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Abstract—This article studies distributed algorithms to control
self-organizing flying drones with massive MIMO networking
capabilities - a network scenario referred to as mDroneNet. We
attempt to answer the following fundamental question: what is
the optimal way to provide spectrally-efficient wireless access to
a multitude of ground nodes with mobile hotspots mounted on
drones and endowed with a large number of antennas; when we can
control the position of the drone hotspots, the association between
the ground users and the drone hotspots, as well as the pilot
sequence assignment and transmit power for the ground users?
To the best of our knowledge, this is the first time that massive
MIMO capabilities are considered in self-organizing flying drone
networks.

We first derive a mathematical formulation of the problem
of joint power, association and movement control in mDroneNet,
with the objective of maximizing the aggregate spectral efficiency
of the ground users. It is shown that the resulting network control
problem is a mixed integer nonlinear nonconvex programming
(MINLP) problem. Then, a distributed solution algorithm with
polynomial time complexity is designed by solving three closely-
coupled subproblems: access association, joint pilot sequence
assignment and power control, and drone movement control.
As a performance benchmark, a globally-optimal but centralized
solution algorithm is also designed based on a combination of the
branch and bound framework and convex relaxation techniques.
Results indicate that the distributed solution algorithm converges
fast (within tens of iterations) and achieves a network spectral
efficiency very close to the global optimum obtained by the
centralized solution algorithm (over 90% in average).

Index Terms—Wireless Drone Networking, Massive MIMO,
Distributed Control, Nonconvex Optimization.

I. INTRODUCTION

Wireless data traffic is drastically increasing following the
increased prevalence of video streaming applications and the
explosion of the Internet of Things (IoT), such as augmented
reality, intelligent transportation and surveillance [2]–[6]. This
has resulted in an increasing demand for faster wireless com-
munication networks with higher spectral efficiency, as well
as techniques to reduce the interference between co-located
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wireless links operating on the same spectrum bands and
hence to increase the spectral efficiency [7], [8]. In this article,
we focus on studying new approaches to provide ground
connectivity by exploring the application of self-organizing
flying drones (aka unmanned aerial vehicles or UAVs) with
massive MIMO networking capabilities, a network scenario
we refer to as mDroneNet.1

mDroneNet. As illustrated in Fig. 1, in mDroneNet there
are a set of many-antenna-enabled flying drones to collabo-
ratively provide data collection and forwarding services to a
group of single-antenna ground users, and send to the ground
users control commands generated either locally at the drones
or in a remote fusion center. A wide range of new applications
can be enabled by using massive MIMO on UAVs, includ-
ing high-data-rate mobile multimedia sensing and networking
through massive MIMO communications, beamforming-based
spectrum sharing and coexistence in the unlicensed spectrum
bands with redeployable drone base stations, secure wire-
less networking in contested environments through massive-
MIMO-based directional communications, aerial edge comput-
ing with massive-MIMO-enabled flying drones, among others.
In this article, we attempt to study the best way to provide
spectrally-efficient wireless access to a group of ground users
with mobile hotspots mounted on flying drones and endowed
with a large number of antennas; when we can control the
movement of the drones, access association, as well as the
pilot assignment and transmit power for the massive MIMO
communications between the ground users and the drones.
It is worth pointing out that the operation time of a drone
is affected by different factors, including the lifetime of the
battery, the energy source type, as well as the weight, speed
and flight trajectory of the drone, among others [10]. Recently
new technologies have been proposed to extend the battery
duration, e.g., automated battery swap and recharge [11], [12]
and dynamic recharging scheduling [13], [14].

In mDroneNet these network control strategies are tightly
coupled with each other and should therefore be jointly
considered to obtain the optimal network operating point.
Compared to infrastructure-based cellular networks with static
massive MIMO base stations [9], [15]–[18], a peculiar feature
of mDroneNet is that the drone hotspots can provide coverage

1It is reasonable to integrate massive MIMO on UAVs. This is because
massive MIMO can achieve realistic form factors as long as different ground
users have distinct spatial channel characteristics rather than that the antennas
observe uncorrelated channels [9]. As a result, e.g., at 2 GHz frequency
band it requires only a 0.75× 0.75 meter array to deploy 100 dual-polarized
antennas, for which it is practical to deploy the antennas on currently available
commercial off-the-shelf UAVs.
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Fig. 1: mDroneNet: Wireless networks with massive-MIMO self-organizing flying UAVs.

with higher spectral efficiency, by moving dynamically to
adapt to the changes in the location or traffic demands of the
ground nodes, nodes leaving or joining the network, as well as
time and the spatially-varying interference level, among others.
Moreover, in mDroneNet a massive MIMO transmission is
typically conducted in two phases: pilot-based channel esti-
mation and data transmission, while all the ground nodes are
allowed to operate over the entire available spectrum band and
at any transmission time. In this setting, the maximum number
of ground nodes associated to a drone hotspot is constrained
by the length (in symbols) of the pilot sequences used in
the channel estimation phase. Pilot contamination will occur
if the same pilot sequence is shared by multiple users, and
this will result in degraded accuracy of channel estimation
and hence lower spectral efficiency [19], [20]. Therefore, it
is imperative to jointly regulate the transmit power of the
ground nodes as well as the association among the ground
nodes, the drone hotspots and the available pilot sequences, to
eliminate the mutual interference caused by imperfect channel
orthogonalization in the case of limited number antennas at
each drone.

Novelty and Contributions. Massive MIMO networking
has recently received a significant attention in the scientific
literature [9], [15]–[18], [21]–[30]. Readers are referred to
[9], [19], [20], [31], [32] and references therein for ex-
cellent surveys of the main results in this area. However,
most existing research on massive MIMO has been focus-
ing on theoretical analysis of spectral/energy efficiency [15],
designing new beamforming signal processing technologies
[9], [16], increasing robustness against both unintended in-
terference [17], [18] and one-way/two-way droning [26]–[30]
in infrastructure-based cellular networks with static massive-
MIMO-enabled base stations, while the potential of massive
MIMO in infrastructure-less wireless ad hoc networks has not
been explored yet. While unmanned aerial networking has
also attracted extensive research in the past decade with a
large and growing body of literature [33]–[52], very few of
these work has taken massive MIMO into consideration. To
the best of our knowledge, this is for the first time massive
MIMO is considered in large-scale wireless networks with self-
organizing flying drone hotspots.

As will be clear in Section III, the resulting mDroneNet con-
trol problem studied in this article is a mixed integer nonlinear
nonconvex programming (MINLP) problem because of the
binary variables for access association and pilot assignment.

Such problems are generally NP-hard and there is no existing
solution algorithm that can be used to obtain the globally
optimal solution with polynomial computational complexity.
In this paper, we claim the following main contributions:
� mDroneNet framework and formulation. We study for

the first time mDroneNet, a new framework for self-
organizing aerial drone hotspots with massive MIMO
networking capabilities. Our objective is to maximize the
spectral efficiency of mDroneNet by jointly controlling
the movement of the drones, access association and pilot
assignment, as well as the transmit power of the ground
users.

� Distributed solution algorithms. As in [53], we focus on
distributed algorithm design for mDroneNet. Compared
to centralized control, distributed control does not require
the network to collect the full statistical channel state
information (CSI), the power of noise and locations,
among other network parameters, from all the ground
users and flying UAVs at a centralized control entity.
As a result, the network control does not suffer from
the single point of failure problem and hence is more
robust. Moreover, distributed algorithms are essential
particularly in large-scale wireless networks with multiple
self-organizing UAVs and ground users for scalable and
low-latency network control. In this work, we decompose
the resulting MINLP problem into three distributed sub-
problems based on primal decomposition, and design
solution algorithms for each of them: user-drone access
association, joint pilot assignment and power control, and
drone movement control.

� Globally optimal solution algorithm. To provide a perfor-
mance benchmark for the distributed solution algorithm,
we design a centralized but globally optimal solution
algorithm based on a combination of the branch and
bound framework and of convex relaxation techniques
that can result in an "-optimal solution with " being a
predefined level of optimality precision.

� Performance evaluation. The performance of the pro-
posed distributed solution algorithm is evaluated in terms
of network spectral efficiency by comparing it to the
global optimum through extensive simulation experi-
ments. Results indicate that the distributed solution al-
gorithm can achieve on average over 90% of the global
optimum. The convergence behaviors of the proposed
solution algorithms are also evaluated.
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The remainder of the paper is organized as follows. We review
related work in Section II, and describe the system model and
problem formulation in Section III. In Sections IV and V, we
present the distributed solution algorithm and the centralized
solution algorithm, respectively. Performance evaluation of the
proposed solution algorithms is presented in Section VI, and
finally we draw conclusions in Section VII.

II. RELATED WORK

There is a large and growing body of literature on un-
manned aerial vehicular networking, focusing on UAV-assisted
guidance [33], UAV-based data collection [34], [37], [38] and
relaying [35], [36], [39], [41], [43], [45], [46], ground-aerial
channel measurements [40] as well as tracking and control of
UAV networks [42], [44], [54]. Readers are referred to [47]–
[52] and references therein for an extensive survey of this
research area. Most of these works focus on single-antenna
aerial vehicles and conventional MIMO, with very few recent
efforts considering massive MIMO [54]. Different from [54],
where Chandhar et al. derived the achievable uplink capacity
from a many-antenna ground base station to a set of single-
antenna aerial drones, in this paper we maximize the aggregate
throughput of single-antenna ground nodes served by a set of
aerial drones each endowed with a large number of antennas.

Compared to conventional multiuser MIMO, massive
MIMO can attain much higher spectral efficiency by using
a large number of antennas with low-complexity linear pre-
coding technologies [16], [19], [27]–[30], [55]. In [29], the
authors derived an exact achievable rate expression in closed-
form for maximum-ratio combining/maximum-ratio transmis-
sion (MRC/MRT) processing and an analytical approximation
of the achievable rate for zero-forcing (ZF) processing for
multi-pair full-duplex massive MIMO relay system. In [27],
Jin et al. derived the ergodic rates in the case of a finite
number of antennas and concluded that the ergodic sum-rate
can be maintained while the relay power is scaled down by
a factor of the number of the antennas at the relay over
the number of users. Amarasuriya investigated in [28] multi-
user massive MIMO relay networks with ZF-processing by
deriving the achievable sum rate expressions in both perfect
and imperfect CSI cases. In [55], the problem of joint power
and time allocation is addressed for secure communications
in a decode-and-forward massive MIMO relaying system in
the presence of adversary eavesdroppers. In [30], the spectral
and energy efficiency for multiple amplify-and-forward two-
way full-duplex massive MIMO relay systems are studied.
Finally, [9], [19], [20], [31], [32] contain good surveys and
tutorials on massive MIMO networking. These papers are
focused on infrastructure-based cellular networks with static
many-antenna-enabled base stations, and focus on asymptotic
performance analysis with respect to a single network param-
eter (e.g., power). Our paper, instead, considers for the first
time aerial drone hotspots with massive MIMO capabilities in
infrastructure-less network scenarios2.

2Each drone hotspot is essentially a mobile base station and can serve
as the mobile infrastructure for ground wireless networks. In this paper by
infrastructure-less networks we refer to wireless networks without centralized
coordination of the self-organizing flying hotspots.

TABLE I: Summary of Key Notations

Notation Physical Meaning
A Set of all aerial drones
G Set of all ground users
Ga Set of ground users associated to drone a ∈ A
W Set of pilot sequences available to mDroneNet
αga 1 if ground user g is associated to drone a, and 0 otherwise
α Access association vector: (αga)

a∈A
g∈G

pg Transmit power of ground user g ∈ G
p Transmit power vector of ground nodes: (pg)g∈G

µgw
1 if pilot sequence w ∈ W is used by ground user g,
and 0 otherwise

µ Pilot sequence assignment vector: (µgw)w∈W
g∈G

xa, ya, za x-, y- and z-axis coordinates of drone a ∈ A

x,y, z
x-, y- and z-axis coordinate vector of drones: (xa)a∈A,
(ya)a∈A, and (za)a∈A

pmax Maximum transmit power of ground node
γg Achievable SINR of ground node g ∈ G
τ Pilot sequence length in symbol
M The number of antennas of each drone hotspot
a(g) Service aerial drone of node g ∈ G
βg0g Channel gain from ground node g′ to aerial drone a(g)

Ig
The set of ground users sharing the same pilot sequence
with user g

A(Ig) Set of aerial drones of interfering nodes in Ig

Hg0g Path loss from ground node g′ to aerial drone a(g)
ρg Nominal SNR for ground user g
Ga The number of ground users served by drone a ∈ A
Gmax Maximum of Ga

Rg Achievable throughput of ground node g ∈ G

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider wireless networks where a set of many-antenna
drone hotspots serve a set of single-antenna ground users,
as illustrated in Fig. 1. The drones collect field information
from the users, make action decisions either locally at each
drone or by sending the information fusion results to a remote
control center, and finally send the action commands back to
the ground users. Our objective is to maximize the network-
wide spectral efficiency for the uplink transmissions since
it causes only low-level traffic load to transmit information
fusion results and control commands in the downlinks. We
consider joint control of the movement of aerial drones, the
association among the ground users and the drones, as well as
the pilot sequence assignment and transmit power control for
the ground nodes. It is worth pointing out that we consider
single-antenna ground users in mDroneNet because we want
to keep the theoretical analysis and algorithm design tractable,
while the control of mDroneNet with multiple-antenna ground
users will be studied in our future research. Next, we formalize
the network control problem by describing the system model.
The key notations are summarized in Table I for the reader’s
convenience.

System Model. As mentioned in Section I, a massive
MIMO transmission is typically accomplished in two phases,
i.e., channel estimation and data transmission [19], [20], [31].
In our case, the ground users send a set of pilot sequences
to the drones for channel estimation in the first phase, while
in the second phase the drones detect the data from the users
based on the estimated channel state information (CSI). Denote
A, G and W as the sets of the drone hotspots, ground users,
and the available pilot sequences, respectively. Define �ga as
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the access association variable. Let �ga = 1 if user g 2 G is
associated with drone a 2 A, and �ga = 0 otherwise. Denote
the access association vector as � , (�ga)a2Ag2G . Similarly,
let � = (�gw)w2Wg2G represent the pilot sequence allocation
vector, with �gw = 1 if pilot sequence is associated to ground
user g and �gw = 0 otherwise. We consider single-home
accommodation for the ground users in favor of tractable
complexity in modeling and theoretical analysis, i.e., each
ground user is associated to at most one drone hotspot and
at most one pilot sequence. Then we have

�ga 2 f0; 1g; 8g 2 G; a 2 A (1)
�gw 2 f0; 1g; 8g 2 G; w 2 W (2)X
a2A

�ga � 1; 8g 2 G; (3)X
g2G

�ga � Gmax; 8a 2 A; (4)X
w2W

�gw � 1; 8g 2 G; (5)

where Gmax is the maximum number of ground users that
can be served by each drone hotspot a 2 A.3 Let Ga � G
and G0w � G represent the set of users associated with drone
a and the set of users sharing the same pilot sequence w,
respectively, i.e., Ga , fgj g 2 G; �ga = 1g for each
a 2 A, and G0w , fgj g 2 G; �gw = 1g for each w 2 W .
Denote w(g) as the pilot sequence used by ground user g, and
let Ig(�) , G0w(g) represent the set of users using the same
pilot sequence as user g. Similarly, denote a(g) as the service
drone of ground user g 2 G.

Let xa, ya and za represent respectively the x-, y- and z-axis
coordinates of drone a, and define the coordinate vector for the
drones in A as x = (xa)a2A, y = (ya)a2A and z = (za)a2A.
Then, the distance between user g0 and the service drone of
user g (i.e., drone a(g)), denoted as dg0g , can be expressed as

dg0g , dg0g(xa(g); ya(g); za(g))

=
q

(xa(g) � exg0)2 + (ya(g) � eyg0)2 + (za(g) � ezg0)2; (6)

where exg0 , eyg0 and ezg0 represent the x-, y- and z-axis coor-
dinates of ground user g0 2 G, respectively. Further denote
�g0g as the channel gain between ground user g0 2 G and
drone a(g) (i.e., the service drone of user g). Then �g0g
can be expressed as �g0g = Hg0g�g0g , where �g0g represents
the log-normal slow fading between user g0 and drone a(g),
Hg0g , d��g0g is location-dependent path loss with � being path
loss factor and the distance dg0g defined in (6).

3The maximum number of served ground nodes cannot exceed the number
of antennas available to each aerial drone and the length of pilot sequences
used in channel estimation [15].

In this work we focus on the applications of UAVs in
networking environments in rich-scattering environments with
dense and high blockage, while UAV networking in other
scenarios [9], [54], [56]–[59], e.g., LoS-dominant wireless
environments, will be studied in our future work. In this
setting, we consider a model similar to [60], [61] to express
the effective SINR achievable by uplink massive MIMO
communication links, which jointly considers the effects of
pilot contamination and mutual interference among the ground
users. Then, a lower bound of the link capacity achievable by
ground user g in the data transmission phase, denoted as Cg ,
can be represented as

Cg = B log2(1 + 
g); (7)

with 
g being a lower bound of the effective SINR achievable
by ground user g 2 G given as in (8) at the bottom of
this page,4 where � is the length (in symbols) of each pilot
sequence, M represents the number of antennas available
at each aerial drone, �g is nominal transmit signal-to-noise
ratio (SNR) at ground user g; jGa(g)(�)j is the cardinality of
Ga(g)(�), i.e., the set of ground users served by the service
drone of user g; and finally

�g0g ,
X

l2Ig0 (�)

�l�lg (9)

and �g0g is defined as

�g0g =

8<: �g0g; if a(g0) =2 A(Ig(�))

�g0g

�
1� ��g0�g0g

1+��g0g

�
; otherwise;

(10)

with A(Ig(�)) , fa(g0)jg0 2 Ig(�)g representing the set
of service drones of the ground users in Ig(�), i.e., the
users sharing the same pilot sequence with user g. The
average rate achievable in the channel estimation and data
transmission phases, denoted as Rg , can then be expressed
as Rg = (1� �

T )Cg , where Cg is the link capacity achievable
in the data transmission phase in (7), and � and T are
the length of pilot sequences and the period of a massive
MIMO transmission in symbols, respectively [62]. In this
work, we design distributed control algorithms for mDroneNet

4It is worth pointing out that we do not assume perfect CSI in this
paper. This is because the SINR model accounts for different practical
factors that affect massive MIMO networks, including channel-estimation
error, the type of linear spatial multiplexing/de-multiplexing, power control,
noncoherent inter-cell interference, and coherent inter-cell interference due to
pilot contamination, among others [60], [61]. In this setting, as pointed out in
[61], (8) provides a lower bound on the achievable SINR while deriving the
exact closed-form expression of the achievable SINR is still an open problem
as of today. In this work, we study the distributed joint power, association and
flight control in self-organizing massive-MIMO drone networks taking this
SINR model as an example, while the resulting network control framework
is not restricted to any specific SINR models.


g , 
g(�; �; p; x; y; z) =

�
M � jGa(g)(�)j

�
��g�

2
gg(x; y; z)pg=(1 + ��gg)

1 +
P
g02G

�g0gpg0 +

�(M�jGa(g)(�)j)
P

g02Ig(µ)ng
�g0�

2
g0g(x; y; z)pg0

1+��gg

(8)
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Fig. 2: Diagram of the distributed solution algorithm. The shaded blocks with dashed border represent operations of the drone
hotspots while blocks with solid border for the ground users.

by considering data-transmission-phase link capacity (7) and
�xed length of pilot sequences in channel estimation phase.

Problem Statement. Our objective is to maximize the
aggregate capacity of all the ground users inG and hence
the network spectral ef�ciency of the mDroneNet, by jointly
determining the access association vector� , pilot sequence
assignment vector� , the location vectorsx, y and z for the
drones, as well as the transmit power vectorp. The problem
is formalized inProblem 1 as follows.

Problem 1
Given : A ; G; Gmax ; M; ex; ey ; ez

Maximize
� ;� ;p ;x ;y ;z

: U ,
P

g2G
Cg(� ; � ; p; x ; y ; z)

Subject to : 0 � pg � pmax ; 8g 2 G;
xmin � xa � xmax ; 8a 2 A ;
ymin � ya � ymax ; 8a 2 A ;
zmin � za � zmax ; 8a 2 A ;
Constraints (1); (2); (3); (4); (5)

(11)

whereex; ey andez are the location vectors of the ground users;
Cg(� ; � ; p; x ; y ; z) = Cg, the objective function of userg, is
the lower bound of the rate achievable by the user, as de�ned
through (7)-(10);pmax is the maximum transmit power of each
of the ground users inG; and �nally [xmin xmax ] represent the
x-axis movement range of the drones while[ymin ymax ] and
[zmin zmax ] are the ranges of the y- and z-axis, respectively.

The utility function U in (11) is a nonlinear nonconcave
function with respect to the control variables because of the
complicated mathematical expression of the effective SINR
in (8). Moreover, Problem 1 in (11) is a mixed integer-
continuous programming problem because of the binary access
association variables� and pilot assignment variables� .
Given an arbitrary such problem, there is in general no existing
solution algorithm that can be used to obtain the global
optimum in polynomial computational complexity. Next, we
�rst present in Section IV a distributed solution algorithm
that can be used to achieve a sub-optimal solution to provide
a lower-bound on the utility functionU in (11). Then in
Section V we will design a centralized solution algorithm to
provide a performance benchmark for the distributed solution
algorithm.

IV. D ISTRIBUTED SOLUTION ALGORITHM

A key step of the distributed solution algorithm design is to
decompose the original network control problem into a series
of subproblems, by solving which in a distributed manner

the original problem can be solved [63], [64]. However, in
our case the control variables� ; � ; p; x , y andz are closely
coupled with each other in the complicated mathematical
expression of the effective SINR in (8). As a result, the
network control problem, i.e.,Problem 1 in (11), is architec-
turally indecomposable.5 In this work, the distributed solution
algorithms are designed by decomposing the network control
problem following a primal decomposition approach. Roughly
speaking, with primal decompositionProblem 1 in (11) is
solved by dividing the feasible set of the original problem into
multiple parts by �xing a subset of variables at a time, which
are drone location variablesx; y and z, association variables
� as well as transmit power vectorp and pilot sequence
assignment variables� . The overall diagram of the algorithm
design is illustrated in Fig. 2, where the original problem
is solved by iteratively solving three subproblems obtained
from primal decomposition, i.e., access association, joint pilot
assignment and power control, and movement control for the
drones.
A. Access Association

The core idea of the proposed access association strategy is
to let the ground users inG interact iteratively with the drone
hotspots inA to compete for association opportunities based
on certain locally-calculated preference criterion, as illustrated
in Fig. 2. To this end, in each iteration the ground users �rst
report their own association preferences to the drones, which
then make association offers based on the received preference
information. Letx ( � ) , y ( � ) andz( � ) represent the coordinates
of the drones in current iteration� . Then in iteration� +
1 the objective of the access association is to maximize the
aggregate capacity of all the ground users inA by determining
the association vector� ( � +1) subject to association constraints
(1), (3) and (4).

DenoteA ( � )
g � A as the set of drones nearby ground user

g 2 G (i.e., the drones in the communication range of the
ground user). Then, the association preference of ground node
g with respect to dronea 2 A ( � )

g , denoted as� ga , can be
computed as

� ga =
log(1 + 
 ga)

P

a02A ( � )
g

log(1 + 
 ga0)
; (12)

5A problem is architecturally decomposable if its dual problem obtained by
introducing Lagrange multipliers can be rewritten into a set of subproblems,
each of which can be solved locally in a single protocol layer and network
device [63].
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where
 ga0 represents the interference-free single-input-single-
output (SISO) SINR, i.e., the SINR achievable with single
antenna and without interference from the other ground users
co-located in the mDroneNet, achievable by ground userg if
the user is associated with dronea0 2 A ( � )

g . In this work, the
SINR 
 ga0 is de�ned as


 ga0 , � g � gg ja(g)= a0; (13)

with � g being the transmit SNR for ground userg and
� gg ja(g)= a0 being the path loss for the wireless channel
between ground userg and its service dronea(g). Denote
� a = ( � ga)g2 eGa

as the preference vector dronea receives

from its nearby ground users ineGa , f gjg 2 G; a 2 A ( � )
g g.

Then, each dronea 2 A ( � )
g �rst sorts � a in a descending

order and then sends association offers to a preferred set of
maximumGmax of ground users, as follows,

� dsc
a = ( � g1 a ; � g2 a ; � � � ; � gG max a

| {z }
P referred Ground Users

; � � � ); (14)

where Gmax is the maximum number of users each drone
can serve at the same time. LetA o�er

g represent the subset
of the drones that send an association offer to ground user
g, and denotejA o�er

g j as the cardinality ofA o�er
g . Then, each

user accepts the association offer it receives from the drones
corresponding to the highest SISO SINR, i.e., associate with
dronea� with

a� , arg max
a2A offer

g

� ga ; (15)

where� ga is the association preference de�ned in (12). The
above procedure is executed until no ground user receives
more than one association offer. The output of this step is
the updated access association strategies, i.e.,� ( � +1) . The
association strategy is summarized inAlgorithm 1 .

Remark 1: In the association strategy described in
Algorithm 1 , the rationale of computing the association
preference as in (13), i.e., based on the interference-free SISO
SINR, is as follows. In massive MIMO settings, particularly
when the number of antennasM is large, the received SINR
is dominated by the power of noise and large-scale fading
effects, e.g., path loss, shadow fading. Therefore, the capacity
with interference-free SISO capacity, i.e., (12), can serve as a
good indication of association preference and can be computed
with low computational complexity.
B. Joint Pilot Assignment and Power Control

With given coordinates of the drones and the updated access
association vector, i.e.,� ( � +1) obtained in Section IV-A, as

Algorithm 1: Competition-based Access Association

Data: Drone coordinatesx ( � ) , y ( � ) andz( � )

Result: Updated association vector� ( � +1)

1 Initialization: SetjA o�er
g j = jAj , 8g 2 G;

2 Operations for Ground Users:
3 while 9g 2 G, jA o�er

g j > 1 do
4 for each userg 2 G do
5 if jA o�er

g j � 1 then
6 continue;
7 else
8 for each dronea 2 A g, calculate association

preference� ga based on (12) and (13);
9 broadcast the calculated� ga ;

10 end
11 accept association offers based on (15);
12 update� ( � +1) ;
13 end
14 end
15 Operations for Drones:
16 for each dronea 2 A do
17 make association offers based on (14);
18 end

shown in Fig. 2, the objective in the second network control
subproblem is to jointly determine the pilot assignment and
transmit power for the ground users. The subproblem can be
formalized as

Problem 2
Given : x ( � ) ; y ( � ) ; z( � ) ; � ( � +1)

Maximize
� ; p

: U ,
P

g2G
Cg(� ; p)

Subject to : 0 � pg � pmax ; 8g 2 G;
Constraints (2); (5):

(16)

As discussed in Section III,Problem 2 in (16) is a mixed inte-
ger nonlinear and nonconvex programming (MINLP) problem
because of the complicated mathematical expression of the
effective SINR
 g(� ; p) in (8) and that the pilot sequence as-
signment variables take only binary values. Such problems are
generally NP-hard and there is typically no existing solution
algorithm than can be used to obtain the global optimum in
polynomial computational complexity. In this section, we solve
Problem 2 by designing a pricing-based distributed solution
algorithm. To this end, we �rst reformulateProblem 2 by
relaxing the binary pilot sequence assignment variables� .

Problem Reformulation. We �rst relax the pilot sequence


 gw (ep) =

�
M � jG a(g) j

�
� � g � 2

ggpgw =(1 + � � gg)

1 +
P

g02G

P

w 02W
� g0g(� )pg0w 0 +

� (M �jG a ( g ) j)
P

g 02I g n g

P

w 02W
� g 0� 2

g 0g
pg 0w 0

1+ � � gg

(19)

=

�
M � jG a(g) j

�
� � g � 2

ggpgw

(1 + � � gg)(1 +
P

g02G

P

w 02W
� g0g(� )pg0w 0) + �

�
M � jG a(g) j

� P

g02I g ng

P

w 02W
� g0� 2

g0gpg0w
(20)
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Problem 2 (penal )
Given : x; y ; z; � ; ep ( � )

Maximize
ep g

: Ug(epg; ep ( � )
� g ) +

X

g02Gn g

r ep g Ug0(ep ( � ) )( epg � ep ( � )
g )

| {z }
P enalization Item

�
 g

2
kepg � ep ( � )

g k2

| {z }
Convexif ication Item

Subject to : Constraints (24); (25)

(27)

Algorithm 2: Pricing-based Joint Pilot and Power
Control
Data: Drone coordinatesx, y , z; association strategy

� ; � = 0 ; current transmit power vectorep ( � ) ;
� ( � ) > 0

Result: Updated transmit powerep ( � +1) ;
1 for each userg 2 G do
2 Computebpg by solvingProblem 2 (penal) in (27);
3 Set ep ( � +1)

g = ep ( � )
g + � ( � ) (bpg � ep ( � +1)

g );
4 end
5 if ep ( � +1) satis�es certain termination criterionthen
6 STOP;
7 else
8 Set � = � + 1 ; go to Step 1.
9 end

assignment variables� by allowing each ground user to use
multiple pilot sequences. For this purpose, letpgw represent
the transmit power that ground userg 2 G allocates to pilot
sequencew 2 W and de�neep = ( pgw )w2W

g2G . Then the power
constraints in (16) can be rewritten as

0 � pgw � pmax ; 8g 2 G; w 2 W ; (17)
X

w2W

pgw � pmax ; 8g 2 G: (18)

Then, for each pilot sequencew 2 W , the effective SINR

 g de�ned through (8)-(10) can be rede�ned as
 gw (ep) for
each ground userg 2 G, as in (19) and (20) at the bottom of
this page. Then,Problem 2 in (16) can be reformulated as
Problem 2 (reform):

Problem 2 (reform )
Given : x ( � ) ; y ( � ) ; z( � ) ; � ( � +1)

Maximize
ep

: U ,
P

g2G

P

w2W
Cgw (ep)

Subject to : Constraints (17); (18);

(21)

whereCgw (ep) = B log2(1 + 
 gw (ep)) with 
 gw (ep) de�ned in
(19) and (20). Next we solveProblem 2 (reform) in (21) by
designing a distributed pricing-based solution algorithm.

Pricing-based Solution Algorithm. As illustrated in Fig. 2,
the main idea of the pricing-based solution algorithm is to let
each ground user iteratively determine its own pilot assignment
and transmit power by maximizing a penalized version of its
own utility in each iteration. Letp( � )

gw represent the power of
ground userg when transmitting using pilot sequencew in

Algorithm 3: Pilot Sequence Claim
Data: Results of joint pilot and power control:p �

Result: Updated pilot assignment vector� ;
1 Initialization: SetWg = W; 8g 2 G;
2 Set � gw = 1 ; 8g 2 G; w 2 W ;
3 for each userg 2 G do
4 Set � gw = 0 with w� = arg min

w2W g

p�
gw ;

5 SetWg = Wg n w� ;
6 end
7 if

P

w2W
� gw � 1 is satis�ed for all users inG then

8 STOP;
9 else

10 Run Algorithm 2 ;
11 Go to Step 3.
12 end

current iteration� . De�ne

ep ( � )
g = (log( p( � )

gw ))w2W ; (22)

ep ( � )
� g = (log( p( � )

g0w ))w2W
g02Gn g: (23)

Then the transmit power constraints in (17) and (18) can be
rewritten as, in each iteration� = 1 ; 2; � � � ,

ep( � )
gw � log(pmax ); 8g 2 G; w 2 W ; (24)
X

w2W

eep( � )
gw � pmax ; 8g 2 G: (25)

Then, the pricing-based solution algorithm can be formal-
ized in Algorithm 2 at the top of the next page, where
Ug(epg; ep ( � )

� g ) =
P

w2W
Cgw (epg; ep ( � )

� g ) is the individual rate

achievable by ground userg, � ( � ) is the step size in iteration
� . The convergence ofAlgorithm 2 is given in Theorem 1.

Theorem 1. If Algorithm 2 doesn't stop after certain number
of iterations and suppose that the step-size sequencef � ( � ) g is
chosen to satisfy

� ( � ) 2 (0; 1]; � ( � ) ! 0;
X

�

� ( � ) = + 1 ; (26)

then the algorithm converges to a stationary point of
Problem 2 (reform) de�ned in (27), and none of the station-
ary points is local minimum of the problem.

Proof. We �rst show that the utility function of
Problem 2 (reform) in (27) is a strongly concave function
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with respect to the transformed power control variables
ep ( � )

g of ground userg with given control strategiesep ( � )
� g

for the other users inG n g. Since the penalization item
is an af�ne function of ep ( � )

g and the convexi�cation item
is strongly concave with g > 0, we only need to show
that Ug(epg; ep ( � )

� g ) is concave and the feasbile set de�ned by
constraints (24) and (25) is convex. Consider high SINR in
massive MIMO setting, i.e.,
 gw (ep) � 1 in (19) and (20),
then, with the logarithm transformation in (22) and (23), the
achievable rateRgw (ep) in (21) can be represented in the form
of minus-log-sum-expand hence is a concave function [65].
Similarly, the left-hand side of constraint (25) has a form of
log-sum-expand hence the constraint de�nes a convex set.
Then, the convergence ofAlgorithm 2 follows Theorem 3
in [66].

Remark 2:In Theorem 1, the conditions on the choice of
step-size sequencef � ( � ) g is relatively weak; for instance all
the step-size rules using in diminishing gradient-like schemes
can be used here. The following are two effective rules [66],
given � (0) = 1 :

Rule 1 : � ( � ) = � ( � � 1) (1 � �� ( � � 1) ); � = 1 ; 2; � � � (28)

Rule 2 : � ( � ) =
� ( � � 1) + � 1

1 + � ( � )
2

; � = 1 ; 2; � � � (29)

where� 2 (0; 1) and � 1; � 2 2 (0; 1) are prede�ned constants
with � 1 < � 2.

Pilot Sequence Claim. Recall in Section III that we
consider that each ground user occupies at most one pilot
sequence. This is accomplished by pilot sequence claim based
on the results of the joint pilot and power allocation de-
scribed above. Letp � = ( p�

gw )w2W
g2G represent the output of

Algorithm 2 . Then the pilot sequence claim can be summa-
rized in Algorithm 3 as follows, where the rationale of the
pilot sequence claim is to let each user claim not to use the
pilot sequence that has been allocated the least transmit power.

C. Movement Control

As illustrated in Fig. 2, in the third subproblem each drone
determines its own best coordinates to adapt to the changes in
association strategies and transmit power of the ground users
resulting from solving the previous two subproblems. With the
newly obtained association vector� ( � +1) and transmit power
vectorp ( � +1) , the subproblem of aerial drone movement can
be written as, for each dronea 2 A ,

Problem 3
Given : � ( � +1) ; � ( � +1) ; p ( � +1)

Maximize
x ; y ; z

:
P

g2G a

Cg(x ; y ; z);

Subject to : xmin � xa � xmax ; 8a 2 A ;
ymin � ya � ymax ; 8a 2 A ;
zmin � za � zmax ; 8a 2 A ;

(30)

whereGa represents the set of ground users associated with
dronea with given access association vector� ( � +1) . In this
subproblem, the mathematical expression of utility function
Cg(x ; y ; z) de�ned in (7) has a log-convex form, which
is in general nonconcave with respect to coordinate variables

x, y and z. In this paper we solve subproblem (30) using
an interior point method [65] to search for locally-optimal
coordinates for each aerial drone in favor of a low-complexity
distributed solution.

D. Complexity Analysis

In the distributed solution algorithm, the above three sub-
problems are solved iteratively and sequentially at each it-
eration. In the ground-drone association subproblem, the as-
sociation strategy is determined iteratively as well. In each
iteration, the association variable� ga can be determined for at
least one ground node, and therefore the maximum number of
associations isjGj, and the overall computational complexity
of the association isO(jGj). The subproblem of joint power
and pilot control in (27) and the aerial drone movement control
subproblem (30) can be solved in polynomial computational
complexity, i.e.,O(jGjjAj ). Therefore, the complexity of the
overall distributed solution algorithm isO(jGj(jAj + 1)) for
each iteration.

Summary:So far, we have presented a distributed solution
algorithm for mDroneNet (i.e., wireless ad hoc networks
with massive-MIMO drone hotspots) to jointly control the
movement of the drone hotspots, the ground-drone association
as well as power control and pilot sequence assignment for the
ground users. A natural question is:How does the distributed
solution algorithm compare to the global optimum in terms
of aggregate spectral ef�ciency?In the remainder of the
paper we answer this question by designing a centralized
solution algorithm to provide a performance benchmark for
the distributed solution algorithms.

V. CENTRALIZED SOLUTION ALGORITHM

Recall from Section III that, in the social network control
problem, i.e.,Problem 1 in (11), the individual through-
put Cg(� ; � ; p; x ; y ; z) de�ned through (7)-(9) is a noncon-
vex/nonconcave function with respect to coordinates variables
x; y ; z and transmit power variablesp. Moreover, the as-
sociation variables� and pilot sequence assignment variables
� take only binary values. Therefore the resulting network
control problem is a mixed integer nonlinear nonconvex pro-
gramming (MINLP) problem, for which there is in general
no existing solution algorithm that can be used to obtain the
global optimum in polynomial computational complexity. In
this paper, we design a globally optimal solution algorithm
based ona combination of the branch and bound framework
and of convex relaxation techniques[67], [68]. Next we �rst
describe the overall algorithm design framework.

A. Overall Algorithm

Denote� 0 = f � ; � ; p; x ; y ; zj constraints in (11)g as
the feasible set of initial problem (11) and letU � (� 0) represent
the global optimum of problem (11) over� 0, then the objective
of our algorithm is to iteratively search for aU so that

U(� 0) � "U � (� 0); (31)

where " 2 (0; 1] is prede�ned optimality precision. To this
end, the algorithm maintains a set� = f � i ; i = 0 ; 1; 2; � � � g
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of subproblems by iteratively partitioning feasible set� 0 into
a series of smaller subsets (see Section V-C)6. The algorithm
also maintains a global upper boundUglb (� 0) and a global
lower boundUglb (� 0) on U � (� 0) so that

Uglb (� 0) � U � (� 0) � Uglb (� 0) (32)

to drive the iterations of subproblem partitions, as follows.

� Global upper boundUglb (� 0): For each subproblem
� i 2 � , the algorithm computes a local upper bound
U lcl (� i ) on network utility functionU via convex relax-
ation (see Section V-B). Then the global upper bound
Uglb (� 0) can be updated as

Uglb (� 0) = max
� i 2 �

f U lcl (� i )g: (33)

� Global lower boundUglb (� 0): Similarly, for each sub-
problem � i 2 � a local lower boundU lcl (� i ) is
computed based on the solution obtained by solving the
relaxed convex network control problem. Then the global
lower boundUglb (� 0) can be updated as

Uglb (� 0) = max
� i 2 �

f U lcl (� i )g: (34)

The algorithm terminates ifUglb (� 0) � "Uglb (� 0) is reached
and the global optimumU � (� 0) is set toU � (� 0) = Uglb (� 0)
as a upper-bound benchmark. Otherwise, the algorithm selects
a subproblem from� and further partitions its feasible set into
two smaller subsets, computes local upper and lower bounds
and updates the global boundsUglb (� 0) and Uglb (� 0) as in
(33) and (34), respectively. In our algorithm, we select the
subproblem� i 2 � with the highest local upper bound to
partition, i.e.,

� i = arg max
� i

U lcl (� i ): (35)

Based on the global bounds update criterion in (33) and (34),
the gap between the two global bounds converges to 0 as the
partition progresses. Furthermore, from (32),Uglb (� 0) and
Uglb (� 0) converge to the global optimumU � (� 0).

B. Convex Relaxation

For each subproblem� i � � , which is MINLP in our case,
a key step is to obtain a relaxed but convex version of� i so
that it is easy to compute a tight local upper boundU lcl (� i ).
In this paper the convex relaxation is designed following a
two-phase approach as follows.
Phase 1: In this phase the relaxation is accomplished by
assuming i) there is no mutual interference among ground
nodes, i.e., interference items in the denominator of (8) are
set to zero, and that all ground nodes use different pilot
sequences in channel estimation and hence� gg = 0 in (8);
ii) the maximum number of the ground nodes that can be
associated with a drone hotspot is not limited toGmax in (4).
Then, the objective of the relaxed network control problem
is to maximize the aggregate capacity of ground nodes by

6In this paper we use� i to refer to both subproblemi and the corresponding
feasible set.

determining the optimal coordinatex, y andz of the drones,
i.e.,

Problem 4
Maximize

x ; y ; z
: U ,

P

g2G
Cg(x ; y ; z)

Subject to : xmin � xa � xmax ; 8a 2 A ;
ymin � ya � ymax ; 8a 2 A ;
zmin � za � zmax ; 8a 2 A ;

(36)

where Cg(x ; y ; z) = B log2(1 + 
 g(x ; y ; z)) with

 g(x ; y ; z) de�ned in (8). Since 
 g(x ; y ; z) � 1,
Rg(x ; y ; z) can be approximated as

Cg(x ; y ; z) � B log2(
 g(x ; y ; z)) (37)

� B log2

�
M� � gp0� 2

ggH 2
gg(x ; y ; z)

�
(38)

= B log2

�
M� � gp0� 2

gg

d�
gg(x ; y ; z)

�
(39)

= B log2(M� � gp0� 2
gg) � �B log2(dgg(x ; y ; z)) ;

(40)

where the inequality in (38) holds sinceGa(g) � 0 in (8), � is
path loss factor anddgg(x ; y ; z) is distance (in meter) from
ground nodeg to its service aerial dronea(g).

Since dgg(x ; y ; z) in (40) is a convex Euclidean norm
with respect tox, y andz [65], log2(dgg(x ; y ; z)) cannot be
theoretically guaranteed to be concave. In this phase, we obtain
a convex relaxation of (40) based on linear approximation of
logarithmic function. To this end, we �rst replacedgg(x ; y ; z)
in (40) with t, then log2(dgg(x ; y ; z) in (40) can be
represented aslog2(t) subject tot � dgg(x ; y ; z). Then,
log2(t) can be further relaxed using a set of linear functions,
e.g., as shown in Fig. 3, using a segment and three tangent
lines.

Phase 2:Phase 2 of relaxation is invoked if the algorithm is
done with partitioning coordinate variablesx, y and z, i.e.,
for each aerial dronea 2 A ,

xmax ;a � xmin ;a � �x; (41)

ymax ;a � ymin ;a � �y; (42)

zmax ;a � zmin ;a � �z; (43)

wherexmax ;a and xmin ;a (ymax ;a and ymin ;a ) are upper and
lower bounds of x-axis coordinatexa (y-axis coordinateya),

Fig. 3: Approximiation of log(t) using three tangent lines and one
segment line.



10

and �x , �y and �z are prede�ned movement step size of
aerial drones in x- and y-axis, respectively. The objective in
this phase is to determine the optimal association vector�
with given aerial drones coordinates vectorsx � , y � and z�

and without considering mutual interference among ground
nodes as in Phase 1 relaxation. LetCga represent the capacity
achievable by ground nodeg 2 G if g is associated to aerial
dronea 2 A , then the optimal association can be obtained by
solving the following linear optimization problem:

Problem 5
Given : x � ; y � ; z�

Maximize
�

:
P

a2A

P

g2G
� gaCga(� ; x � ; y � ; z� )

Subject to : 0 � � ga � 1; 8a 2 A ; g 2 G;P

g2G
� ga � Gmax ; 8a 2 A ;

P

a2A
� ga � 1; 8g 2 G:

(44)

As variable partition progresses, the association variable� ga

becomes �xed either to 0 or 1 in all subproblems, for which
the optimal transmit powerp and pilot sequence assignment�
can be obtained by solving a geometric programming problem
as in Section IV.

C. Variable Partition

Variable partition can be conducted by partitioning associa-
tion variable� and movement variablesx, y andz. For exam-
ple, given a subproblem� i 2 � , by �xing association variable
� ga subproblem� i can be partitioned into two subproblems
with feasible sets� i; 1 = f (� ; p; x ; y ; z) 2 � i j� ga = 0g
and � i; 2 = f (� ; p; x ; y ; z) 2 � i j� ga = 1g, respectively.
For movement variables, sayxa 2 [xmin ;a xmax ;a ] for aerial
dronea 2 A , the partition can be conducted by splittingxa

from the half, resulting in two subproblems with feasible sets

� i; 1 = f (� ; p; x ; y ; z) 2 � i jxa 2 [xmin ;a xmid ;a ]g; (45)

� i; 2 = f (� ; p; x ; y ; z) 2 � i jxa 2 [xmid ;a xmax ;a ]g; (46)

where xmid ;a , x min ;a + x max ;a

2 . As variable partition pro-
gresses, the algorithm converges to the global optimum, as
stated in the following theorem.

Theorem 2. With convex relaxation the variable partition
strategies in Sections V-B and V-C, global upper boundUglb

and global lower boundUglb converge to the global optimum
U � of the original social network control problem formulated
in (11).

Proof. To show convergence of the globally optimal solution
algorithm, it is suf�cient to show that the algorithm converges
with respect to aerial drone movement variablesx, y and z
since i) there is a �nite number of possible combinations of
association strategies for a given setA of aerial drones and
setG of ground nodes, and ii) the power control subproblem
is a convex optimization problem.

For this purpose, we �rst rede�ne the domain set based on
the notation of hyper-rectangle. The initial ranges of aerial
drone movement variablesxa , ya andza for each aerial drone
a 2 A are [0 xmax ], [0 ymax ] and [0 zmax ], respectively.

This results in an initial feasible set, which is anL = 2 jAj -
dimensional hyper-rectangle denoted as� init with jAj being
the number of aerial drones inA . As in Section V, denote�
as the set of sub-rectangles obtained from partitioning� init as
the iteration goes. For any sub-rectanglee� 2 � , denotevl

upp
andvl

lwr as the upper and lower bound of thel th edge of the
rectangle withl = 1 ; � � � ; L . For example, for the x-axis of the
initial domain set� init , we havevl

lwr = 0 and vl
upp = xmax .

Further de�ne the size, volume (vol), and condition number
(cond) of e� as follows:

� size(e� ) � max
l =1 ;��� ;L

1
2 (vl

upp � vl
lwr ), i.e., the maximum of

half edge length;
� vol( e� ) �

Q

l =1 ;��� ;L
(vl

upp � vl
lwr ), i.e., the edge length

production;

� cond(e� ) �
max

l =1 ; ��� ;L
(v l

upp � v l
lwr )

min
l =1 ; ��� ;L

(P l
upp � P l

lwr ) , i.e., the ratio of the

maximum and the minimum edge lengths.
Then, considering the domain partition strategy described in
Section V (i.e., in each iteration, partition the variable that has
the largest range from its middle), after a suf�ciently large
number of iterations, sayk, the following inequality holds:

min
e� 2 �

size(e� ) � maxf cond(� init ); 2g
�

vol(� init )
k

�
; (47)

which implies that the minimum size (hence the largest range
of movement variables) in all subproblems converges to zero
ask ! 1 , i.e., the ranges of aerial drone movement variables
xa andya shrink to constant for all dronesa 2 A .

Denote e� � as the sub-rectangle with the smallest size.
Then, inequality (47) further implies that the local upper and
lower bounds overe� � , i.e., U(e� � ) and U(e� � ), converge to
each other if i) it holds for any sub-rectanglee� 2 � that
the local upper boundU(e� ) is non-increasing ase� shrinks,
which is true because that the algorithm partitions aerial drone
movement variables (x, y and z) from their middle, and
ii) the local upper boundsU(e� )) are non-increasing, which
follows that the highest local lower bound is always used in
the algorithm.

Then, as the local upper and lower bounds overe� � converge
to each other, we can �nd a� > 0 for any optimality precision
� 2 (0 1) such that any sub-rectanglee� with size(e� ) � �
satis�esU(e� ) � "U(e� ). Take the iteration indexk suf�ciently
large so that the size of all sub-rectangles ine� do not exceed� ,
then we haveUglb = max

e� 2 �
U(e� ) � "max

e� 2 �
U(e� ) = Uglb .

VI. PERFORMANCEEVALUATION

We evaluate the performance of the proposed network
control solution algorithms by considering a network area of
500� 500 m2 while the altitude of the drone hotspots is set to
100 meters for simplicity of the simulations. The number of
the ground users is set tof 2; 4; 6; 8; 10; 12g, and the number
of the drone hotspots is set tof 2; 3g. The number of antennas
of each drone hotspot is set tof 10; 20; 30; 40; 50; 100g. The
maximum transmit power of each ground user is set to
f 20; 40; 60; � � � ; 500g mW. The path loss factor is set to
� = 2 , and the average noise power is set to10� 8 mW. The
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(a) (b) (c)

Fig. 4: (a) x- and y-axis of the drone hotspots and (b) aggregate network spectral ef�ciency with the distributed solution
algorithm; (c) optimality ratio with the centralized solution algorithm.

(a) (b)
Fig. 5: Aggregate network spectral ef�ciency with the distributed and centralized solution algorithms with (a) 4 ground users,
2 drone hotspots with each having 100 antennas, and 8 pilot sequences, and (b) 8 ground users, 2 drone hotspots with each
having 20 antennas, and 6 pilot sequences.

number of the available pilot sequences is set tof 6; 8g, and the
length of each pilot sequence is set to10 symbols. The results
are obtained by averaging over 20 independent simulation
instances with network topology randomly generated. Next,
we �rst discuss the convergence of the distributed and cen-
tralized solution algorithms, and then evaluate the optimality
of the distributed solution algorithm by comparing it to the
centralized. Finally we study the effects of different network
control strategies on the aggregate network spectral ef�ciency.

Convergence. The convergence of the distributed solution
algorithm and the centralized solution algorithm is shown in
Fig. 4. In Fig. 4(a), two drone hotspots and eight ground
users are considered and the initial locations of the drones
are randomly generated within the networking area. It can be
seen that the movement of the drone hotspots converge quickly
in around 40 iterations. In Fig. 4(b) we plot the resulting

aggregate network spectral ef�ciency of all the ground users.
It can be seen that the network spectral ef�ciency converges
quickly as well. The convergence of the centralized solution
algorithm is shown in Fig. 4(c). The optimality precision is
set to 90% and the maximum number of iterations is set
to 5000. In can be seen that the optimality ratio converges
monotonically as the interation progresses and the prede-
�ned optimality precision is reached in 600 iterations. The
computational complexity of the distributed and centralized
solution algorithms is compared in terms of the number of
iterations required to converge in the case of different number
of ground nodes. We tested 20 more network instances with the
number of ground nodes varying from 2 to 10. Results showed
that both the distributed and centralized solution algorithms
converge in all the tested instances. With distributed solution
algorithms it takes on average 25 iterations to coverage, e.g.,
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Fig. 6: Network spectral ef�ciency in the case of different number
of ground users.

15, 26 and 35 iterations in the cases of 2, 8 and 10 ground
nodes, respectively. The centralized solution algorithm takes
more iterations than the distributed to converge. For example,
it takes 4592 iterations for the centralized solution algorithm
to converge in the case of 8 ground nodes and 4688 iterations
on average. It is worth pointing out that while the centralized
solution algorithm has higher computational complexity, the
objective of the centralized solution algorithm is to provide a
benchmark performance for the distributed solution algorithm.

Optimality . Figure 5 reports the network spectral ef�ciency,
i.e., the spectral ef�ciency summed over all the users in the
network, achievable by the distributed solution algorithm and
the centralized global optimum. Four ground users, 2 drone
hotspots and 8 pilot sequences are considered in Fig. 5(a)
while 8 ground users, 2 drones and 6 pilot sequences in
Fig. 5(b). It can be seen that in both cases the distributed
solution algorithm achieves an aggregate network spectral
ef�ciency very close to the global optimum in all of the 20
tested network topology instances, with average optimality of
97% and91% for Figs. 5(a) and (b), respectively. Comparing
Fig. 5(b) to Fig. 5(a) it can be found that, as expected, the
aggregate network spectral ef�ciency increases as more users
are accommodated in the network, e.g., from105 bps=Hz to
165 bps=Hz for the distributed solution algorithm.

The average performance of the achievable network spectral
ef�ciency is reported in Fig. 6 with different number of ground
users. Results indicate that in average around 92.5% of the
global optimum can be achieved by the distributed solution
algorithm, and the optimality is 97%, 98% and 88.6% with 4,
8 and 12 ground users, respectively. It is also noticed that the
achievable network spectral ef�ciency increases linearly with
the number of the served ground users in the setting of the
considered mDroneNet.

In Fig. 7 we plotted the achievable network spectral ef�-
ciency against the maximum transmit power of the ground
users. Eight ground users and 2 drone hotspots each having

Fig. 7: Network spectral ef�ciency in the case of different maximum
transmit power for the ground users.

100 antennas are considered in this experiment. On average
over 93% of the global optimum can be achieved by the
distributed solution algorithms, with 95%, 97% and 90%
for transmit power in[20 80] mW, [100 160] mW and
[180 220] mW, respectively. From the results of the central-
ized solution algorithm we noticed that the aggregate network
spectral ef�ciency rises only around 4.5% by increasing the
maximum transmit power by 2.4 times from 100 to 240mW.
This is because in massive MIMO setting the network basically
operates at high SINR regime, i.e., in bandwidth-limited
regime.

The network spectral ef�ciency is reported in Fig. 8 with
the number of antennas for each drone hotspot varies from
20 to 100, with 8 ground users and 6 pilot sequences. The
distributed network control strategy achieves on average over
93.5% of the global optimum obtained by the centralized
solution algorithm. We notice that the achievable network
spectral ef�ciency monotonically increases with the number
of antennas but at a decreasing speed. This is consistent with
the results in [9, Fig. 4(a)]. It is worth pointing out that,
comparing to [9, Fig. 4(a)], the network spectral ef�ciency
gain achievable by using more antennas is less signi�cant in
our case, e.g., in this experiment the effect of increasing the
number of antennas is only marginal if each drone hotspot
has more than 30 antennas. This is because our objective is
to study joint power, association and �ight control in self-
organizing massive-MIMO-enabled UAV networks, and in this
setting the network spectral ef�ciency is jointly determined
by all the affecting factors. As a future research direction we
will study how many antennas are required to achieve certain
spectral ef�ciency in self-organizing UAV networks.

We further study the effects of different network con-
trol strategies on the achievable network spectral ef�ciency
through Figs. 9-10, where the joint network control strategy is
compared to the other four strategies: (i) the locations of the
drone hotspots are randomly generated in “w/o Aerial Drone




