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Beam Learning in MmWave/THz-band Drone
Networks Under In-Flight Mobility Uncertainties

Sabarish Krishna Moorthy, Student Member, IEEE and Zhangyu Guan, Senior Member, IEEE

Abstract—This paper focuses on designing high-data-rate wireless communications for drone networks in the mmWave and terahertz
(THz) frequency bands. MmWave/THz-band communications have been envisioned as key technologies to achieve ultra broadband
wireless links through beamforming in 5G and beyond networks. However, a main challenge with these frequency bands is that the
narrow-beam directional wireless links can be easily disconnected because of the beam misalignment in mobile environments. To
address this challenge, in this paper we design a new beam control scheme called LeBeam, with the objective of maximizing the
expected capacity of the mmWave/THz-band links by determining the optimal beamwidth dynamically under the mobility uncertainties
of flying drones. In LeBeam, an Echo State Network (ESN) is adopted to capture the mobility uncertainties of the drones dynamically
and predict the optimal beamwidth based on the first- and second-order moments of the drone mobility. The ESN has been trained
based on real drone flight traces. To this end, we measure and analyze the mobility uncertainties of flying drones by carrying out
a series of field experiments in different weather. It is found that flying drones experience micro-, small- and large-scale mobility
uncertainties, and the resulting mobility behavior cannot be characterized with any existing statistical models. The performance of
LeBeam is evaluated over UBSim, a newly developed trace-driven Universal Broadband Simulator for integrated aerial and ground
wireless networking. Results indicate that the micro-scale mobility has only negligible effects on the link capacity (less than 1%), while
the wireless links may experience significant capacity degradation (over 50% on average) in the presence of small- and large-scale
mobility uncertainties.

Index Terms—Millimeter-wave and Terahertz Bands, Wireless Drone Networks, Beam control, Echo State Learning.
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1 INTRODUCTION

This paper aims at designing broadband wireless drone
networks in the millimeter-wave (mmWave) and Ter-
ahertz (THz) frequency bands. Mmwave/THz-band
drone networks have been envisioned as a key technol-
ogy to enable a wide set of new applications, including
distributed beamforming with collaborative drones [2],
distributed aerial edge computing [3], high-throughput
and secure tactical wireless networking in contested
environments [4], wireless backhauling for cellular net-
works with mobile hotspots [5]–[8], among others. How-
ever, radio in-air signal propagation in these frequency
bands suffers from significantly high path loss (0.3 −
1000 dB/km) due to the absorption by water vapor
and oxygen [9]. To overcome this problem1, directional
transmissions with narrow beams have been used to
achieve extended communication distance [10]. The re-
sulting mmWave/THz-band wireless links can be easily
disconnected by the misalignment between the commu-
nicating nodes particularly in mobile environments.

To address this problem, beam search and align-
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1. It is worth mentioning that the distance problem with mmWave
and THz-band communications can be partially addressed with UAVs,
by dynamically deploying UAVs closer to each other or additional
UAVs as relays. This is however out the scope of this paper.
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Fig. 1: Wireless communications between flying drones in the
mmWave/THz bands with mobility uncertainties.

ment have attracted significant research attention in
existing literature [11]–[15]. For example, BeamSpy [11]
and Agile-Link [12] predict the best mmWave beam
alignment without scanning the space thereby reducing
the overhead and delay. In [13], Hashemi et. al design
an optimal algorithm to reduce the overhead of beam
alignment in mmWave systems. In [14], the authors
propose to use the side information obtained from radar
mounted on the static mmWave base station to adapt the
beams of the vehicular communication system. Perfecto
et al. [15] propose a framework to jointly consider the
channel state information and queue state information
to establish mmWave links. Please refer to [16], [17] and
references therein for an excellent survey of the main
results in this field.



The above discussed beam alignment schemes aim
at identifying the transmit and receive beams that can
result in the highest signal strength, without explicitly
considering the challenges in wireless unmanned aerial
vehicle (UAV) networks. The readers are referred to [18]–
[22] and references therein for a survey of the potentials
and challenges of wireless UAV networks. Differently, in
this paper we aim at designing high-data-rate wireless
drone networks in the mmWave/THz bands under in-
flight mobility uncertainties. As illustrated in Fig. 1, in
drone networks the drone may experience large-, small-
and micro-scale mobility uncertainties, caused by the
drone flight, wind effects, and engine operation and
propeller rotation, respectively. On commercial 60 GHz
mmWave routers, e.g., TP-Link Talon AD7200 [23], it
may take tens of milliseconds to perform beam search.
This is significantly slower than the micro-scale drone
mobility and comparable with the small-scale mobility
according to field measurements. Therefore, it is hard
for the mmWave/THz links to recover from the beam
misalignment through beam search.

The main contributions of the paper are as follows.

• We propose a new beam control scheme called
LeBeam, with the objective of maximizing the
mmWave/THz-band wireless links by dynamically
determining the optimal beamwidth under multi-
scale mobility uncertainties of the flying drones.
In LeBeam, echo state network (ESN) learning is
used to capture the dynamic mobility uncertainties
of the flying drones and to determine dynamically
the optimal beamwidth by jointly considering the
communication distance and the first- and second-
order statistical information of the drone mobility at
network run time.

• A series of field experiments have been conducted
to measure the mobility uncertainties of the flying
drones in different weather conditions. Then, the
ESN model is trained based on the drone mobil-
ity traces collected in the field experiments. The
statistical behavior of the drone mobility has also
been analyzed. It is found that no existing statistical
models can be used to characterize the mobility
uncertainties of the flying drones.

• The performance of LeBeam is evaluated through
an extensive simulation campaign over UBSim, a
newly developed trace-driven simulator for broad-
band aerial-ground networks. Results show that
LeBeam can determine the optimal beamwidth with
up to fair accuracy, and nearly optimal link capacity
can be achieved under mobility uncertainties of
the flying drones without requiring real-time beam
alignment. All the data and code generated through
the experiments have been released via GitHub [24].

The remainder of the paper is organized as follows.
In Section 2 we discuss the related work. The system
model is presented in Section 3. The design of LeBeam
is presented in Section 4. We measure and analyze the

mobility uncertainties of flying drones in Section 5.
Finally, we discuss the simulation results in Section 6
and draw the main conclusions in Section 7.

2 RELATED WORK

MmWave and THz-band has drawn significant research
attention in existing literature [25]–[31] For example, in
[25] Barati et al. reduce the latency and energy consump-
tion required to establish mmWave link with fully digital
front-end beamformers. In [26] the authors investigate
the problem of concurrent transmission scheduling for
THz wireless backhaul network. In [27], Saeed et al.
study the feasibility of wireless communications over
the THz-band at various atmospheric altitudes. In [28]
Zhang et al. propose a novel framework to optimize
the downlink communication of a mmWave Base Station
with the help of reconfigurable intelligent reflector and
distributional reinforcement learning. In [29], [30] Chac-
cour et al. investigate THz-band communications for Vir-
tual Reality (VR) applications. For example, in [29] they
propose a risk-based framework, which uses a recurrent
neural network to optimize the rate and reliability of
THz-band enabled cellular networks for VR applications.
Barazideh et al. use in [31] reinforcement learning to
detect and mitigate the intermittent interference for THz-
enabled directional links.

There has also been significant research focusing on
UAV aided mmWave/THz communications [32]–[37].
For example, the authors of [32] propose a tractable
three-dimensional (3D) spatial model for evaluating the
average downlink performance of UAV networks in
the mmWave bands. Zhu et al. explore 3D beamform-
ing in [33] for mmWave UAV communications with a
phased uniform planar array. In [34], Gapeyenko et al.
investigate the use of UAVs to mitigate the impact of
blockage on the backhaul links. In [35], the authors
evaluate the performance of UAV-assisted mmWave net-
work in urban environments. In [36], Feng et al. propose
a spectrum management architecture and evaluate its
performance in UAV-assisted cellular networks. In [37]
the authors address the challenge of establishing UAV-
based mmWave links by deriving a tractable and closed-
form statistical channel model for UAV communications,
and show that the model can be used to find the optimal
antenna directivity gain under different levels of UAV
instability.

The beam misalignment problem has also been ex-
tensively studied in existing literature [38]–[44]. For ex-
ample, in [38] Ke et al. propose a fast beam tracking
scheme based on position prediction of multiple mov-
ing UAVs. In [39] the authors use fast beam tracking
and self-healing mechanism to find alternate links as
a possible solution to cope with the problem of beam
misalignment in UAV network. In [40] Zhong et al.
propose an improved beam tracking method to solve the
problem of beam misalignment due to UAV movement.
In [41], the authors study a mean field game approach
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to address the challenge in establishing reliable and
steady connections between flying UAVs, by adjusting
the beam steering angle of the UAVs. In [42], the authors
propose a fast beam tracking scheme to overcome the
beam misalignment due to turning on and off the UAVs
to enable energy efficient device-to-device communica-
tions. The problem of beam training and tracking for
UAV mmWave communications was studied in [43] to
achieve a trade-off between beam training quality and
the training cost. In [44] Zhang et al. study codebook-
based beam training for UAV mmWave communications.

Finally, Kovalchukov et al. [45] analyze the effects
of directionality and random heights on UAV-based
mmWave communications. In [46], Petrov et al. inves-
tigate the behavior of THz-band wireless links in the
presence of small-scale mobility of the user. Please refer
to [47]–[50] and references therein for an excellent survey
of the main results in this field. None of these existing
work has considered explicitly the multi-scale mobility
uncertainties of the flying drones. Differently, the ob-
jective of our work is to achieve high-data-rate drone
communications in the mmWave/THz bands under mo-
bility uncertainties without relying on real-time beam
alignment. We achieve this objective by making use
of the statistical mobility information of UAV mobility
uncertainties and use ESN based LeBeam to predict the
optimal directivity angle which can be used to achieve
high-data-rate communication.

3 SYSTEM MODEL

Consider mmWave/THz-band wireless communications
between two flying UAVs, Tx and Rx. An example of the
target applications is backhaul communications in next-
generation wireless networks with flying relays. The
transmission time is divided into a set T of time slots.
Define codt

tx = (xttx, y
t
tx, z

t
tx) as the coordinate vector

of UAV Tx in time slot t ∈ T , with xttx, yttx and zttx being
the x-, y- and z-axis components, respectively. Similarly,
define codt

rx = (xtrx, y
t
rx, z

t
rx) as the coordinate vector of

UAV Rx. Let ηt denote the SNR of the mmWave/THz-
band link in time slot t, then the link capacity Ct can be
written as

Ct = B log2(1 + ηt), (1)

where B is the bandwidth of the transmitted signal. To
derive the mathematical expression of SNR ηt in (1), next
we first describe the antenna and channel models.

Antenna Model. Since mmWave and THz bands un-
dergo significant attenuation due to their small wave-
length, it is undesirable to use omnidirectional antennas.
Therefore, in this work we consider directional antennas
to focus the signal energy into narrow beams and hence
to extend the communication range. There are different
models that can be used to characterize the behaviors of
directional antennas, such as cone antenna model [51],
which assumes perfect antenna radiation pattern with
signal energy concentrated uniformly in the generated

beam (i.e., no side lobes), and cone-plus-sphere antenna
model [52], which considers side lobes as a sphere
around the antenna. In this work, we consider as in [51]
cone antenna model by assuming perfect antenna radia-
tion pattern in favor of simpler modeling and analysis. It
is worth pointing out that this work can also be extended
to other more sophisticated directional antenna models
such as cone-plus-sphere antenna model [52]. With cone
antenna model, the transmit gain of the antenna can be
defined as a function of the directivity angle, as the area
of the wavefront of the transmit antenna increases with
the directivity angle, which thereby reduces the transmit
gain. Denote θt as the directivity angle2 of the transmit
antenna in time slot t ∈ T , then the radius of the transmit
wavefront, denoted as rtx, can be written as

rtx = tan

(
θt

2

)
d(codt

rx, cod
t
tx), (2)

where d(codt
rx, cod

t
tx) is the propagation distance de-

fined as

d(codt
rx, cod

t
tx)

=
√

(xtrx − xttx)2 + (ytrx − yttx)2 + (ztrx − zttx)2. (3)

The area of the transmit wavefront, denoted as Atx, can
then be given as

Atx = πr2tx, (4)

Without loss of generality, as illustrated in Fig. 1, con-
sider drone Tx’s location as the origin, i.e., codt

tx =
(0, 0, 0). Then the propagation distance d(codt

rx, cod
t
tx)

in (3) can be redefined as d(codt
rx) , d(codt

rx, (0, 0, 0)).
The effective receive area of drone Rx’s antenna depends
on the time-varying relative locations as well as the
rotation and inclination angles of the two drones.

Let αt and βt denote the relative roll and pitch angles
of drone Rx’s antenna with respect to y- and z-axis in
time slot t ∈ T , respectively. Then the receive area Arx

can be given as

Arx = πrminrmax (5)

where rmin = rrx cosβt and rmax = rrx cosαt are the
minor and major axes of the elliptical projection of
receive antenna surface onto the y-z plane. Since in each
time slot t ∈ T drone Rx’s antenna may or may not
overlap completely drone Tx’s wavefront. Let Atx and
Arx denote the set of points of the transmit and receive
areas. Then the set of overlapping points can be defined
as Aovlp

rx , Atx∩Arx with the corresponding overlapping
area denoted as Aovlp

rx .
Channel Model. In this work, we consider Line-of-

Sight (LOS) communications between the UAVs. This is
feasible because we consider that the UAVs are deployed
at the same altitude, which is usually higher than that
of the blockages (building, trees etc.) and hence the

2. In this paper, we use directivity angle and beamwidth inter-
changeably.

3



LOS link will dominate in the transmissions. In future
work, this work can also be extended by considering
other factors that affect the wireless channels, including
different flight altitudes, Non-Line-of-Sight (NLOS) com-
munications, blockage effects of the drone’s body on the
signal propagation, among others.

Let f denote the central frequency of the
mmWave/THz-band wireless channel. For
f ∈ [f0− B

2 f0 + B
2 ], let Stx(f) represent the single-sided

power spectral density (p.s.d). Then the power of the
transmitted signal at the receive antenna, denoted as
Ptx, can be given as

Ptx = λ(codt
rx)

∫ f0+
B
2

f0−B2
Stx(f)df, (6)

where λ(codt
rx) = 1

Atx(codtrx)
is the spreading attenua-

tion coefficient with propagation distance d(codt
rx), with

Atx(codt
rx) = Atx being the transmit wavefront area

defined in (4).
The mmWave/THz-band frequency response of the

wireless channel, denoted as H(f, d(codt
rx)) at frequency

f and propagation distance d(codt
rx), can be given as

H(f, d(codt
rx)) =

∣∣∣∣ c

4πd(codt
rx)

∫ f0+
B
2

f0−B2

e−
µ(f)d(codtrx)

2

f
df

∣∣∣∣2,
(7)

where c is the speed of light and µ(f) ∈ {µ(fmm), µ(ftz)}
is the molecular absorption coefficient for
mmWave/THz signal of frequency fmm and ftz,
respectively, with µ(fmm) < µ(ftz). In (7), µ(f) can
be further defined as e−K(f)d(codtrx) [51], where K(f),
representing the overall absorption coefficient, is a
monotonically decreasing function of frequency f , and
its values are available from the HITRAN database [53].
Then the received power at UAV Rx, denoted as Prx,
can be expressed as [54]

Prx = Aovlp
rx PtxH(f, d(codt

rx))|Hrx(f, d(codt
rx))|2, (8)

where Ptx and H(f, d(codt
rx)) are defined in (6) and

(7), respectively; Hrx(f, d(codt
rx)) denotes the frequency

response of the receive antenna and is considered to be
an ideal low-pass filter with bandwidth B.

Finally, the molecular absorption noise power at prop-
agating distance d(codt

rx), denoted as Nrx, can be given
as [55]

Nrx =

∫ f0+
B
2

f0−B2
(Sback(f) + Sself)|Hrx|2df, (9)

where Sback(f) is the background atmospheric noise
p.s.d, Sself is self-induced noise p.s.d, and Hrx is the
receive antenna frequency response. Then, the SNR of
the mmWave/THz link in time slot t ∈ T , i.e., ηt in (1),
can be given as

ηt = Prx/Nrx, (10)

with Prx and Nrx defined in (8) and (9), respectively.
Problem Statement. Given central frequency f and

bandwidth B of the mmWave/THz-band wireless chan-
nel, the location trajectory of the drones {(codt

tx, cod
t
rx)}

as well as the trajectory of the relative angle of the drone
antennas {(αt, βt)}, the beam control problem can be
formalized as in (11).

Given : f,B, {(codt
tx, cod

t
rx)}, {(αt, βt)}, t ∈ T

Find : {θt}, t ∈ T
Maximize : 1

|T |
∑
t∈T

Ct(θt)

Subject to : θmin ≤ θt ≤ θmax

(11)

where | · | represents the cardinality of a set, Ct(θt) is
the link capacity defined through (1) to (10), and θmin

and θmax denote the minimum and maximum directivity
angle values, respectively.

The objective of network control problem (11) is to
determine the beamwidth (i.e., directivity angle θ in
Fig. 1) of the transmit drone beam that can maximize
the average capacity of the mmWave/THz link in (11).
As discussed above, the directivity angle is one of the
key factors that affect the link capacity. On one hand,
larger angle results in larger transmit wavefront area
Atx and hence lower power density Stx(f) in (6) and
lower received SNR ηt in (10). On the other hand,
smaller angle leads to smaller effective receiving area
Aovlp

rx and hence will cause more frequent misalignment
between the transmit and receive antennas. In the case of
misalignment, beam recovery schemes can be adopted to
restore the links, e.g., on demand alignment and periodic
alignment [56], fast alignment [12] and unimodal beam
alignment [13]. Let tbal denote the time taken for the
beam recovery procedure, which we refer to as beam
alignment latency in the rest of the paper.

4 STOCHASTIC BEAM CONTROL

The main challenges in solving problem (11) are i) the
location and angle of the drones are time-varying ran-
dom variables and hence the optimal beamwidth cannot
be determined in advance; ii) it is impractical to adapt
the beamwidth θt based on instantaneous location and
relative angle information of the drones, which may
cause significant communication overhead. As of today,
the effects of the mobility uncertainties of flying drones
on mmWave/THz-band wireless communications is still
unexplored. To address these challenges, in this section
we propose a learning-based stochastic beam control
scheme called LeBeam, which determines the optimal
beamwidth through echo state learning based on the
statistical drone mobility information.

Overall Architecture. In this work, we design LeBeam
based on Echo State Network (ESN) learning.ESN is a
type of reservoir computing, which has emerged recently
as an alternative to the traditional gradient descent
methods for training recurrent neural networks (RNN)
[57]. In ESN, only the output weight matrix needs to be
trained, while the weight matrices for the input and the
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Fig. 2: LeBeam: Learning-based Stochastic Beam Control.

hidden layers can be generated randomly without any
specific training. In this work, we consider as in [58]–[63]
ESN because it is computationally inexpensive and has
been shown to be a highly practical approach to RNN
training, and hence are more suitable for wireless net-
work control with network devices of limited computing
capabilities (which are drones in our case).

The diagram of LeBeam is illustrated in Fig. 2. Drone
Tx first constructs ESN Input in Step 1©, which con-
sists of the mobility information of the communicating
drones. ESN Input is then fed to the ESN recurrent
neural network for Reservoir Computing (Step 2©). The
ESN Output of the reservoir computing is the predicted
optimal beamwidth θt in time slot t. In Step 1©, Drone
Rx’s mobility information is collected through Mobility
Information Feedback (Step 3©). Next we describe the three
steps sequentially.

ESN Input. LeBeam determines dynamically the opti-
mal beamwidth based on statistical mobility information
of the communicating drones. As illustrated in Step 1©
in Fig. 2, The ESN Input consists of the link distance
between Drones Tx and Rx, the average and variance of
the location displacement of Drones Tx and Rx, and the
average and variance of the roll, pitch and yaw angles
of the drones. In this work, we consider the average
and variance of the linear and angular displacement
values as input of the ESN, because we are interested
in designing light-weight beam control schemes that
require as few signaling exchanges as possible between
the transmit and receive drones. This is motivated by the
observation that, in the presence of micro- and small-
scale mobility uncertainties, the drone’s instantaneous
location and orientation may change very fast, e.g., 200
times per second according to our measurements; as a
result, feeding back instantaneous displacement values
may cause significant communication overhead. Here,
the link distance can be calculated based on the average
linear acceleration information received by Drone Tx
from Drone Rx.

The location displacement of drones Tx and Rx at time

slot t + 1 with respect to time slot t can be expressed
respectively as

lt+1
tx =

√
(xt+1

tx − xttx)2 + (yt+1
tx − yttx)2 + (zt+1

tx − zttx)2, (12)

lt+1
rx =

√
(xt+1

rx − xtrx)2 + (yt+1
rx − ytrx)2 + (zt+1

rx − ztrx)2. (13)

Then, the average location displacement, denoted re-
spectively as l̄tx and l̄rx for Drones Tx and Rx, can be
given as

l̄tx =
1

T
∑
t∈T

lt+1
tx , (14)

l̄rx =
1

T
∑
t∈T

lt+1
rx . (15)

The corresponding variance of the location displacement,
denoted as σ2

ltx
and σ2

lrx
, can be written as

σ2
ltx =

1

T
∑
t∈T

(lt+1
tx − l̄tx)2, (16)

σ2
lrx =

1

T
∑
t∈T

(lt+1
rx − l̄rx)2. (17)

Similarly, let (αt
tx, βt

tx, γttx) and (αt
rx, βt

rx, γtrx) denote
the roll, pitch and yaw angles of Drone Rx at time slot
t, and (αt+1

tx , βt+1
tx , γt+1

tx ) and (αt+1
rx , βt+1

rx , γt+1
rx ) denote

the angles at time slot t+ 1. Then the average (denoted
respectively as ātx and ārx for Drones Tx and Rx) and
variance (denoted as σ2

atx
and σ2

arx
) of the angles can be

calculated similarly as in (14)-(17).
Finally, the input to the ESN at time t, represented as

inpt
tx, can be defined as

inpt
tx = (d(codt

tx, cod
t
rx), l̄tx, l̄rx,

σ2
ltx , σ

2
lrx , ātx, ārx, σ

2
atx
, σ2

arx
, θttgt), (18)

where θttgt is the target directivity angle in time slot t and
is needed only for training the ESN. In this work, θttgt
is obtained based on grid search in the training phase
(which will be further discussed in Section 5).
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Reservoir Computing. In echo state learning a reser-
voir acts as a nonlinear high-dimensional expansion
and a memory of input inpt

tx [57]. We design LeBeam
based on reservoir computing because it can provide
a rich and relevant enough signal space resttx ∈ RNres

with Nres being the dimension of the reservoir units,
in which the desired output θttgt can be represented by
linear combination of inpt

tx and resttx. Let Ninp and Nout

denote the dimension of the input and output units,
respectively. Given the training input signal inpt ∈ RNinp

and the target output signal θttgt ∈ RNout , the objective
of learning scheme in the training phase is to learn a
model with output θt that minimizes the root-mean-
square error (RMSE) between θt and θttgt, defined as

E(θt, θttgt) =
1

Nout

Nout∑
i=1

√√√√ 1

|T |

|T |∑
t=1

(θt − θttgt)2, (19)

where | · | represents the cardinality of a set.
For the signal space resttx, our learning scheme

uses a Recurrent Neural Network (RNN) with leaky-
integrated discrete-time continuous-value units. Let
Win ∈ RNres×(1+Ninp) and W ∈ RNres×Nres denote the in-
put and reservoir weight matrices, respectively. Further
let δ ∈ (0, 1] denote the leaking rate. Then, the signal
space resttx can be updated as

r̃es
t
tx = tanh(Win[1; inpt

tx] + Wrest−1tx ), (20)

resttx = (1− δ) rest−1tx + δ r̃es
t
tx (21)

where tanh(·) is the transfer function, and [·; ·] stands for
matrix concatenation operation. Then the output θt can
be given as

θt = Wout[1; inpt
tx; resttx], (22)

where Wout ∈ RNout×(1+Ninp+Nres) is the output weight
matrix of the ESN.

Mobility Information Feedback. As illustrated in Step
3© in Fig. 2, Drone Rx feeds back its mobility information

to Drone Tx. This includes the average and variance of
acceleration information measured by the linear acceler-
ator sensor and the angular information of the receive

antenna measured by the gyroscope sensor. It is worth
pointing out that, the feedback can be accomplished via
either in-band or out-band channels and we assume that
the feedback is error free, e.g., by using strong channel
coding protection or retransmissions. This assumption is
reasonable because, as mentioned earlier in this section,
in this work we are interested in designing light-weight
beam control schemes since the statistical information of
the drones’ mobility changes slowly with time and no
frequent feedback is needed. The experiment setup for
drone mobility measurements and the ESN training will
be further discussed in Section 5.

5 FIELD MEASUREMENT AND ESN TRAINING

Recall that θttgt in (18) and (19) represents the target
beamwidth, which is needed during the training phase
of LeBeam. In LeBeam, θttgt is obtained based on grid
search with mobility traces of flying drones collected
through a series of field experiments.

Mobility Measurement. The experimental setup is
shown in Fig. 3. In the experiments, an Intel Aero
Ready-to-Fly (RtF) drone [64] is used to carry an An-
droid smartphone with inbuilt linear acceleration and
gyroscope sensors3. Sensor Kinetics Pro App is used to

3. In this work we consider Intel Aero RtF drones each of weight
865 g without batteries to measure the in-flight mobility uncertainties.
In future work, we will consider other commercial drones to capture
the impact of the drone’s weight on the in-flight mobility uncertainties
and hence the quality of the wireless links in the mmWave and THz
bands, e.g., DJI Mavic Air 2 [65] and DJI Matrix Pro [66] with weight
of 570 g and 5930 g (without batteries), respectively.

Drone-carried Nexus 6 smartphone with built-in 
gyroscope and linear acceleration sensors

Intel Aero Ready-to-Fly Drone

Fig. 3: Field measurement of drone flight uncertainties.
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Fig. 4: Examples of drone mobility traces with (a) micro-, (b) small- and (c) large-scale uncertainties in windy weather. The top,
middle and bottom subfigures correspond to the roll, pitch and yaw dimensions of the trace, respectively.

6



0.02 0.00 0.02 0.04 0.06 0.08
Values

0

10

20

30

40

50

De
ns

ity

Normal Distribution
Gamma Distribution
Beta Distribution

Mean: 0.023
Variance: 8.714e-5

0.02 0.00 0.02 0.04 0.06 0.08
Values

0

5

10

15

20

25

30

De
ns

ity Normal Distribution
Gamma Distribution
Beta Distribution

Mean: 0.026
Variance: 1.87e-4

0.0000 0.0005 0.0010 0.0015 0.0020
Values

0

250

500

750

1000

1250

1500

1750

De
ns

ity

Normal Distribution
Gamma Distribution
Beta Distribution

Mean: 0.001
Variance: 7.469e-8

0.000 0.002 0.004 0.006
Values

0

100

200

300

400

500

600

700

De
ns

ity

Normal Distribution
Gamma Distribution
Beta Distribution

Mean: 0.001
Variance: 4.801e-7

(a) (b) (c) (d)

Fig. 5: Statistical behavior of the measured drone mobility. (a): Linear displacement, small-scale, windy; (b) Linear displacement,
large-scale, windy; (c) angular displacement, small-scale, windy; and (d) angular displacement, large-scale, windy.

Weather Mobility Linear Angular
Condition Pattern Acceleration Velocity

Windy
Micro-scale Traces 1 - 20 Traces 121 - 140
Small-scale Traces 21 - 40 Traces 141 - 160
Large-scale Traces 41 - 60 Traces 161 - 180

Non-Windy
Micro-scale Traces 61 - 80 Traces 181 - 200
Small-scale Traces 81 - 100 Traces 201 - 220
Large-scale Traces 101 - 120 Traces 221 - 240

TABLE 1: Data set of drone mobility traces collected during
the field measurements for linear acceleration and angular
velocity in different weather conditions.

record the measured mobility data, including the angular
velocity of the orientation and rotation of drone, and the
acceleration of the drone movement excluding the effect
of gravity of Earth.

The experiments are conducted in outdoor environ-
ments with different weather conditions: non-windy day
and windy day. In each weather condition, we measure
the micro-, small- and large-scale mobility uncertain-
ties of the drone, caused by the engine operation and
propeller rotation, the disturbance when hovering, and
the in-flight instability, respectively. A set of 240 drone
mobility traces have been collected, with 120 traces for
each weather condition. Each trace lasts 5 seconds, with
the sampling rate configured to 200 Hz for the gyroscope
and linear acceleration sensors. Figures 4(a)-(c) give the
examples of the angular velocity traces of the drone
in windy weather condition with micro-, small- and
large-scale mobility uncertainties, respectively. In each
figure, the top, middle and bottom subfigures plot the
roll, pitch and yaw angular velocity (in rad/s) of the
drone, respectively, with each time slot corresponding
to a sampling period (5 ms). From Fig. 4(a) it can be
seen that, as expected, in the presence of only micro-
scale mobility the drone experiences very frequent fluc-
tuations but in a very small range (up to 0.05 rad/s).
Differently, the fluctuations resulting from small- and
large-scale mobility are in obviously larger ranges as
shown in Figs. 4(b) and (c). The resulting data set is
summarized in Table 1 and has been made available via
GitHub [24].

We further calculate the linear displacement and an-
gular displacement in different time slots and fit their

Mobility Uncertainty
KS Test

Linear Displacement Angular Displacement
Statistic p-value Statistic p-value

Small-scale Non-Windy 0.50001 0.00777 0.50009 0.00776

Large-scale Non-Windy 0.50012 0.00776 0.50083 0.00763

Small-scale Windy 0.50011 0.00776 0.50011 0.00776

Large-scale Windy 0.50014 0.00775 0.50036 0.00771

TABLE 2: Kolmogorov-Smirnov statistical hypothesis testing

distributions with existing statistical models, including
normal, gamma and beta distributions. Examples of the
fitting results are reported in Figs. 5(a) and (b) for
linear displacement with small- and large-scale mobility
uncertainties in windy environments and Figs. 5(c) and
(d) for the angular displacement. It can be found that
it is hard to use these statistical models to characterize
the multi-scale mobility uncertainties of flying drones
in different scenarios. For example, the beta distribution
fits best the small-scale linear displacement with small-
scale mobility in Fig. 5(a) but not in Fig. 5(b) with
large-scale mobility. Similarly, the gamma distribution
fits the angular displacement in Fig. 5(c) but not for
Fig. 5(d). We further test the accuracy of the fitting
by conducting statistical hypothesis testing for linear
displacement and angular displacement. We consider
Kolmogorov-Smirnov Test [67] as an example, while
other approaches can also be adopted such as Chi-square
Test [68]. The results are reported in Table 2 for normal
distribution based fitting, while the results are similar
for the other distributions. It can be seen that the p-
value in all the tested cases is less than 0.05, a threshold
below which it means that the data does not fit well
normal distribution. As a result, the optimal expected
link capacity in (11) cannot be derived in closed-form in
the presence of drone mobility with unknown and time-
varying distributions. This motivated us to capture the
statistical behavior of the drone mobility through ESN
learning in the design of LeBeam. Next we describe how
to train the ESN based on the collected drone mobility
traces.

LeBeam Training. Recall in (18) that in the training
phase of LeBeam, in addition to the statistical drone
mobility information we also need to feed the target
beamwidth θttgt to the ESN reservoir computing. In
LeBeam this is accomplished by grid searching the op-
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Fig. 6: UBSim Diagram.

timal beamwidth for a subset of the collected drone
mobility traces, while the rest of the traces are used
for testing. Specifically, given a training mobility trace,
we first perform grid search for each time slot t with
directivity angles θ varying from 1 degree to 75 degrees
with step of 1 degree. For each angle, we calculate the
transmit wavefront and receiving areas given by (4) and
(5), respectively. We then obtain the overlapping area
which will be used to obtain the transmit power given
by (6) and ultimately obtain the SNR given by (10), based
on which we can further calculate the capacity given
by (1). This process is repeated for all the time slots.
Then, we determine the directivity angle that achieves
the maximum capacity and use it as the target directivity
angle θttgt. The input and output weights of LeBeam is
updated such that the RMSE in (19) is minimized. In
Section 6, we will test the performance of the trained
ESN model by considering the rest of the collected drone
mobility traces.

6 PERFORMANCE EVALUATION

We evaluate the performance of LeBeam proposed in Sec-
tion 4 in terms of beamwidth prediction accuracy and the
achievable link capacity. In the experiments the center
frequency and bandwidth for the mmWave band is set
to 30 GHz and 1 GHz, respectively. For the THz band, the
center frequency is set to 300 GHz and the bandwidth is
set to 10 GHz. The transmit power for mmWave and THz
bands are set to 500 mW and 20 mW, respectively. It is
worth pointing out that we consider both mmWave and
THz bands because, on one hand, we want to show that
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Fig. 7: Link capacity with different beam directivity angles.

our beam control algorithm proposed in Sections 4 and
5 is not limited to any specific frequency band, and on
the other hand, we expect to understand how differently
the two spectrum bands perform in the presence of in-
flight mobility uncertainties. Moreover, it is also impor-
tant for many emerging applications to operate on both
mmWave and THz frequency bands [50], [69]–[71]. For
example, in next-generation (i.e., 5G and Beyond) wire-
less networks with drone base stations, while mmWave
communications can be used for fronthaul links, the
backhaul links can operate on both mmWave and THz
bands. The experiments are conducted over UBSim, a
newly developed discrete network simulator driven by
flight traces for broadband aerial-ground wireless net-
working. Next, we first briefly introduce the design of
UBSim, and then present the simulation results including
the effects of mobility uncertainties on link capacity,
prediction accuracy of LeBeam, as well as the effects of
directivity angles and beam alignment latency (BAL).

UBSim Development. UBSim is a Python-based trace-
driven simulator for broadband integrated aerial-ground
wireless networks. As shown in Fig. 6, UBSim comprises
of four modules: Network Configuration Module (NCM),
Network Element Module (NEM), Discrete Event Driver
(DED), and Custom Algorithm Module (CAM). Through
the NCM module, one can configure various network
parameters, including the bandwidth of each spectrum
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Fig. 8: Effects of different mobility uncertainties on link capacity in non-windy and windy weather. (a) and (b): Actual Capacity;
(c) and (d): Normalized Capacity.
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Fig. 9: Link SNR with different beam alignment latency (BAL) (a) BAL = 1, (b) BAL = 100.

band, the transmission power of the nodes, and the
drone mobility traces to use, among others. The NEM
module defines the classes for all the network elements,
including Network, Flying Drone Hotspots, Links among
others. These classes have been designed in a hierarchi-
cal manner. At the highest level is a general network
element class net elmt, which defines the basic network
element attributes and operations such as registering
an element in the network, specifying the parent and
children elements of an element. The DED module
provides the discrete network simulation environment
based on the open-source library SimPy [72]. Finally,
the CAM module hosts the custom-designed network
control algorithms (LeBeam in this work).

Link Capacity With Mobility Uncertainties. We first
study the effects of directivity angle on the wireless
link capacity taking the THz band as an example, We
consider one mobility traces for windy and non-windy
weather, respectively. The directivity angle is varied from
1 to 75 degrees with step of 1 degree. For each angle, the
link capacity is averaged over all the time slots for each
mobility trace. The results are reported in Fig. 7. It can be
seen that when drones are flying in non-windy environ-
ments, the maximum THz link capacity (around 2 Gbps)
is achieved with directivity angle of 4◦. Differently, when
they are flying in windy weather the maximum capacity
(around 1 Gbps) is achieved with directivity angle of
10◦. This is because in windy environments the drones
experience more frequent small-scale fluctuations, and
larger directivity angles can lead to lower link outage
probability. This verifies the importance of dynamically
adapting the directivity angle to the drone’s mobility
uncertainties.

Figure 8 shows the effects of different mobility uncer-
tainties on the link capacity. We consider a total simula-
tion time of 1000 slots, with each time slot of 5ms. The
beamwidth is set to 10◦ and the beam alignment latency
is set to 100 slots, i.e., 0.5s. We consider THz-frequency
band, and plot the actual link capacity in Figs. 8(a)

and 8(b) and the normalized capacity in Figs. 8(c) and
8(d). The normalized capacity is obtained by dividing
the actual link capacity by the capacity achieved with
perfect antenna alignment (or no misalignment). It can
be seen that the wireless link can maintain an average
capacity of 2711 Mbps in the presence of only micro-scale
mobility caused by the vibration of the engine operation
and propeller rotation. This corresponds to normalized
capacity of 1, as shown in Figs. 8(c) and 8(d). Differently,
in the case of small- and large-scale mobility, the wireless
link experiences an outage soon after the experiment
starts. For example, in Figs. 8(a) and (c) we can see
that the link capacity as well as the normalized link
capacity undergoes frequent fluctuations due to beam
misalignment. This implies that the negative effects of micro-
scale mobility uncertainties on the link capacity can be safely
ignored. For example, no adaptive beamforming scheme
will be needed when the drones are just landed while
their engines are still operating, because they experience
only micro-scale mobility in that case. This also implies
that in the case of general mobility it is sufficient to
perform beamforming adaptations at the time scale of
small-scale rather than micro-scale mobility.

Figure 9 reports the effects of directivity angles on
the wireless link quality in terms of SNR with different
beam alignment latency (BAL), taking the THz band and
mobility uncertainty in windy weather as an example,
while similar results can be obtained for mmWave band.
We consider BAL of 1 and 100 time slots (corresponding
to 5 ms and 500 ms, respectively) and calculate the SNR
of the THz link with directivity angles of 1, 2, 5 and
10 degrees. With BAL of 1 time slot, the average SNR
(around 10.85 dB) is achieved with directivity angle of
1◦. This is because the THz link can recover from the
misalignment almost in real time, and hence higher SNR
can be achieved by transmitting with smaller directivity
angle to concentrate better the signal energy. However,
with BAL of 100 time slots (i.e., 500 ms), we can see that
the THz-band link is disconnected frequently (with prob-
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Fig. 10: Effectiveness of LeBeam. (a) large scale, windy.; (b) Complexity Analysis of LeBeam for large scale, windy.
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Fig. 11: MmWave-band link capacity with different directivity angles. (a) Small scale, non-windy; (b) large scale, non-windy;
(c) small scale, windy; and (d) large scale, windy.
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Fig. 12: mmWave band Link capacity with different beam
alignment latency.

ability of 13%-82%), because of the misalignment caused
by the large- and small-scale mobility of the UAVs in
windy weather. Recall that in the above experiments
no adaptive beamwidth control (i.e., LeBeam) has been
adopted. In the following experiments we will test the
effectiveness of the proposed LeBeam scheme.

Effectiveness and Complexity of LeBeam. In this
experiment we verify the effectiveness of the proposed
LeBeam scheme in terms of prediction accuracy. To this
end, the ESN model in LeBeam is trained as described
in Section 4 using the drone mobility traces collected in
Section 5, and validated based on k-fold cross validation

[73]. A total of 60 traces for each weather condition was
obtained with 20 traces for each mobility pattern. In the
training and validation phases, we select a random trace
from the mobility trace dataset (Table 1) for each mobility
pattern and weather condition, while the remainder of
the dataset is used for testing. The selected trace contains
1000 drone trajectory samples, i.e., 1000 samples with
sampling rate of 200 Hz. The measurement for the two
weather conditions were conducted on different days
using the same drone and android smart phone to
account for any calibration errors. Figure 10(a) shows an
example of the LeBeam validation results, where it can
be seen that LeBeam can predict effectively the optimal
directivity angle.

We further study the complexity of LeBeam algorithm.
The experiments are conducted on a workstation with
Intel(R) Core(TM) i7 − 10510U CPU @ 1.80 GHz 2.30
GHz, memory of 16.0 GB, and 64-bit Windows Operating
System. The results are reported in Fig. 10(b) where we
plot the execution time of LeBeam as a function of data
sample size. It can be seen that the complexity of LeBeam
in terms of execution time increases linearly with the
data size.

MmWave Link Capacity with LeBeam. In the follow-
ing set of experiments, we will evaluate the effectiveness
of LeBeam in the presence of BAL. To this end, we
compare LeBeam with benchmark directivity angles of 1◦
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Fig. 13: THz-band link capacity with different directivity angles. (a) Small scale, non-windy; (b) large scale, non-windy; (c)
small scale, windy; and (d) large scale, windy.
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and 5◦. Additionally, to show the optimality of LeBeam
we perform grid search to determine the optimal angle
at each time slot and obtain the corresponding capacity.
This capacity is used as the upper bound for perfor-
mance analysis. The beam alignment latency is set to
100 time slots (i.e., 500 ms). The results are reported in
Fig. 11 for the mmWave band. It can be seen that signif-
icant capacity gain can always be achieved by LeBeam.
For example, in Fig. 11 LeBeam can achieve capacities
of 105 Mbps, 113 Mbps, 96 Mbps and 109 Mbps for the
mmWave band with small-scale non-windy, large-scale
non-windy, small-scale windy and large-scale windy
uncertainties, respectively. With fixed directivity angle,
e.g., 5◦, the corresponding capacities are only 50 Mbps,
51 Mbps, 36 Mbps and 49 Mbps, respectively which on
average is 2.3 times less compared to LeBeam.

We further verify the robustness of LeBeam in the
presence of different beam alignment latency. We plot
the capacity achieved by LeBeam with beam alignment
latency of 1, 10, 25, 50 and 75 time slots. The case with
latency of 1 time slot (5 ms) is considered as the optimal
beam control scheme. The results for mmWave band
are reported in Fig. 12 by averaging over the entire
testing duration of 1000 time slots. We can see that nearly
optimal capacity can be achieved with beam alignment
latency of up to 25 time slots (i.e., 125 ms) in non-windy
as well as windy environments. However, when the
beam alignment latency increases to 50 time slots, the
capacity decreases by 54% on average (51%, 56%, 53%
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Fig. 15: THz band Link capacity with different beam alignment
latency.

and 55% for the four uncertainty cases, respectively).
Similarly, the average decrease in capacity is 70% with
beam alignment latency of 75 time slots.

THz Link Capacity with LeBeam. Similar results can
be obtained for the THz band as reported in Figs. 13
and 15. Comparing Fig. 13 with Fig. 11, it can be found
that with 10 times larger bandwidth than the mmWave
band, the THz-band link can achieve on average 6.5
times higher capacity than the mmWave band, which
is 6.53, 6.49, 6.45, 6.46 times in Figs. 13(a), (b), (c), (d),
respectively. The resulting overall spectral efficiency are
plotted in Fig. 14. In Fig. 15, we further plot the link
capacity of the THz link with different beam alignment
latency. Similar to Fig. 12, nearly optimal capacity can
also be achieved by LeBeam on the THz band with BAL
of up to 25 time slots. However, with BAL of 50 and
75 time slots the decrease in capacity is 66% and 80%,
respectively. This means that, as expected, the THz band
is affected more in the presence of higher BAL compared
to mmWave band.

7 CONCLUSIONS

In this paper we have studied the effects of mobility
uncertainties on mmWave/THz-band communications
between flying drones. The mobility uncertainties of
the flying drones were characterized based on a se-
ries of field measurements. The link capacity of the
mmWave/Thz links has been analyzed in the presence
of micro-, small- and large-scale mobility uncertainties.
It is found that, without adaptive beamwidth control,
the micro-scale mobility has only negligible effects on
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the link capacity (less than 1%), while the wireless
links experience significant capacity degradation (over
50% on average) in the presence of small- and large-
scale mobility uncertainties. To address this problem, we
have proposed a stochastic beam control scheme LeBeam,
which can predict the optimal beamwidth based on the
first- and second-order moments of the drone mobility.
Through an extensive simulation campaign, we showed
that LeBeam can effectively predict the optimal directivity
angle. Moreover, it is shown that good performance
can be achieved by LeBeam in the presence of low-
and moderate-level beam alignment latency, e.g., nearly
optimal link capacity can be achieved by LeBeam if the
latency is less than 125 ms. The dataset of the drone
flight traces and source code generated through the
experiments have been released to the community via
GitHub [24].
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