuracy of ±2 cm) Marvelmind Super-
Beacons (Figure 6(b)). Based on this system, the location of the mobile
beacon can be calculated using trilateration based on the propagation delay
of ultrasonic signals to a set of stationary beacons.

The 7 super beacons are divided into two groups: 4 static and 3 mobile
beacons. As shown in Figure 3(b), the 4 static beacons, b1, b2, b3 and b4, are
attached to the four sides of the protective net. For example, Figure 6(b)
shows the deployment of b1, which can communicate with the controller mo-

10

This work has been accepted to publish in Elsevier Journal of Computer Communications

dem, its neighbour beacons and the mobile beacon using the selected fre-
quency (19/25/31/37 kHz). According to the exchanged information among
the static beacons, the mobile beacon and the modem, the robot locations
will be updated in real time. We adopt a Non-Inverse Architecture to set up
the navigation system and 31 kHz is used as the communication frequency.

Finally, the controller modem is connected to the edge server via a USB
port. Through the control dashboard at the server, experimenters can define
a network map by assigning the origin point of the 3D network, configuring
beacon parameters (e.g., beacon address and mode), and monitoring the
movements of the mobile beacons mounted on the robots.

Robot Self-Adjustment Scheme. Since we focus on investigating the
wireless communication network, we always hope that the robot will move
as prescribed and arrive at its target location. However, with inaccurate
readings from the encoder and different speeds of the four Mecanum wheels
(shown in Figure 5(c)), the robot may fail to arrive at the expected position
and collisions may happen when multiple robots exist. In order to focus
on the wireless network study itself without worrying about the negative im-
pacts induced by the robot, we propose a beacon-based robot self-adjustment
scheme to allow the robot to automatically adjust its position and posture
during experiments. The overall robot self-adjustment scheme is summarized
in Algorithm 1.

There are two phases of the self-adjustment scheme: i) beacon-based
robot posture adjustment and ii) beacon-based robot position adjustment.
Due to the different speeds of the Mecanum wheels, there is a divergence
angle θ between the movement direction of the robot and the network’s x-
axis, as shown in Figure 7, especially when the robot moves left or right. At
the beginning of the adjustment, the robot records its beacon-based position
(x1, y1). Since movement errors are negligible when moving short distances
forward or backward, we have the robot move forward for τ seconds (τ = 3
by default), record its new beacon-based position (x2, y2), and then move
backwards for τ seconds back to its original position (x1, y1). With the
recorded two positions, the divergence angle θ can be calculated based on

θ =

90◦, if x1 = x2 and y1 < y2

−90◦, if x1 = x2 and y1 > y2

arctan(y2−y1
x2−x1

), otherwise.

(1)

11

This work has been accepted to publish in Elsevier Journal of Computer Communications

With the divergence angle θ, the movement option and the movement dis-
tance can be obtained by referring to Table 1, in which d1 is the measured
reference distance, which is obtained as follows: When a robot turns left or
right, one of its four wheels (left-back wheel by default) does not move and
the other three wheels do. By reading the encoder value of one of the non-
static wheels (the left-front wheel by default) when the robot rotates 360◦,
the value of d1 can be obtained. The two adjustment parameters (θ and d1)
will then be packed in a message and sent to the onboard Arduino controller.
With the received message, the Arduino will control the robot to finish the
beacon-based robot posture adjustment.

In the second phase, the robot first measures its new position (x3, y3)
and compares it with the measurement-based beacon state information (x, y)
which can be obtained via a one-time beacon-based measurement. The ob-
tained distance divergence dx and dy for the x and y axis will be calculated
and transformed to the corresponding movement direction and distance as
shown in Table 1, in which d2 and d3 are the measured reference distance
when the robot moves forward and backward for 1 meter, respectively. Sim-
ilarly, the obtained adjustment parameters will be packed and sent to the
Arduino. Once the Arduino receives the movement command, the robot will
adjust its position and then finish the second-phase adjustment.

𝜃

𝑥

𝑦

𝑦!

𝑥!

Figure 7: Mecanum wheel robot with angular deviation.

Table 1: Robot movement operation

Parameter Movement Option Movement Distance Parameter Movement Option Movement Distance
θ > 0 Rotate Left |θ|/360 ∗ d1 θ < 0 Rotate Right |θ|/360 ∗ d1
x3 < x Move Forward dx = (x− x3) ∗ d2 x3 > x Move Backward dx = (x3 − x) ∗ d2
y3 < y Move Left dy = (y − y3) ∗ d3 y3 > y Move Right dy = (y3 − y) ∗ d3

Otherwise Stop 0

12

This work has been accepted to publish in Elsevier Journal of Computer Communications

Algorithm 1: Robot Self-Adjustment Scheme

1 Beacon-based Robot Posture Adjustment:
2 Measure current position (x1, y1) via beacon
3 Robot moves forward for τ seconds
4 Measure new position (x2, y2)
5 Robot moves back to (x1, y1)
6 Calculate the angle deviation based on (1)
7 Determine the rotation direction and calculate rotation distance

based on Table 2
8 Arduino movement control

9 Beacon-based Robot Position Adjustment:
10 Measure current position (x3, y3) via beacon
11 Look up state position table and obtain target state position

(x, y)
12 Determine the movement direction and calculate movement

distance based on Table 2
13 Arduino movement control

4. Control Plane Design

The control plane supports both traditional model-based control, enabled
by WNOS, and emerging data-driven control, enabled by the RL repository.
A set of APIs are developed for WNOS to enable automatic generation of
distributed cross-layer control algorithms. While the RL repository is com-
bined with a set of experiment management APIs and multiple communica-
tion protocols to ease the use of NeXT testbed and enable broadband wireless
communication. The control plane is deployed over the edge servers which
are placed in the shelf labeled as “UB NeXT” in Figure 3(a).

4.1. Network Modeling and Optimization Support

It is typically tedious and error-prone to manually model and optimize
forwarding infrastructure in the data plane. To address this challenge, we de-
ployed our previously designed WNOS [11] over NeXT. The primary benefits
of WNOS are that it abstracts the data plan forwarding infrastructure, allows
experimenters to define control objectives in a centralized manner using high-
level APIs, and then automatically generates distributed cross-layer control

13

This work has been accepted to publish in Elsevier Journal of Computer Communications

algorithms that can be deployed on NeXT’s data plane, e.g., UBSim and
RoboNet. At a high level, WNOS comprises two key components: network
abstraction and network control problem decomposition and control program
generation. The network abstraction provides a set of APIs, based on which
experimenters can characterize in a centralized manner the desired network
behaviors before actual deployment. The network control problem decompo-
sition and control program generation is enabled by disciplined instantiation
(DI) [11], based on which user-defined abstract centralized network control
problems can be decomposed into a set of distributed subproblems. WNOS
is designed based on a three-level hierarchical architecture to enable scalable
network deployment. Specifically, at the first-level, the WNOS control host is
connected to all second-level SDR control hosts via wireless interfaces (Wi-Fi
in our current prototype). The generated distributed algorithms are auto-
matically pushed over the wireless interfaces and installed at each of the SDR
control hosts which form the third-level. Hence, one only needs to create a
single piece of code to control all the SDR devices.

WNOS supports a wide set of network control problems in both static
and mobile networks. These include, but are not limited to, rate maximiza-
tion, power minimization, end-to-end delay minimization, and movement op-
timization. WNOS also provides a rich set of APIs, based on which exper-
imenters are allowed to define more sophisticated control problems in next-
generation broadband networks spanning across multiple frequency bands,
e.g., microwave, mmWave as well as THz bands. Below are some examples
of the APIs.

Table 2: Example APIs of WNOS

API Description
attach(·) Add elements to the network
connect(·) Link one or more network elements
install model(·) Install an expression model for a network element attribute
get expr(·) Get the expression of a network element
mkexpr(·) Construct the new expression
record expr(·) Store the expression in the database
set para(·) Designate a specific expression as a utility function, constraint, or optimization variable
set soln(·) Select the solution method to optimize the designated variables
record expr(·) Store the expression in the database

4.2. Data-Driven Network Control Repository

The second part of the control plane is the data-driven network control
repository which enables data-driven control on RoboNet and makes it easy

14

This work has been accepted to publish in Elsevier Journal of Computer Communications

to modify advanced AI/ML algorithms to be compatible with our testbed.
This repository consists of two classes of APIs for data-driven control, i.e.,
Basic Class and Advanced Class. The basic class is responsible for network
initialization. Examples include the Environment Initialization API, Vari-
able Initialization API and Feedback List Initialization API. The Advanced
Class APIs are designed based on Basic Class and are used for policy train-
ing, including updating states, actions and a value table. Given the number
of states and actions specified using the Configuration API, the environment
can be initialized using the Environment Initialization API. Key variables
involved in learning algorithms, such as the current state and next state,
can be initialized via the Variable Initialization API. One is also allowed
to choose the Reward Type and Calculator Mode through the Configuration
API. Based on these APIs, four classes of RL algorithms have been imple-
mented in the advanced class and can be called via the RL Algorithm API.
These are epsilon-greedy search, upper confidence bound (UCB) action selec-
tion, Q-learning and State–action–reward–state–action (SARSA). Different
reward types and calculator modes have been defined in advance, while ex-
perimenters can define custom reward types and calculator modes for their
own experiments.

4.3. NeXT Experiment Management APIs

Extensive experiments can be conducted over the NeXT testbed, espe-
cially on RoboNet discussed in Section 3.2. To help experimenters use our
testbed efficiently, we design a set of experiment management APIs, by which
elements deployed on RoboNet can be coordinated. As shown in Figure 8,
there are three classes of APIs, as discussed next.

Network Configuration APIs. APIs in this class are used to define
various network environments. We provide three different APIs, Network
Configuration API, Host Configuration API and USRP Configuration API.
Parameters that can be configured via network configuration APIs include
network area, center frequency, bandwidth, transmission power, modulation
type, slot duration, the number of robots, etc. Through host and USRP
configuration APIs, experimenters can manage Ethernet addresses, wireless
network addresses, and port numbers for the SDRs and their controlling
hosts.

Nodes Synchronization APIs. To easily coordinate the server and
mobile hotspot controllers, Nodes Synchronization APIs are provided. With

15

This work has been accepted to publish in Elsevier Journal of Computer Communications

Robot2

TCP Client API Local Main Controller API

Transmission

Control API

Robot

Movement

Control API

Beacon

Positioning

API

Network Element APIs

Edge Server4

TCP Server API

Network Control Problem

Network Configuration APIs

Network Scenario Instance

System

Controller API

Receiver

Control API

Robot1

TCP Client APILocal Main Controller API

Transmission

Control API

RL Algorithm

API

Robot

Movement

Control API

Beacon

Positioning

API Nodes Synchronization APIs

Network Configuration API Host Configuration API USRP Configuration API

Figure 8: Network element control interface and experiment management APIs.

these APIs, for example, experimenters can start the experiments with just
one command executed on the edge server.

These APIs are based on a Transmission Control Protocol (TCP) con-
nection established over WiFi to provide communications among different
nodes. The WiFi wireless local area network is enabled by TP-Link Archer
A7 AC1750 Wireless Dual Band Gigabit Router, which follows wireless LAN
802.11a/b/g/n/ac standards. The 2.4 GHz and 5 GHz bands are dedicated
for node synchronization and we avoid using the two bands for conducting
experiments. Thus, the WiFi will not cause any interference to our target
experiments. The other potential external interferes are mainly from wire-
less devices like phones. However, since most wireless devices get access to
the internet via University at Buffalo’s WiFi network, which also works in
the 2.4 GHz and 5 GHz bands, the interference to measurements is limited.
In Figure 9, we show the spectrum comparison without and with ongoing
experiments, respectively. The results show that the possible interference
(-92 dBFS) to our experiments is much smaller than our signal strength (-68
dBFS). Thus we can neglect the possible interference.

Network Element APIs. After the experiment profile has been con-
figured, one can further control various network components via a set of
system control APIs deployed at the edge server and mobile hotspot con-
troller. These include the Transmission Control API, which can be used
to control the transmissions of the USRP N210 carried by the robot vehicle;
the Receiver Control API for controlling data receiving; the Robot Movement
Control API for controlling robot movement; and finally the Beacon Posi-
tioning API, based on which experimenters can obtain the robots’ real-time

16

This work has been accepted to publish in Elsevier Journal of Computer Communications

(a) (b)

Figure 9: Screenshot of 2.56GHz spectrum monitor of network (a) in idle mode with
-92 dBFS peak interference; (b) during experiments with -68 dBFS peak signal.

positions.
In these network element APIs, logging features are enabled to record

system status like transmission process startup, beacon positioning updates,
robot movements and so on. Data that will be used for analysing and pro-
cessing, like throughput for each time slot, are stored and updated in dictio-
naries/tables during the tests and saved automatically once an experiment
finishes.

1 import Reinforcement_Learning_API as rli

2 import Robot_Movement_Control_API as rmi

3 import Beacon_Positioning_API as bpi

4

5 while experiment_running:

6 curt_state = bpi.operation ()

7 next_state = rli.operation ()

8 updt_rbt_movement_ctrl(curt_state , next_state)

9 updt_usrp_commn_ctrl ()

10 updt_fdbk_request ()

11 reward = rli.fdbk_processing(fdbk , fdbk_type , rwd_calc)

12 rli.updt_value_table(reward)

13 if rbt_adjustment_status:

14 rmi.rbt_adjustment(next_state)

Listing 1: Example of Experiment Management APIs

In Listing 1, we show an example of using the aforementioned APIs to
conduct experiments on the NeXT testbed. While an experiment is running
(line 5), the user calls Beacon Positioning API to get the current state infor-
mation (line 6) and calls Reinforcement Learning API to get the next state

17

This work has been accepted to publish in Elsevier Journal of Computer Communications

information (line 7). The robot updates its location by calling Robot Move-
ment Control API (line 8). After the robot arrives at the target location,
the communication begins (line 9). After a pre-defined communication time
in Network Configuration API, the robot requests feedback (line 10) and ob-
tains the current reward (line 11), and the value table is then updated (line
12). Before conducting the next time-slot experiment, the robot adjustment
status parameter defined in Network Configuration API will be checked (line
13). If the status is True, the robot will adjust its posture and position based
on Algorithm 1 (line 14).

4.4. Communication Protocols Management

We consider three different communication protocols in our testbed: GNU
Radio Benchmark, srsRAN and mmWave communication protocols.

GNU Radio Benchmark Protocol. This is developed based on GNU
Radio narrow-band benchmark library [33]. Specifically, we extend the orig-
inal benchmark narrow-band library by designing three additional APIs.
These are Benchmark Interaction API, Benchmark Transmission Control
API and Benchmark Receiving Monitor API. For example, the Benchmark
Transmission Control API is used to control when and what data is trans-
mitted. The transmission duration and transmission information can be
configured in Network Configuration API in Section 4.3 and can then be
transmitted to the basic benchmark module via Benchmark Interaction API.
Benchmark Receiving Monitor API is used to monitor the status of the re-
ceiver. If the receiver detects disconnected links, it will restart the trans-
mitter by sending a request to the edge server via Benchmark Interaction
API.

1 import Network_Configuration_API as ncfg

2 import Host_Configuration_API as hcfg

3 import Benchmark_Interaction_API as bmia

4

5 def Benchmark_Transmission_Control_API ():

6

7 if bmia.tmr1 == 0:

8 data = ncfg.cxn_data

9 elif bmia.tmr2 <= ncfg.ts_len:

10 data = ncfg.comm_data

18

This work has been accepted to publish in Elsevier Journal of Computer Communications

11 else:

12 data = ncfg.cxn_data

13 bmia.socket.sendto(ncfg.cmd_done , (hcfg.wl_host , hcfg

.port))

14

15 return data

Listing 2: Example of Benchmark Transmission API

Listing 2 shows an example of how Benchmark Transmission Control
API is used to control the transmission of data at run time. There are
two types of data that can be transmitted: regular transmission data, which
is the actual data that we want to deliver over the network, and dummy
connection data, which we use to keep the network connection alive. The
connection data is needed because GNU Radio does not provide an auto re-
connection scheme if a connection is lost. In Listing 2, the experimenter first
calls the Benchmark Transmission Control API (line 5) to determine the
data to be transmitted based on the two timers received from Benchmark
Interaction API. If timer 1 (bmia.tmr1) equals 0 (line 7), the data is set
as connection data (ncfg.cxn data, line 8); if timer 2 is (bmia.tmr2) smaller
than a predefined transmission duration (ncfg.ts len, line 9), the data is set
as communication data (ncfg.comm data, line 10); otherwise, the data is set
to ncfg.cxn data (line 12) and the one-time-slot-finished information will be
sent to Local Main Controller API via Benchmark Interaction API (line 13).

Software-Defined RAN Protocol. This is developed based on srsRAN,
an open-source 4G and 5G software radio suite developed by Software Radio
Systems (SRS) [34]. It contains three different modules, srsEPC, srsENB
and srsUE. We design a set of srsRAN Configuration APIs to manage the
three modules based on the parameters in Network Configuration API. For
example, the user dataset information can be generated automatically and
stored in “user db.csv” via srsEPC configuration API, and srsENB operation
parameters like communication frequency can be generated automatically via
srsENB configuration API. The srsUE configuration API is used to gener-
ate “ue.conf” file which contains srsUE operation information, such as IMSI
information.

1 import os

2 import srsEPC_configuration_API as epca

3 import srsENB_configuration_API as enba

4 import srsUE_configuration_API as suea

5

19

This work has been accepted to publish in Elsevier Journal of Computer Communications

6 epca.srsepc_operation ()

7 os.system("gnome -terminal␣--␣bash␣-c␣\"sudo␣srsepc;␣exec␣bash

\"")

8 enba.srsenb_operation ()

9 os.system("gnome -terminal␣--␣bash␣-c␣\"sudo␣srsenb;␣exec␣bash

\"")

10 suea.srsue_operation ()

11 os.system("gnome -terminal␣--␣bash␣-c␣\"sudo␣srsue;␣exec␣bash

\"")

Listing 3: Example of srsRAN Configuration APIs

Listing 3 shows an example of how to generate srsRAN configure files
and run the corresponding programs. Users call srsEPC operation (line 6)
to generate “user db.csv” and start up srsEPC program in line 7. Similarly,
“enb.conf” and “ue.conf” are generated by calling srsENB operation (line 8)
and srsUE operation (line 11), respectively.

Millimeter Wave Communication Protocol. The mmWave commu-
nication protocol is supported by MikroTik mmWave routers [32]. These
mmWave routers can be configured to form a point-to-point network or
point-to-multi-point network based on requirements. When integrating the
mmWave communication protocol with srsRAN to enable large scale wireless
network communication, we connect both the USRP B210 (running srsEPC
and srsENB) and the mmWave router (primary) to a single laptop and design
a Gateway Setting API to navigate data traffic between srsUE and mmWave
subordinate.

1 import os

2 import Network_Configuration_API as ncfg

3 import Host_Configuration_API as hcfg

4

5 def Gateway_Setting_API ():

6

7 subnet = hcfg.srsRANsubnet

8 eth_addr = getattr(hcfg , ncfg.laptop_name).get("eth_host"

)

9 gw_setting_cmd = "gnome -terminal␣--␣bash␣-c␣\"sudo␣ip␣

route␣add␣" + str(subnet) + "␣via␣" + str(eth_addr) +

"␣;␣exec␣bash\""

10 os.system(gw_setting_cmd)

Listing 4: Example of Gateway Setting API

20

This work has been accepted to publish in Elsevier Journal of Computer Communications

Listing 4 shows an example of how to set the gateway to enable communica-
tion between srsUE and mmWave subordinate. The key is to get the subnet
address of srsRAN (line 8) and Ethernet address of the current laptop (line
9). The command is generated based on the above two information (line 10)
and the gateway is set by executing the command (line 11).

Since the three communication protocols have their own logic stacks and
the interactions with controllers are processed in different ways, we imple-
ment three different profiles for each communication protocol. These three
profiles are stored in laptop controllers and edge servers. Each profile is inde-
pendently stored in different folders but they share the same components ex-
cept communication protocol. Experimenters can choose the profile to load,
i.e., select the communication protocol they want to use, before conduct-
ing experiments. By providing different profiles for different communication
protocols, we can easily integrate more communication protocols, like direct
sequence spread-spectrum (DSSS) [35], to our testbed in the future.

The three communication protocols that we have implemented all rely on
self-synchronization schemes. For example, srsRAN implements the Precision
Time Protocol (PTP), which is a standard protocol used for time synchro-
nization in packet-based networks, so no clock/time synchronization features
are needed. However, protocols that rely on clock/time synchronization can
be implemented with support of additional hardware, such as an Octoclock
or GPS module, as shown in Figure 10. The accuracy of Octoclock is within
a few 100 ns and GPS module is within 50 ns.

(a) (b)

Figure 10: (a) Snapshot of the Octocolock; (b) GPS module

5. Example Experiments over NeXT

We now test NeXT and showcase its capabilities of optimization, simu-
lation and experimentation considering different network control problems.

21

This work has been accepted to publish in Elsevier Journal of Computer Communications

These include user scheduling in a cellular network, trajectory optimization
for a mobile hotspot, and joint rate and power control in multi-hop networks.
A comprehensive overview of these experiments is summarized in the Table 3.

Table 3: Experiments Overview

Experiment No. Name Type
1 User Scheduling simulation & experimentation
2 Overflow Control experimentation
3 Mobile Hotspot Navigation experimentation
4 Multi-Mobile Hotspots Navigation experimentation
5 Mobile Hotspot Navigation with srsRAN experimentation
6 Mobile Hotspot Navigation in IAB experimentation
7 Multi-hop Network Optimization optimization & simulation & experimentation

5.1. Experiment 1: User Scheduling

In the first experiment, we consider a wireless network with a hotspot
serving a set of users. The transmission time is divided into a set of consec-
utive time slots. In each time slot, we consider that the hotspot can serve
at most one user. The objective of the hotspot is to maximize the aggre-
gate throughput by selecting a user to serve in each time slot. We design
control algorithms for the hotspot based on the data-driven network control
repository as discussed in Section 4.2. Specifically, we consider the upper
confidence bound (UCB) action selection algorithm and test it over both
UBSim and RoboNet developed in Section 3. First, we test the effectiveness
of the UCB algorithm in UBSim. Figure 11(a) plots the achievable capacity
averaged over 20 episodes each with 100 time slots. It can be seen that the
average capacity improves over time, and this validates the effectiveness of
the data-driven network control repository.

Then we further test the data-driven network control repository over
RoboNet considering SDRs and real-world wireless channels. USRP20 is se-
lected as the transmitter and five USRPs (USRP2, USRP5, USRP9, USRP11
and USRP19) are selected as receivers (see Figure 3). The time slot dura-
tion is set to 3 seconds. The exploration parameter ϵ and UCB control
parameter c are set to 0.15 and 2, respectively. We run 10 episodes of robot
navigation, with each episode consisting of 100 time slots. We calculate the
average number of received packets in each time slot and the results are
shown in Figure 11(b). It can be seen that the highest throughput can be
achieved in around 20 time slots. This further validates the effectiveness of
the data-driven network control repository. Comparing Figures. 11(a) and

22

This work has been accepted to publish in Elsevier Journal of Computer Communications

0 20 40 60 80 100

Time Slot

930

935

940

945

950

955

960

965
A

ve
ra

ge
 C

ap
ac

ity
 (

pk
ts

/s
lo

t)

UCB, = 0.15, c = 2

0 20 40 60 80 100

Time Slot

0

2

4

6

8

10

12

14

16

18

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

pk
ts

/s
lo

t)

UCB, = 0.15, c = 2

(a) (b)

Figure 11: User scheduling scenario: (a) Average capacity obtained over UBSim;
and (b) average throughput using RoboNet.

(b), we found the average capacity in UBSim is much larger than the average
throughput on RoboNet. This is because we use different protocols in each
system. In UBSim, the network capacity is calculated based on the Shannon
capacity formula while on RoboNet, the throughput is obtained based on
GNU Radio’s narrowband communication protocol. Besides, the transmis-
sion power, bandwidth and so on are different in UBSim and RoboNet. For
these reasons, the gap between UBSim and RoboNet is large. Since we focus
on the verification of algorithms effectiveness, we neglect the gap between the
simulator and reality. However, it would be interesting to investigate how to
mitigate the reality gap, which is also a potential function provided by the
NeXT system. We discuss this further in Section 6. Recall that the primary
objective of NeXT is to provide an integrated environment for optimization,
simulation, and experimentation in software-defined wireless networks. This
experiment illustrates the benefits of using the NeXT testbed. Conducting
experiments in the real-world is time consuming while simulation-based ex-
periments can be done much quicker. With the NeXT testbed, users can test
their algorithm in UBSim first and check the performance of the proposed
algorithm. If the results show that the algorithm needs improvement, they
do not need to do the tests in the real-world, which saves time. By conduct-
ing experiments on our testbed, users also avoid directly collecting data in
the real-world, which can sometimes be unsafe.

1 usrp_rx_list = ["usrp2","usrp5","usrp9","usrp11","usrp19"]

2 ts_len = 3 # time slot length; unit: second

3 ts_nim = 100 # time slot number

23

This work has been accepted to publish in Elsevier Journal of Computer Communications

4

5 Q_Epsilon = 0.15

6 Q_StepSize = 0.2

7 Q_DiscountRate = 0.95

Listing 5: User scheduling configuration parameters in Network Configuration API

Listing 5 shows user scheduling configure parameters in Network Config-
uration API, which can be used to configure the parameters involved in this
experiment. Experimenters can specify the USRPs they want to use as the
receiver in line 1. The time-slot length and time-slot number for each episode
can be set via line 2 and line 3, respectively. The parameters used for the
UCB action selection algorithm configuration can be configured from line 5
to line 7.

5.2. Experiment 2: Overflow Control

In this scenario, Robot1 is adopted as the transmitter and three USRPs
(USRP1, USRP9 and USRP11) are adopted as receivers. Each time slot is set
to 5 seconds and the transmitter transmits data every 0.15 seconds. Assume
that the arrival rate follows a Poisson distribution and the average arrival
rate is set to 1 packet per time slot. The maximum data buffer length is set to
8 packets for each receiver. Q-learning is adopted in this case to control data
buffer overflows. As shown in Figure 12, we run one episode with 500 time
slots and calculate the number of transmitted packets and the corresponding
running average for each time slot. It can be seen that, in some time slots
the number of transmitted packets is 0. This happens when there are no
packets available in the buffer to transmit or when the channel conditions
are bad. For Poisson distributed packet arrivals with average arrival rate
1, the expected number of packets arriving at each user in each time slot
is 1. Thus, the total expected arrivals for three users in each time slot is
3. From Figure 12, the running average is around 3 packets per time slot
which matches the above mathematical analysis. The cumulative overflows
are shown in Figure 13, in which the slope converges gradually over time
towards the optimal achievable packet overflow rate.

1 pkts_arrival_rate = 1 # unit: packet/slot

2 queue_max_pkts_num = 8 # maximum buffer size

3 queue_overflow_reward = -20

Listing 6: Overflow control configuration parameters in Network Configuration API

24

This work has been accepted to publish in Elsevier Journal of Computer Communications

0 100 200 300 400 500

Time slot

0

1

2

3

4

5

6

7

8

P
ac

ke
t n

um
be

r
pe

r
tim

e
sl

ot

Instantaneous
Running average

Figure 12: Overflow control scenario: Transmitted packet number vs. time slot

0 1000 2000 3000 4000 5000 6000 7000 8000

Time slot

0

50

100

150

200

250

300

350

400

450

500

C
um

ul
at

iv
e

ov
er

flo
w

s

Q-Learning, = 0.15, step size = 0.2,
discount factor = 0.95

Figure 13: Overflow control scenario: Cumulative overflows vs. time slot

As shown in Listing 6 experimenters can modify the parameters in Net-
work Configuration API to meet their needs. Experimenters can modify the
packet arrival rate and maximum buffer length for each user via line 1 and
line 2, respectively. Line 3 can be configured to set an overflow reward (such
that a negative value corresponds to a penalty).

5.3. Experiment 3: Mobile Hotspot Navigation.

In the third experiment, we consider a wireless network where a robot
carrying a mobile hotspot moves around to serve a set of users. The objec-
tive is to maximize the users’ aggregate throughput by controlling the robot’s
trajectory. The network is divided into a set of grid cells, each corresponding
to a state of the environment. In each grid cell, the robot has five action
options, i.e., move forward, move backward, move left, move right and stay.
The reward for each state-action pair is defined as the sum throughput of

25

This work has been accepted to publish in Elsevier Journal of Computer Communications

0 100 200 300 400 500

Time Slot

0

10

20

30

40

50

60

T
hr

ou
gh

pu
t (

pk
ts

/s
lo

t)

Q-Learning, = 0.15, step size = 0.2,
discount factor = 0.95

Instantaneous
Running average

Figure 14: Single mobile hotspot scenario: instantaneous and running average of
throughput.

0 100 200 300 400 500

Time slot

0

20

40

60

80

100

120

140

160

T
hr

ou
gh

pu
t (

pk
ts

/s
lo

t)

Q-Learning, = 0.15, step size = 0.2,
discount factor = 0.95

Instantaneous
Running average

Figure 15: Two mobile hotspots scenario: instantaneous and running average of
throughput.

users. Q-learning is considered in this experiment with exploration proba-
bility ϵ set to 0.15, step size of 0.2 and discount factor 0.95. Each episode
consists of 500 time slots, corresponding to 3 hours. We measure the number
of received packets and calculate the corresponding running average in each
time slot. The experimental results are reported in Figure 14. It can be seen
that the running average converges to around 30 packets/slot. The drop of
instantaneous throughput around time slot 400 is caused by the imperfection
of the wireless link, which got disconnected as the robot moved.

5.4. Experiment 4: Multi-Mobile Hotspots Navigation.

In the fourth experiment, we consider the same wireless network scenario
as the third except that we adopt two mobile hotspots. To avoid collisions,

26

This work has been accepted to publish in Elsevier Journal of Computer Communications

the network is divided into two regions and each robot can only move within
one region. Five USRPs (USRP0, USRP1, USRP2, USRP3 and USRP19)
are configured as users to receive service from the two robots. In each time
slot, a user is only allowed to connect to the robot with the shortest distance
to it. Q-learning with the same parameters as in the second experiment is
adopted. Similarly, we measure the number of correctly received packets
and calculate the corresponding running average in each time slot. The
experimental results are reported in Figure 15. It can be seen that the
running average converges to around 80 packets/slot.

1 import struct

2 import Network_Configuration_API as ncfg

3 import Beacon_Positioning_API as bpi

4 import Host_Configuration_API as hcfg

5

6 def update_rbt2_state ():

7

8 curt_state = bpi.operation ()

9 s_addr = hcfg.rbt2.get("code")

10 d_addr = hcfg.rbt1.get("code")

11

12 data = struct.pack(’!H’, s_addr & 0xffff) + struct.pack(’

!H’, d_addr & 0xffff) + struct.pack(’!H’, curt_state &

0xffff) + ncfg.rbt2_state_info

13 rb2_tcp_skt.sendto(data , ((hcfg.rbt1.get(’host’), hcfg.

rbt1.get(’port’))))

Listing 7: Example of multi-robots interaction

In Listing 7 we give an example showing how Robot2 sends its state
information to Robot1 during the experiments. Robot2 first gets its current
state information via interaction with Beacon Positioning API (line 8). By
calling Host Configuration API, the message source code (line 9) and message
destination code (line 10) are obtained for message routing. Then the data
is constructed (line 12) and sent to Robot1 via TCP Client API (line 13).

In the above four experiments, we adopt the GNU Radio Benchmark
communication protocol. In the following two experiments, we adopt srsRAN
(and mmWave) as the communication protocol.

5.5. Experiment 5: Mobile Hotspot Navigation with srsRAN

Similar to Mobile Hotspot Navigation, we want to maximize the users’
aggregate throughput by controlling a robot’s trajectory but with a different

27

This work has been accepted to publish in Elsevier Journal of Computer Communications

0 100 200 300 400 500

Time slot

0

5

10

15

20

25

30

35

40

In
st

an
ta

ne
ou

s
th

ro
ug

hp
ut

 (
M

bp
s)

Q-Learning, = 0.15, step size = 0.2,
discount factor = 0.95

UE1 UE2 UE3
Total Running average

Figure 16: Single mobile hotspot scenario: instantaneous and running average of
throughput.

communication protocol, namely, srsRAN. The robot carries a USRP B210
which works as a base station to serve three users (each being a USRP B210).
The three USRP B210s are located at the position of USRP0, USRP5 and
USRP14 as shown in Figure 3(b), respectively. In each time slot, we use
iperf3 to measure instantaneous throughput for 3 seconds and calculate the
corresponding average throughput. The results are shown in Figure 16. It
can be seen that the total running average converges to around 28 Mbps.
The drop of instantaneous throughput of UE2 near the 200th time slot re-
sults from it losing its connection and thus leads to increased throughputs
of UE1 and UE3. We can also find that the three UEs can achieve similar
throughput if no connections are lost. This is because we set the srsRAN
MAC layer scheduling mechanism to proportional fair (PF), which aims to
balance system throughput and fairness. Based on the PF scheduling mech-
anism, UE’s with relatively better instantaneous channel quality indicator
(CQI) compared to their historic average rates will be allocated with more
resources. Experimenters can also choose a round-robin scheduling method
by specifying it in Network Configuration API at the MAC layer.

1 import os

2 import Host_Configuration_API as hcfg

3 import srsUE_configuration_API as suea

4

5 ue_name = suea.get_srsRANue_name ()

6 ue_port = getattr(hcfg , ue_name).get("port")

7 iperf3_server_cmd = suea.cmd_gen(ue_port)

28

This work has been accepted to publish in Elsevier Journal of Computer Communications

Dell Latitude 3430

Mobile Beacon

USRP B210 Power Bank

mmWave Router Slave

Mobile Beacon

USRP B210

Power Bank

(a) (b)

Figure 17: (a) Snapshot of srsRAN based-robot; and (b) Snapshot of IAB based-
robot.

8 os.system(iperf3_server_cmd)

Listing 8: Example of starting iperf3 server

Listing 8 shows how to generate an iperf3 server on srsUE side. Firstly,
users need to obtain the UE name (line 5) and the predefined port number
(line 6). Then iperf3 server command is generated (line 7) and executed (line
8) to run the iperf3 server, which is waiting for iperf3 client connection from
the client side (i.e., the robot).

5.6. Experiment 6: Mobile Hotspot Navigation in IAB

The sixth experiment is mobile hotspot navigation in an integrated access
and backhaul (IAB) network setting. As shown in the Figure 17(b), a robot
carries a USRP B210 and a mmWave router slave as a relay to bridge three
users and the base station (mmWave router primary). The three users are
located at the positions of USRP0, USRP5 and USRP19 and the mmWave
primary is located at (7.1 m, 0 m, 1.5 m) in the RoboNet network. Q-learning
is adopted to optimize the robot trajectory. The results of the experiments
are shown in Figure 18. Similarly, the running average throughput converges
to 22 Mbps.

In the above experiments, the RL algorithms are adopted to improve net-
work performance. However, we found that sometimes RL does not work well

29

This work has been accepted to publish in Elsevier Journal of Computer Communications

0 100 200 300 400 500

Time slot

0

5

10

15

20

25

30

35

In
st

an
ta

ne
ou

s
th

ro
ug

hp
ut

 (
M

bp
s)

Q-Learning, = 0.15, step size = 0.2,
discount factor = 0.95

UE1 UE2 UE3
Total Running average

Figure 18: Single mobile hotspot scenario in IAB setting: instantaneous and run-
ning average of throughput.

in practice. Randomness (like the user disconnection, time-varying channel,
movement of robot and so on) could affect the RL performance. For example,
during the mobile hotspot navigation in IAB experiments, the robot spends
most time in a state (state 6) after 200 time-slots but the running average
throughput is lower as shown in Figure 18. This could be due to the lap-
top’s limited computation capabilities, which can degrade the USRP B210s
performance. In this case, if we want to apply RL in a wireless network, we
need to take randomness into consideration and design a more sophisticated
reward (not simply taking throughput as the only one criteria).

5.7. Experiment 7: Multi-hop Network Optimization

In the seventh and final experiment, we consider a multi-session multi-
hop network with two sessions and eight nodes. Each session consists of
four nodes, namely one source node, two relay nodes and one destination
node. The objective is to maximize the network throughput while mini-
mizing the interference between the two sessions by jointly optimizing the
physical and transport layers. The optimization algorithms are generated
automatically by WNOS, which has been deployed over the control plane of
NeXT, as described in Section 4. The resulting algorithms are deployed over
the data plane. Similar to the User Scheduling experiment discussed above,
we conduct this experiment over both UBSim and RoboNet. The results are
reported in Figure 19. We can see that the control algorithms converge over
both UBSim and RoboNet. It is worth pointing out that different link models
have been considered in UBSim and RoboNet in their current implementa-
tions. In future research, we will create a digital twin of RoboNet based on

30

This work has been accepted to publish in Elsevier Journal of Computer Communications

UBSim and test the gap between simulated and real-world performance.

6. New Research Topics Enabled by NeXT

In this section we discuss the new research topics that NeXT can enable,
including sim-to-real transfer learning, robust wireless network control, online
digital twin construction and optimization, and multi-agent reinforcement
learning.

Sim-to-real transfer learning : Towards zero-touch wireless network self-
configuration, the proposed framework will connect accelerated learning in
the virtual domain with performance evaluation in the real domain. With the
proposed framework, novel machine learning algorithms can be designed and
tested rapidly in the virtual domain in a variety of configurable networking
scenarios, and the converged algorithms can be deployed on SDR hardware
for practical evaluation. Making use of a digital twin for initial policy it-
eration can significantly reduce the time required to generate an optimal
control policy, especially in the case of deep learning or deep reinforcement
learning. These transfer learning experiments will be used to understand the
performance discrepancy between simulation and hardware evaluation, which
will be necessary for designing repeatable experiments towards accelerated
learning for wireless network self-configuration. This investigation into effi-
cient transfer learning will start with experimental benchmarks to quantify
the reality gap between UBSim and RoboNet and then designing methods
to minimize the impact of this gap through an experimental campaign of
domain adaptation and novel twin-domain learning algorithms.

Robust wireless network control : The use of robust learning for domain
adaptation in the wireless domain has been introduced in [27]. By introduc-
ing noise to the training data or training environment during policy itera-
tion, it has been shown that the resulting control policy will provide improved
performance when faced with unexpected observations or perturbations com-
pared to a non-robust policy. In this line of research, this uncertainty can
be interpreted as the set of all physical phenomena which contribute to the
performance gap between simulation and hardware scenarios, such as unpre-
dictable RF interference or hardware nonlinearities. The programmable SDR
hardware provided by the RoboNet testbed coupled with the virtualization of
the RoboNet environment in UBSim enables investigation into robust learn-
ing to improve sim-to-real transfer learning performance in a wide variety
of networking scenarios, with or without knowledge of the reality gap. We

31

This work has been accepted to publish in Elsevier Journal of Computer Communications

0 100 200 300 400 500
Iteration Index

0

1

2

3

4

5

6
En

d-
to

-E
nd

 T
hr

ou
gh

pu
t (

pk
ts

/s
)

Session 1
Session 2

0 20 40 60 80 100
Iteration Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

En
d-

to
-E

nd
 T

hr
ou

gh
pu

t (
pk

ts
/s

)

Session 1
Session 2

(a) (b)

Figure 19: Multi-hop network optimization scenario: Average end-to-end through-
put with (a) UBSim simulator and (b) NeXT testbed.

plan to build on findings in [27] by applying the experimental robust learning
framework to the sim-to-real capabilities presented in this work, exploring
robust learning as a method of mitigating performance degradation due to
sim-to-real policy transfer.

Online digital twin construction and optimization: Existing methods for
generating a virtual model for digital twin applications typically rely on
human expertise, and can be tedious and error-prone. This motivates au-
tonomous virtual environment construction based on mobile sensing tech-
niques such as simultaneous localization and mapping (SLAM). Using SLAM
with remote-control hardware such as the robots introduced in Section 3, it
is possible to record observations and generate a 3D environment map with
configurable fidelity in real time without significant human intervention. This
capability can significantly accelerate the digital twin construction process
by automating the collection and import of environmental data into the de-
sired simulation environment, such as UBSim. With integrated simulation
and experimentation capabilities, the NeXT testbed can enable research of
online digital twin construction by providing configurable network simulation
environments in UBSim, and verifying the accuracy of the autonomously gen-
erated digital twin with ground truth obtained through testbed experiments.

Multi-agent Reinforcement Learning (MARL): The NeXT testbed can
support MARL research for development and evaluation of algorithms such as
REINFORCE policy gradient (PG)[36], gradient-based partially observable

32

This work has been accepted to publish in Elsevier Journal of Computer Communications

MDP (G(PO)MDP)[37], actor-critic (A2C)[38], or asynchronous actor-critic
(A3C)[39]. In general, these algorithms require significantly more time to
converge to an optimal policy than their single-agent counterparts. Addition-
ally, debugging MARL algorithms can be complicated due to the distributed
nature of data collection and processing. The architecture of UBSim and
its supporting APIs can significantly simplify the simulation design process
by streamlining user-configurable parameters such as the number of nodes,
distributed or centralized control algorithms, and reward function related
to the environment. This can save time, provide configurable online feed-
back to display only target data points, and limit redundancy in coding for
large-scale MARL problems. Finally, the configurable SDR topology and the
hardware available in the RoboNet testbed can provide a framework through
which simulation results obtained in the virtual digital twin environment can
be verified through real-world experiments.

7. Conclusions and Future Work

In this work, we introduced the software-defined testbed NeXT, which
enables integrated simulation, experimentation and optimization for wireless
research. We designed the data plane with both the simulator UBSim and
the testing facility RoboNet. We designed the control plane in which a soft-
ware toolchain is developed to support both traditional model-based and new
data-driven control techniques. We presented the communication protocols
deployed on our testbed. We verified the effectiveness and flexibility of NeXT
considering both simulation and testbed experiments. We also discussed the
new research topics that can be enabled by NeXT. In future work, we will
i) enable experiments in flying networks by integrating UAVs into NeXT; ii)
enable digital twin for testing self-optimizing networks; and iii) allow remote
access to the NeXT platform via CloudRAFT, a cloud-based framework for
remote access of experimentation platforms that has been developed at the
University at Buffalo [40].

References

[1] A. Gosain, Platforms for Advanced Wireless Research: Helping Define
a New Edge Computing Paradigm, in: Proc. of Technologies for the
Wireless Edge Workshop, New Delhi, India, 2018.

33

This work has been accepted to publish in Elsevier Journal of Computer Communications

[2] J. Breen, A. Buffmire, J. Duerig, K. Dutt, E. Eide, M. Hibler, D. John-
son, S. K. Kasera, E. Lewis, D. Maas, A. Orange, N. Patwari, D. Read-
ing, R. Ricci, D. Schurig, L. B. Stoller, J. Van der Merwe, K. Webb,
G. Wong, POWDER: Platform for Open Wireless Data-Driven Experi-
mental Research, in: Proceedings of the 14th International Workshop on
Wireless Network Testbeds, Experimental Evaluation Characterization,
London, United Kingdom, 2020.

[3] D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen,
J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Ma-
heshwari, P. Skrimponis, C. Gutterman, Challenge: COSMOS: A City-
Scale Programmable Testbed for Experimentation with Advanced Wire-
less, in: Proc. of the 26th Annual International Conference on Mobile
Computing and Networking, London, United Kingdom, 2020.

[4] M. L. Sichitiu, I. Guvenc, R. Dutta, V. Marojevic, B. Floyd, AERPAW
Emulation Overview, in: Proc. of the 14th International Workshop on
Wireless Network Testbeds, Experimental Evaluation Characterization,
London, United Kingdom, 2020.

[5] L. Bonati, S. D’Oro, M. Polese, S. Basagni, T. Melodia, Intelligence and
Learning in O-RAN for Data-Driven NextG Cellular Networks, IEEE
Communications Magazine 59 (10) (2021) 21–27.

[6] J. Hu, S. K. Moorthy, A. Harindranath, Z. Guan, N. Mastronarde, E. S.
Bentley, S. Pudlewski, SwarmShare: Mobility-Resilient Spectrum Shar-
ing for Swarm UAV Networking in the 6 GHz Band,”, in: Proc. of IEEE
International Conference on Sensing, Communication and Networking
(SECON), Virtual Conference, 2021.

[7] Z. Shi, S. He, J. Sun, T. Chen, J. Chen, H. Dong, An efficient multi-
task network for pedestrian intrusion detection, IEEE Transactions on
Intelligent Vehicles 8 (1) (2023) 649–660.

[8] Y. Mi, D. Mohaisen, A. Wang, AutoDefense: Reinforcement Learning
Based Autoreactive Defense Against Network Attacks, in: 2022 IEEE
Conference on Communications and Network Security (CNS), Austin,
TX, USA, 2022.

34

This work has been accepted to publish in Elsevier Journal of Computer Communications

[9] F. Wen, M. Qin, P. Gratz, N. Reddy, Software Hint-Driven Data Man-
agement for Hybrid Memory in Mobile Systems, ACM Transactions on
Embedded Computing Systems 21 (1) (2022) 1–18.

[10] F. Tian, Y. Zhang, W. Ye, C. Jin, Z. Wu, Z.-L. Zhang, Accelerating
Distributed Deep Learning Using Multi-Path RDMA in Data Center
Networks, in: Proceedings of the ACM SIGCOMM Symposium on SDN
Research (SOSR), Virtual Event, USA, 2021.

[11] Z. Guan, L. Bertizzolo, E. Demirors, T. Melodia, WNOS: Enabling Prin-
cipled Software-Defined Wireless Networking, IEEE/ACM Transactions
on Networking 29 (3) (2021) 1391–1407.

[12] A. Gosain, Platforms for Advanced Wireless Research: Helping Define a
New Edge Computing Paradigm, in: Proceedings of the 2018 on Tech-
nologies for the Wireless Edge Workshop, New Delhi, India, 2018, p. 33.

[13] L. Bonati, S. D’Oro, S. Basagni, T. Melodia, SCOPE: An Open and
Softwarized Prototyping Platform for NextG Systems, in: Proceedings
of the 19th Annual International Conference on Mobile Systems, Appli-
cations, and Services, Wisconsin, USA, 2021.

[14] R. Doost-Mohammady, O. Bejarano, L. Zhong, J. R. Cavallaro,
E. Knightly, Z. M. Mao, W. W. Li, X. Chen, A. Sabharwal, RE-
NEW: Programmable and Observable Massive MIMO Networks, in:
2018 52nd Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, USA, 2018, pp. 1654–1658.

[15] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, P. Ruth, FABRIC: A National-Scale Programmable Ex-
perimental Network Infrastructure, IEEE Internet Computing 23 (6)
(2019) 38–47.

[16] J. Mirkovic, T. Benzel, Deterlab Testbed for Cybersecurity Research
and Education, Journal of Computing Sciences in Colleges 28 (4).

[17] R. Zhao, T. Woodford, T. Wei, K. Qian, X. Zhang, M-cube: A
millimeter-wave massive MIMO software radio, in: Proceedings of the
26th Annual International Conference on Mobile Computing and Net-
working, London, United Kingdom, 2020, pp. 1–14.

35

This work has been accepted to publish in Elsevier Journal of Computer Communications

[18] S. Wang, J. Huang, X. Zhang, Demystifying millimeter-wave V2X: To-
wards robust and efficient directional connectivity under high mobility,
in: Proceedings of the 26th Annual International Conference on Mo-
bile Computing and Networking, London, United Kingdom, 2020, p.
677–690.

[19] A. Song, X. Hong, F. Zhang, Z. Peng, Z. Wang, Mu-Net: Community-
shared infrastructure for mobile underwater acoustic networks, The
Journal of the Acoustical Society of America 150 (4) (2021) A197–A198.

[20] NSF Testbeds, https://nets-vo.org/resoures/nsf-testbeds/.

[21] CISE Community Research Infrastructure, https://www.ccrivo.org/
projects/.

[22] L. Bertizzolo, L. Bonati, E. Demirors, T. Melodia, Arena: A 64-Antenna
SDR-Based Ceiling Grid Testbed for Sub-6 GHz Radio Spectrum Re-
search, in: Proceedings of the 13th International Workshop on Wireless
Network Testbeds, Experimental Evaluation Characterization, Associ-
ation for Computing Machinery, Los Cabos, Mexico, 2019, p. 5–12.

[23] R. K. Sheshadri, E. Chai, K. Sundaresan, S. Rangarajan, SkyHaul: An
Autonomous Gigabit Network Fabric in the Sky, ArXiv abs/2006.11307.

[24] P. Sen, D. A. Pados, S. N. Batalama, E. Einarsson, J. P. Bird, J. M.
Jornet, The TeraNova Platform: An Integrated Testbed for Ultra-
Broadband Wireless Communications at True Terahertz Frequencies,
Computer Networks 179 (2020) 107370.

[25] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, J. Beutel,
FlockLab: A testbed for distributed, synchronized tracing and profiling
of wireless embedded systems, in: 2013 ACM/IEEE International Con-
ference on Information Processing in Sensor Networks (IPSN), Philadel-
phia, USA, 2013, pp. 153–165.

[26] R. Trüb, R. D. Forno, T. Gsell, J. Beutel, L. Thiele, A Testbed for
Long-Range LoRa Communication: Demo Abstract, in: Proceedings of
the 18th International Conference on Information Processing in Sensor
Networks, Montreal, Canada, 2019, pp. 342–343.

36

This work has been accepted to publish in Elsevier Journal of Computer Communications

[27] M. McManus, Z. Guan, N. Mastronarde, S. Zou, On the Source-to-
Target Gap of Robust Double Deep Q-Learning in Digital Twin-Enabled
Wireless Networks, in: Proc. of SPIE Conference Big Data IV: Learning,
Analytics, and Applications, Orlando, Florida, 2022.

[28] SimPy, https://pypi.org/project/simpy/.

[29] Y. Jiang, T. Zhang, D. Ho, Y. Bai, C. K. Liu, S. Levine, J. Tan, Sim-
GAN: Hybrid Simulator Identification for Domain Adaptation via Ad-
versarial Reinforcement Learning, in: Proceedings of the 2021 IEEE
International Conference on Robotics and Automation, Xi’an, China,
2021, pp. 2884–2890.

[30] S. Barrachina-Muñoz, B. Bellalta, E. W. Knightly, Wi-Fi Channel Bond-
ing: An All-Channel System and Experimental Study From Urban
Hotspots to a Sold-Out Stadium, IEEE/ACM Transactions on Network-
ing 29 (5) (2021) 2101–2114.

[31] J. Buczek, L. Bertizzolo, S. Basagni, T. Melodia, What is A Wireless
UAV? A Design Blueprint for 6G Flying Wireless Nodes, in: Proc. of
the 15th ACM Workshop on Wireless Network Testbeds, Experimental
evaluation CHaracterization (WiNTECH’21), New Orleans, LA, USA,
2022.

[32] mmWave Router, https://mikrotik.com/product/wap 60g.

[33] GNURadio Benchmark, https://github.com/n4hy/gnuradio/tree/master/gr-
digital/examples/narrowband.

[34] srsRAN, https://www.srslte.com/.

[35] G. Sklivanitis, A. Gannon, K. Tountas, D. A. Pados, S. N. Bata-
lama, S. Reichhart, M. Medley, N. Thawdar, U. Lee, J. D. Matyjas,
S. Pudlewski, A. Drozd, A. Amanna, F. Latus, Z. Goldsmith, D. Diaz,
Airborne Cognitive Networking: Design, Development, and Deploy-
ment, IEEE Access 6 (2018) 47217–47239.

[36] T. Zhang, H. Wen, Y. Jiang, J. Tang, Deep Reinforcement Learning
Based IRS for Cooperative Jamming Networks under Edge Computing,
IEEE Internet of Things Journal.

37

This work has been accepted to publish in Elsevier Journal of Computer Communications

[37] R.-T. Ma, Y.-P. Hsu, K.-T. Feng, A POMDP-Based Spectrum Handoff
Protocol for Partially Observable Cognitive Radio Networks, in: 2009
IEEE Wireless Communications and Networking Conference, Budapest,
Hungary, 2009.

[38] T. Niu, Y. Teng, Z. Han, P. Zou, An Adaptive Device-Edge Co-Inference
Framework Based on Soft Actor-Critic, in: 2022 IEEE Wireless Com-
munications and Networking Conference (WCNC), Austin, TX, USA,
2022.

[39] H. Zhou, Z. Wang, H. Zheng, S. He, M. Dong, Cost Minimization-
Oriented Computation Offloading and Service Caching in Mobile Cloud-
Edge Computing: An A3C-based Approach, IEEE Transactions on Net-
work Science and Engineering.

[40] S. K. Moorthy, C. Lu, Z. Guan, N. Mastronarde, G. Sklivanitis, D. Pa-
dos, E. S. Bentley, M. Medley, CloudRAFT: A Cloud-based Framework
for Remote Experimentation for Mobile Networks, in: Proc. of IEEE
International Workshop on Communication and Networking for Swarms
Robotics (RoboCom), Virtual Conference, 2022.

38

This work has been accepted to publish in Elsevier Journal of Computer Communications

