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Abstract—This article studies distributed algorithms to control
self-organizing flying drones with massive MIMO networking
capabilities - a network scenario referred to as mDroneNet. We
attempt to answer the following fundamental question: what is
the optimal way to provide spectrally-efficient wireless access to
a multitude of ground nodes with mobile hotspots mounted on
drones and endowed with a large number of antennas; when we can
control the position of the drone hotspots, the association between
the ground users and the drone hotspots, as well as the pilot
sequence assignment and transmit power for the ground users?
To the best of our knowledge, this is the first time that massive
MIMO capabilities are considered in self-organizing flying drone
networks.

We first derive a mathematical formulation of the problem
of joint power, association and movement control in mDroneNet,
with the objective of maximizing the aggregate spectral efficiency
of the ground users. It is shown that the resulting network control
problem is a mixed integer nonlinear nonconvex programming
(MINLP) problem. Then, a distributed solution algorithm with
polynomial time complexity is designed by solving three closely-
coupled subproblems: access association, joint pilot sequence
assignment and power control, and drone movement control.
As a performance benchmark, a globally-optimal but centralized
solution algorithm is also designed based on a combination of the
branch and bound framework and convex relaxation techniques.
Results indicate that the distributed solution algorithm converges
fast (within tens of iterations) and achieves a network spectral
efficiency very close to the global optimum obtained by the
centralized solution algorithm (over 90% in average).

Index Terms—Wireless Drone Networking, Massive MIMO,
Distributed Control, Nonconvex Optimization.

I. INTRODUCTION

Wireless data traffic is drastically increasing following the
increased prevalence of video streaming applications and the
explosion of the Internet of Things (IoT), such as augmented
reality, intelligent transportation and surveillance [2]-[6]. This
has resulted in an increasing demand for faster wireless com-
munication networks with higher spectral efficiency, as well
as techniques to reduce the interference between co-located
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wireless links operating on the same spectrum bands and
hence to increase the spectral efficiency [7], [8]. In this article,
we focus on studying new approaches to provide ground
connectivity by exploring the application of self-organizing
flying drones (aka unmanned aerial vehicles or UAVs) with
massive MIMO networking capabilities, a network scenario
we refer to as mDroneNet.!

mDroneNet. As illustrated in Fig. 1, in mDroneNet there
are a set of many-antenna-enabled flying drones to collabo-
ratively provide data collection and forwarding services to a
group of single-antenna ground users, and send to the ground
users control commands generated either locally at the drones
or in a remote fusion center. A wide range of new applications
can be enabled by using massive MIMO on UAVs, includ-
ing high-data-rate mobile multimedia sensing and networking
through massive MIMO communications, beamforming-based
spectrum sharing and coexistence in the unlicensed spectrum
bands with redeployable drone base stations, secure wire-
less networking in contested environments through massive-
MIMO-based directional communications, aerial edge comput-
ing with massive-MIMO-enabled flying drones, among others.
In this article, we attempt to study the best way to provide
spectrally-efficient wireless access to a group of ground users
with mobile hotspots mounted on flying drones and endowed
with a large number of antennas; when we can control the
movement of the drones, access association, as well as the
pilot assignment and transmit power for the massive MIMO
communications between the ground users and the drones.
It is worth pointing out that the operation time of a drone
is affected by different factors, including the lifetime of the
battery, the energy source type, as well as the weight, speed
and flight trajectory of the drone, among others [10]. Recently
new technologies have been proposed to extend the battery
duration, e.g., automated battery swap and recharge [11], [12]
and dynamic recharging scheduling [13], [14].

In mDroneNet these network control strategies are tightly
coupled with each other and should therefore be jointly
considered to obtain the optimal network operating point.
Compared to infrastructure-based cellular networks with static
massive MIMO base stations [9], [15]-[18], a peculiar feature
of mDroneNet is that the drone hotspots can provide coverage

Ut is reasonable to integrate massive MIMO on UAVs. This is because
massive MIMO can achieve realistic form factors as long as different ground
users have distinct spatial channel characteristics rather than that the antennas
observe uncorrelated channels [9]. As a result, e.g., at 2 GHz frequency
band it requires only a 0.75 x 0.75 meter array to deploy 100 dual-polarized
antennas, for which it is practical to deploy the antennas on currently available
commercial off-the-shelf UAVs.
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Fig. 1: mDroneNet: Wireless networks with massive-MIMO self-organizing flying UAVs.

with higher spectral efficiency, by moving dynamically to
adapt to the changes in the location or traffic demands of the
ground nodes, nodes leaving or joining the network, as well as
time and the spatially-varying interference level, among others.
Moreover, in mDroneNet a massive MIMO transmission is
typically conducted in two phases: pilot-based channel esti-
mation and data transmission, while all the ground nodes are
allowed to operate over the entire available spectrum band and
at any transmission time. In this setting, the maximum number
of ground nodes associated to a drone hotspot is constrained
by the length (in symbols) of the pilot sequences used in
the channel estimation phase. Pilot contamination will occur
if the same pilot sequence is shared by multiple users, and
this will result in degraded accuracy of channel estimation
and hence lower spectral efficiency [19], [20]. Therefore, it
is imperative to jointly regulate the transmit power of the
ground nodes as well as the association among the ground
nodes, the drone hotspots and the available pilot sequences, to
eliminate the mutual interference caused by imperfect channel
orthogonalization in the case of limited number antennas at
each drone.

Novelty and Contributions. Massive MIMO networking
has recently received a significant attention in the scientific
literature [9], [15]-[18], [21]-[30]. Readers are referred to
[9], [19], [20], [31], [32] and references therein for ex-
cellent surveys of the main results in this area. However,
most existing research on massive MIMO has been focus-
ing on theoretical analysis of spectral/energy efficiency [15],
designing new beamforming signal processing technologies
[9], [16], increasing robustness against both unintended in-
terference [17], [18] and one-way/two-way droning [26]—[30]
in infrastructure-based cellular networks with static massive-
MIMO-enabled base stations, while the potential of massive
MIMO in infrastructure-less wireless ad hoc networks has not
been explored yet. While unmanned aerial networking has
also attracted extensive research in the past decade with a
large and growing body of literature [33]-[52], very few of
these work has taken massive MIMO into consideration. 7o
the best of our knowledge, this is for the first time massive
MIMO is considered in large-scale wireless networks with self-
organizing flying drone hotspots.

As will be clear in Section III, the resulting mDroneNet con-
trol problem studied in this article is a mixed integer nonlinear
nonconvex programming (MINLP) problem because of the
binary variables for access association and pilot assignment.

Such problems are generally NP-hard and there is no existing
solution algorithm that can be used to obtain the globally
optimal solution with polynomial computational complexity.
In this paper, we claim the following main contributions:

mDroneNet framework and formulation. We study for
the first time mDroneNet, a new framework for self-
organizing aerial drone hotspots with massive MIMO
networking capabilities. Our objective is to maximize the
spectral efficiency of mDroneNet by jointly controlling
the movement of the drones, access association and pilot
assignment, as well as the transmit power of the ground
users.

Distributed solution algorithms. As in [53], we focus on
distributed algorithm design for mDroneNet. Compared
to centralized control, distributed control does not require
the network to collect the full statistical channel state
information (CSI), the power of noise and locations,
among other network parameters, from all the ground
users and flying UAVs at a centralized control entity.
As a result, the network control does not suffer from
the single point of failure problem and hence is more
robust. Moreover, distributed algorithms are essential
particularly in large-scale wireless networks with multiple
self-organizing UAVs and ground users for scalable and
low-latency network control. In this work, we decompose
the resulting MINLP problem into three distributed sub-
problems based on primal decomposition, and design
solution algorithms for each of them: user-drone access
association, joint pilot assignment and power control, and
drone movement control.

Globally optimal solution algorithm. To provide a perfor-
mance benchmark for the distributed solution algorithm,
we design a centralized but globally optimal solution
algorithm based on a combination of the branch and
bound framework and of convex relaxation techniques
that can result in an "-optimal solution with " being a
predefined level of optimality precision.

Performance evaluation. The performance of the pro-
posed distributed solution algorithm is evaluated in terms
of network spectral efficiency by comparing it to the
global optimum through extensive simulation experi-
ments. Results indicate that the distributed solution al-
gorithm can achieve on average over 90% of the global
optimum. The convergence behaviors of the proposed
solution algorithms are also evaluated.



The remainder of the paper is organized as follows. We review
related work in Section II, and describe the system model and
problem formulation in Section III. In Sections IV and V, we
present the distributed solution algorithm and the centralized
solution algorithm, respectively. Performance evaluation of the
proposed solution algorithms is presented in Section VI, and
finally we draw conclusions in Section VII.

II. RELATED WORK

There is a large and growing body of literature on un-
manned aerial vehicular networking, focusing on UAV-assisted
guidance [33], UAV-based data collection [34], [37], [38] and
relaying [35], [36], [39], [41], [43], [45], [46], ground-aerial
channel measurements [40] as well as tracking and control of
UAV networks [42], [44], [54]. Readers are referred to [47]-
[52] and references therein for an extensive survey of this
research area. Most of these works focus on single-antenna
aerial vehicles and conventional MIMO, with very few recent
efforts considering massive MIMO [54]. Different from [54],
where Chandhar et al. derived the achievable uplink capacity
from a many-antenna ground base station to a set of single-
antenna aerial drones, in this paper we maximize the aggregate
throughput of single-antenna ground nodes served by a set of
aerial drones each endowed with a large number of antennas.

Compared to conventional multiuser MIMO, massive
MIMO can attain much higher spectral efficiency by using
a large number of antennas with low-complexity linear pre-
coding technologies [16], [19], [27]-[30], [55]. In [29], the
authors derived an exact achievable rate expression in closed-
form for maximum-ratio combining/maximum-ratio transmis-
sion (MRC/MRT) processing and an analytical approximation
of the achievable rate for zero-forcing (ZF) processing for
multi-pair full-duplex massive MIMO relay system. In [27],
Jin et al. derived the ergodic rates in the case of a finite
number of antennas and concluded that the ergodic sum-rate
can be maintained while the relay power is scaled down by
a factor of the number of the antennas at the relay over
the number of users. Amarasuriya investigated in [28] multi-
user massive MIMO relay networks with ZF-processing by
deriving the achievable sum rate expressions in both perfect
and imperfect CSI cases. In [55], the problem of joint power
and time allocation is addressed for secure communications
in a decode-and-forward massive MIMO relaying system in
the presence of adversary eavesdroppers. In [30], the spectral
and energy efficiency for multiple amplify-and-forward two-
way full-duplex massive MIMO relay systems are studied.
Finally, [9], [19], [20], [31], [32] contain good surveys and
tutorials on massive MIMO networking. These papers are
focused on infrastructure-based cellular networks with static
many-antenna-enabled base stations, and focus on asymptotic
performance analysis with respect to a single network param-
eter (e.g., power). Our paper, instead, considers for the first
time aerial drone hotspots with massive MIMO capabilities in

infrastructure-less network scenarios?.

2Each drone hotspot is essentially a mobile base station and can serve
as the mobile infrastructure for ground wireless networks. In this paper by
infrastructure-less networks we refer to wireless networks without centralized
coordination of the self-organizing flying hotspots.

TABLE I: Summary of Key Notations

Notation Physical Meaning
A Set of all aerial drones
g Set of all ground users
Ga Set of ground users associated to drone a € A
w Set of pilot sequences available to mDroneNet
Qga 1 if ground user g is associated to drone a, and O otherwise
o Access association vector: (aga)ggé
Dg Transmit power of ground user g € G
p Transmit power vector of ground nodes: (pg)geg
1 if pilot sequence w € W is used by ground user g,
Haw and 0 otherwise
n Pilot sequence assignment vector: (ugw)‘é"ggw
Ta, Ya, Za x-, y- and z-axis coordinates of drone a € A
X,Y,2 X-, y- and z-axis coordinate vector of drones: (za)ac A,
- (Ya)ac.a, and (za)aca
Pmax Maximum transmit power of ground node
Yg Achievable SINR of ground node g € G
T Pilot sequence length in symbol
M The number of antennas of each drone hotspot
a(g) Service aerial drone of node g € G
Bgog Channel gain from ground node ¢’ to aerial drone a(g)
T The set of ground users sharing the same pilot sequence
9 with user g
A(Zg) Set of aerial drones of interfering nodes in Zg
Hgog Path loss from ground node g to aerial drone a(g)
Py Nominal SNR for ground user g
Gla The number of ground users served by drone a € A
Grmax Maximum of Ga
Ry Achievable throughput of ground node g € G

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider wireless networks where a set of many-antenna
drone hotspots serve a set of single-antenna ground users,
as illustrated in Fig. 1. The drones collect field information
from the users, make action decisions either locally at each
drone or by sending the information fusion results to a remote
control center, and finally send the action commands back to
the ground users. Our objective is to maximize the network-
wide spectral efficiency for the uplink transmissions since
it causes only low-level traffic load to transmit information
fusion results and control commands in the downlinks. We
consider joint control of the movement of aerial drones, the
association among the ground users and the drones, as well as
the pilot sequence assignment and transmit power control for
the ground nodes. It is worth pointing out that we consider
single-antenna ground users in mDroneNet because we want
to keep the theoretical analysis and algorithm design tractable,
while the control of mDroneNet with multiple-antenna ground
users will be studied in our future research. Next, we formalize
the network control problem by describing the system model.
The key notations are summarized in Table I for the reader’s
convenience.

System Model. As mentioned in Section I, a massive
MIMO transmission is typically accomplished in two phases,
i.e., channel estimation and data transmission [19], [20], [31].
In our case, the ground users send a set of pilot sequences
to the drones for channel estimation in the first phase, while
in the second phase the drones detect the data from the users
based on the estimated channel state information (CSI). Denote
A, G and W as the sets of the drone hotspots, ground users,
and the available pilot sequences, respectively. Define g4 as



the access association variable. Let
associated with drone a 2 A, and
the access association vector as

ga = 1lifuser g 2 G is
ga = 0 otherwise. Denote

. ( ga)g;f. Similarly,
let = ( gW)‘g’]"ZzéN represent the pilot sequence allocation
vector, with gy = 1 if pilot sequence is associated to ground
user g and gw = O otherwise. We consider single-home
accommodation for the ground users in favor of tractable
complexity in modeling and theoretical analysis, i.e., each
ground user is associated to at most one drone hotspot and
at most one pilot sequence. Then we have

ga 2 T0; 19; 89 2G; a2 A (D
2f10; 1g; 892 G; w2 W 2
9w g; og 2
ga 1, 892G; 3)

>4
ga  Gmax; 822 A; 4

Rk
gw 1, 89 2G; )]

w2W

where Gmax is the maximum number of ground users that
can be served by each drone hotspot a 2 A3 Let G G
and G}, G represent the set of users associated with drone
a and the set of users sharing the same pilot sequence W,
respectively, ie., Ga , fgj 9 2 G; 4a = 1g for each
a2 A, and G}, , fgjg 2 G; gw = 19 for each w 2 W.
Denote w(g) as the pilot sequence used by ground user g, and
let 1g( ) , va(g) represent the set of users using the same
pilot sequence as user ¢. Similarly, denote a(g) as the service
drone of ground user g 2 G.

Let Xa, Y4 and z, represent respectively the x-, y- and z-axis
coordinates of drone a, and define the coordinate vector for the
drones in A as X = (Xa)aza, Y = (Ya)aza and Z = (Za)aza.
Then, the distance between user g0 and the service drone of
user g (i.e., drone a(g)), denoted as dgog, can be expressed as

dg‘)gqs dgog (Xa(g); Ya(a): Za(g))

Eg")2 + (ya(g) E90)2; (6)

where By, ®p and By represent the x-, y- and z-axis coor-
dinates of ground user g’ 2 G, respectively. Further denote

g%g as the channel gain between ground user g 2 G and
drone a(g) (i.e., the service drone of user g). Then gog
can be expressed as gg = Hgog gog, Where gog represents
the log-normal slow fading between user g° and drone a(g),
Hgg » dgog is location-dependent path loss with  being path
loss factor and the distance dgog defined in (6).

= (Xag) %g0)? + (Za(g)

3The maximum number of served ground nodes cannot exceed the number
of antennas available to each aerial drone and the length of pilot sequences
used in channel estimation [15].

In this work we focus on the applications of UAVs in
networking environments in rich-scattering environments with
dense and high blockage, while UAV networking in other
scenarios [9], [54], [56]-[59], e.g., LoS-dominant wireless
environments, will be studied in our future work. In this
setting, we consider a model similar to [60], [61] to express
the effective SINR achievable by uplink massive MIMO
communication links, which jointly considers the effects of
pilot contamination and mutual interference among the ground
users. Then, a lower bound of the link capacity achievable by
ground user ¢ in the data transmission phase, denoted as Cy,
can be represented as

Cg =Blog,(1+ ); )

with ¢ being a lower bound of the effective SINR achievable
by ground user g 2 G given as in (8) at the bottom of
this page,* where is the length (in symbols) of each pilot
sequence, M represents the number of antennas available
at each aerial drone, ¢ is nominal transmit signal-to-noise
ratio (SNR) at ground user g; JGa(g)( )j is the cardinality of
Ga(g)( ). i.e., the set of ground users served by the service
drone of user ¢; and finally

o9 » < I 1g 9)
12150( )
and g is defined as
< g% if a(g") 2 A(lg( ))
A | HL;"S ; otherwise; (10)

with A(lg( )) . fa(@")jg’ 2 I4( )g representing the set
of service drones of the ground users in lg( ), ie., the
users sharing the same pilot sequence with user . The
average rate achievable in the channel estimation and data
transmission phases, denoted as Rg, can then be expressed
as Rg = (1 $)Cgq, where Cy is the link capacity achievable
in the data transmission phase in (7), and and T are
the length of pilot sequences and the period of a massive
MIMO transmission in symbols, respectively [62]. In this
work, we design distributed control algorithms for mDroneNet

It is worth pointing out that we do not assume perfect CSI in this
paper. This is because the SINR model accounts for different practical
factors that affect massive MIMO networks, including channel-estimation
error, the type of linear spatial multiplexing/de-multiplexing, power control,
noncoherent inter-cell interference, and coherent inter-cell interference due to
pilot contamination, among others [60], [61]. In this setting, as pointed out in
[61], (8) provides a lower bound on the achievable SINR while deriving the
exact closed-form expression of the achievable SINR is still an open problem
as of today. In this work, we study the distributed joint power, association and
flight control in self-organizing massive-MIMO drone networks taking this
SINR model as an example, while the resulting network control framework
is not restricted to any specific SINR models.

M jGa(g)( )J

g- ol ¢ TPX Y 2)=

P
1+

9°2G

gogPgo + T+

g gzg(X; y;pz)pgz(l"' 99)

(M jGaggy( i) g0 €fog(X; Y Z)pgo
g%21g(pIng

gg

(®)




Fig. 2: Diagram of the distributed solution algorithm. The shaded blocks with dashed border represent operations of the drone
hotspots while blocks with solid border for the ground users.

by considering data-transmission-phase link capacity (7) atiee original problem can be solved [63], [64]. However, in
xed length of pilot sequences in channel estimation phaseour case the control variables, ;p;x,y andz are closely
Problem Statement Our objective is to maximize the coupled with each other in the complicated mathematical
aggregate capacity of all the ground users@rand hence expression of the effective SINR in (8). As a result, the
the network spectral ef ciency of the mDroneNet, by jointlynetwork control problem, i.eRroblem 1in (11), is architec-
determining the access association vectgrpilot sequence turally indecomposableln this work, the distributed solution
assignment vector , the location vectorx, y andz for the algorithms are designed by decomposing the network control
drones, as well as the transmit power veqiorThe problem problem following a primal decomposition approach. Roughly

is formalized inProblem 1 as follows. speaking, with primal decompositioRroblem 1 in (11) is
Problem 1 solved by dividing the feasible set of the original problem into
Given : A; GGmax;M; B @ 2 multiple parts by xing a subset of variables at a time, which
Maximize : U . Co( ; pPiXiy;2) are drone location variablesy andz, association variables
P pixiysz 92G as well as transmit power vectgr and pilot sequence
Subjectto: 0 pg Pmax; 892 G; (11) assignment variables. The overall diagram of the algorithm
Xmin ~ Xa  Xmax; 8a2A; design is illustrated in Fig. 2, where the original problem
Ymin  Ya  Ymax; 82a2A; is solved by iteratively solving three subproblems obtained
Zmin  Za  Zmax; 8a2A; from primal decomposition, i.e., access association, joint pilot
Constraints (1); (2); (3); (4); (5) assignment and power control, and movement control for the
whereg; ¢ ande are the location vectors of the ground user&fones-

Co( ; ;p;Xx;y;2) = Cg, the objective function of useg, is A. Access Association

the lower bound of the rate achievable by the user, as de nedThe core idea of the proposed access association strategy is
through (7)-(10)pmax is the maximum transmit power of eachto let the ground users i@ interact iteratively with the drone
of the ground users i6; and nally [Xmin Xmax ] represent the hotspots inA to compete for association opportunities based
x-axis movement range of the drones whi&in Ymax] and on certain locally-calculated preference criterion, as illustrated
[zmin Zmax ] @re the ranges of the y- and z-axis, respectivelyin Fig. 2. To this end, in each iteration the ground users rst
The utility function U in (11) is a nonlinear nonconcavereport their own association preferences to the drones, which
function with respect to the control variables because of tiiegen make association offers based on the received preference
complicated mathematical expression of the effective SINRformation. Letx( ), y() andz( ) represent the coordinates
in (8). Moreover, Problem 1 in (11) is a mixed integer- of the drones in current iteration. Then in iteration +
continuous programming problem because of the binary accdsthe objective of the access association is to maximize the
association variables and pilot assignment variables. aggregate capacity of all the ground useraiby determining
Given an arbitrary such problem, there is in general no existitie association vector( * subject to association constraints
solution algorithm that can be used to obtain the globél), (3) and (4).
optimum in polynomial computational complexity. Next, we DenOteA(g )" A as the set of drones nearby ground user
rst present in Section IV a distributed solution algorithmg 2 G (i.e., the drones in the communication range of the
that can be used to achieve a sub-optimal solution to provigeound user). Then, the association preference of ground node
a lower-bound on the utility functior in (11). Then in g with respect to drone 2 Ag ), denoted as ga, can be
Section V we will design a centralized solution algorithm teomputed as
provide a performance benchmark for the distributed solution _ plog+ ga)

algorithm. ga = log(1+ gao)’
a%2A § )

12)

IV. DISTRIBUTED SOLUTION ALGORITHM

A key step of the distributed solution algorithm design is to 5A problem is architecturally decomposable if its dual problem obtained by
introducing Lagrange multipliers can be rewritten into a set of subproblems,

decompose the original n.etwork_con_tmI PVQb'?m iNto & Seriggen of which can be solved locally in a single protocol layer and network
of subproblems, by solving which in a distributed mannefevice [63].



where gqo represents the interference-free single-input-singleAlgorithm 1: Competition-based Access Association
output (SISO) SINR, i.e., the SINR achievable with single Data: Drone coordinates( ), y() andz()
antenna and without interference from the other ground ”Sershesu.lt' Updated association' vectord *D
co-located in the mDroneNet, achievable by ground wsir e iAOer i — i .
the user is associated with droa®2 A ). In this work, the Initialization: SetiA™ j = JA . 892G;
9 ' 2 Operations for Ground Users:

SINR ga® IS de ned as 3 while 992G,jASerj> 1 do
(13) 4 for each useg 2 G do
if JAG® ] 1then
| continue;
else
for each dronea 2 A g’ calculate association
preference yo based on (12) and (13);

ga®» g ggla(g)= a%
with 4 being the transmit SNR for ground user and
ggla(g)= a0 being the path loss for the wireless channef
between ground usey and its service drona(g). Denote
a = ( ga)gz e, as the preference vector dromereceives

from its nearby ground users & , fgig2 Gia2A§’g. broadcast the calculatedya;
Then, each drone 2 Ag) rst sorts 5 in a descending 1o end
order and then sends association offers to a preferred set;of accept association offers based on (15);
maximumGpax Of ground users, as follows, 12 update ( D ;
gsc =( | g1as gza;{z ' 06 max '}1; ) (14) ij endend
Preferred Ground Users 15 Operations for Drones:

where Gmax is the maximum number of users each drone for each dronea2 A do

can serve at the same time. LAg® represent the subseti | make association offers based on (14);
of the drones that send an association offer to ground useend

g, and denotgA 2¢" j as the cardinality oA2¢" . Then, each

9 - . g
user accepts the association offer it receives from the drones

corresponding to the highest SISO SINR, i.e., associate Wiio\n, in Fig. 2, the objective in the second network control

dronea with subproblem is to jointly determine the pilot assignment and
a , argmax ga; (15) transmit power for the ground users. The subproblem can be
a2A giter formalized as
where ¢, is the association preference de ned in (12). The Problem 2
above procedure is executed until no ground user receives Given : x( );¥>( ). z(): (+D)
more than one association offer. The output of this step is Maximize : U, Co( ; p) (16)
the updated access association strategies, i.e*? . The P 92G
association strategy is summarizedAfgorithm 1. Subjectto: 0 Py Pmax; 892 G;
Remark 1: In the association strategy described in Constraints (2); (5):

Algorithm 1, the rationale of computing the associations giscussed in Section lIProblem 2in (16) is a mixed inte-
prefere_nce asin (13), i.e., ba_sed on the mte_rference-f_ree SISQ nonlinear and nonconvex programming (MINLP) problem
SINR, is as follows. In massive MIMO settings, particularlyyeca,se of the complicated mathematical expression of the
yvhen the number of antennds is Iarge, the received SINR_ effective SINR 4( ; p) in (8) and that the pilot sequence as-
is dominated by the power of noise and large-scale fadidgy,ment variables take only binary values. Such problems are
effects, e.g., path loss, shadow fading. Therefore, the capagjiherally NP-hard and there is typically no existing solution
with interference-free SISO capacity, i.e., (12), can serve 2% orithm than can be used to obtain the global optimum in
good indication of association preference and can be COMPUREh nomial computational complexity. In this section, we solve
with low computational complexity. Problem 2 by designing a pricing-based distributed solution
B. Joint Pilot Assignment and Power Control algorithm. To this end, we rst reformulat®roblem 2 by
With given coordinates of the drones and the updated acceslsxing the binary pilot sequence assignment variables
association vector, i.e., ( *Y obtained in Section IV-A, as  Problem Reformulation. We rst relax the pilot sequence

M JG awgi g GoPaw™1+  gg) (19)
P (M iG aei)

2
0 ;04Pg0w0
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Problem 2 (penal)

Given : x;y;z, ;pl)
Maximize : Ug(Rg; ' J) + Iy Ug(pl)( ()y 9k ()2
: g(Pgi B ¢ po V°(B" ")(Pg Py Bg Py (27)
Pg 2
02Gng {Z }
f {Z } Convexification ltem
P enalization Item
Subject to : Constraints (24); (25)
Algorithm 2: Pricing-based Joint Pilot and Power Algorithm 3: Pilot Sequence Claim
Control Data: Results of joint pilot and power controf
Data: Drone coordinates, y, z; association strategy Result: Updated pilot assignment vector,
; =0; current transmit power vectqg( ); 1 Initialization: SetWy = W;8g 2 G;
(>0 2 Set gw=1;892G;W2W;
Result: Updated transmit powgs( * ; 3 for each userg 2 G do
1 for each userg 2 G do 4 Set gw =0 with w =argmin Paw
2 Computepy by solving Problem 2 (penal) in (27); W2W g
1 1 = ’
s | setpl ™ = pf)+ Opy By o | Setwy = Wonw
4 end 6 en o ,
s if pl D satis es certain termination criteriotthen 7 if waw 1is satis ed for all users inG then
6 | STOP; 8 | STOP;
7 else 9 else
8 | Set = +1;gotoStepl 10 | RunAlgorithm 2;
9 end 11 | GotoStep 3
12 end
assignment variables by allowing each ground user to use
multiple pilot sequences. For this purpose, g, represent current iteration . De ne
the transmit power that ground usgr2 G allocates to pilot () _ (O w2w .
sequencev 2 W and de nep = (pgw)gaa - Then the power Py’ = (log(pyy)) ' (22)
constraints in (16) can be rewritten as Bl 3 = (10g( pe ) tdten - (23)

0. Pgw Pmax; 892G,W2W ; (17) Then the transmit power constraints in (17) and (18) can be
X rewritten as, in each iteration=1;2;
Pgw  Pmax; 892 G: (18)
waw Byl 109(Pmax); 892 Giw 2 W (24)
Then, for each pilot sequenag 2 W, the effective SINR P’ Pmax; 892 G: (25)
g de ned through (8)-(10) can be rede ned agw(p) for w2w

each ground usey 2 G, as in (19) and (20) at the bottom ofthen, the pricing-based solution algorithm can be formal-
this page. ThenProblem 2 in (16) can be reformulated asj;eq in AIgorithmPZ at the top of the next page, where

Problem 2 (reform): Ug(pgiP' ) = Cow(pg;iB')) is the individual rate
w2W
Problem 2 (reform ) achievable by ground user () is the step size in iteration
Given : x! );)b( );5( ), €+ . The convergence odhlgorithm 2 is given in Theorem 1.
Maximize : U, Caw(P) (21) , . _
) 942G w2w Theorem 1. If Algorithm 2 doesn't stop after certain number
Subjectto:  Constraints (17);(18); of iterations and suppose that the step-size sequericég is

chosen to satisfy
whereCyyw (B) = Blog,(1+ gw(p)) with g, (p) de ned in X
(19) and (20). Next we solvBroblem 2 (reform) in (21) by 201 O oo
designing a distributed pricing-based solution algorithm.

Pricing-based Solution Algorithm. As illustrated in Fig. 2, then the algorithm converges to a stationary point of
the main idea of the pricing-based solution algorithm is to I&roblem 2 (reform) de ned in (27), and none of the station-
each ground user iteratively determine its own pilot assignmeary points is local minimum of the problem.
and transmit power by maximizing a penalized version of its
own utility in each iteration. Lepg;w) represent the power of Proof. We rst show that the utility function of
ground userg when transmitting using pilot sequengein Problem 2 (reform) in (27) is a strongly concave function



with respect to the transformed power control variables y and z. In this paper we solve subproblem (30) using
pg) of ground userg with given control strategies,a(g an interior point method [65] to search for locally-optimal
for the other users inG ng. Since the penalization item coordinates for each aerial drone in favor of a low-complexity
is an afne function of p§’ and the convexication item distributed solution.

is strongly concave with 3¢ > 0, we only need to show

that Uy (Bg; p( 5) is concave and the feasbhile set de ned byp. Complexity Analysis

constraints (24) and (25) is convex. Consider high SINR in |, the gistributed solution algorithm, the above three sub-
massive MIMO setting, .., gu(P) 1 in (19) and (20), proplems are solved iteratively and sequentially at each it-
then, with the logarithm transformation in (22) and (23), thgration. In the ground-drone association subproblem, the as-
achievable rat®g, (p) in (21) can be represented in the formyqciation strategy is determined iteratively as well. In each
of minus-log-sum-exjand hence is a concave function [65]jteration, the association variablg, can be determined for at
Similarly, the left-hand side of constraint (25) has a form qgast one ground node, and therefore the maximum number of
log-sum-expand hence the constraint de nes a convex Se{ssociations i§Gj, and the overall computational complexity
Then, the convergence dakigorithm 2 follows Theorem 3t the association i©(jGj). The subproblem of joint power

in [66]. - _D and pilot control in (27) and the aerial drone movement control

Remark 2:In Theorem 1, the conditions on the choice ofypproblem (30) can be solved in polynomial computational

step-size sequende ( )g is relatively weak; for instance all complexity, i.e.,0(jGjjAj). Therefore, the complexity of the

the step-size rules using in diminishing gradient-like schemggerall distributed solution algorithm i©(jGj(jAj + 1)) for
can be used here. The following are two effective rules [66lgch iteration.

given @ =1:
Summary:So far, we have presented a distributed solution
Ruel1: 0= 0 Ya Dy =12 (28) algorithm for mDroneNet (i.e., wireless ad hoc networks
0) C Dy with massive-MIMO drone hotspots) to jointly control the
Rule 2:: = ﬁ? =12 (29) ' movement of the drone hotspots, the ground-drone association
2

as well as power control and pilot sequence assignment for the
where 2 (0;1) and 1; 2 2 (0;1) are prede ned constants ground users. A natural question lBow does the distributed
with 1 < ». solution algorithm compare to the global optimum in terms
Pilot Sequence Claim Recall in Section Ill that we of aggregate spectral efciency™ the remainder of the
consider that each ground user occupies at most one pjaiper we answer this question by designing a centralized
sequence. This is accomplished by pilot sequence claim baseflition algorithm to provide a performance benchmark for
on the results of the joint pilot and power allocation dethe distributed solution algorithms.
scribed above. Lep = (pgw)gggv represent the output of
Algorithm 2. Then the pilot sequence claim can be summa- V. CENTRALIZED SOLUTION ALGORITHM
rized in Algorithm 3 as follows, where the rationale of the Recall from Section Il that, in the social network control
pilot sequence claim is to let each user claim not to use theoblem, i.e.,Problem 1 in (11), the individual through-
pilot sequence that has been allocated the least transmit powet.Cq( ; ;p;x;y;z) de ned through (7)-(9) is a noncon-
vex/nonconcave function with respect to coordinates variables
X; y; z and transmit power variablgs. Moreover, the as-

) o i , sociation variables and pilot sequence assignment variables
As illustrated in Fig. 2, in the third subproblem each drone take only binary values. Therefore the resulting network

determines its own best coordinates to adapt to the changeg dRro| problem is a mixed integer nonlinear nonconvex pro-

C. Movement Control

i iati +1) i X . . . .
newly oEJt?ll)ned association vectof i and transmit power global optimum in polynomial computational complexity. In
vectorp® ", the subproblem of aerial drone movement cafjyis paper, we design a globally optimal solution algorithm

be written as, for each drore2 A, based ora combination of the branch and bound framework
Problem 3 and of convex relaxation techniqufgr], [68]. Next we rst
Given : FS ). (4 p D) describe the overall algorithm design framework.
Maximize : Cy(x; y; 2); )
X,y 2z 92Ga (30) A. Overall Algorithm
Subjectto: Xmin  Xa  Xmax; 822 A; Denote o= f ; ; p; X;Y; zjconstraintsin (11)gas
Ymin ~ Ya  Ymax; 822 A; the feasible set of initial problem (11) and 8t ( ) represent
Zmin  Za  Zmax; 8a2A; the global optimum of problem (11) oveg, then the objective
where G, represents the set of ground users associated withour algorithm is to iteratively search forla so that
S . hors .
dronea with given access association vectof . In this U( o) "U ( o) 31)

subproblem, the mathematical expression of utility function
Cy(x; y; z) dened in (7) has a log-convex form, whichwhere™" 2 (0;1] is prede ned optimality precision. To this
is in general nonconcave with respect to coordinate variablesd, the algorithm maintains a set=f ;; i =0;1;2; ¢



of subproblems by iteratively partitioning feasible setinto determining the optimal coordinate y andz of the drones,
a series of smaller subsets (see Section 8§-The algorithm i.e.,

also maintains a global upper boukitys ( o) and a global Problem 4

lower boundUg, ( o) onU ( o) so that

Maximize: U, Cy(x; y; 2)
u u 0, 32 v 920 36
iglb( 0) ( 0) glb( 0) ( ) Subject t0: Xmin Xa Xmax | 8a2A; ( )
to drive the iterations of subproblem partitions, as follows. Ymin - Ya - Ymax. 8a 2 A_;
Global upper boundUgy ( o): For each subproblem Zmin  Za Zmax; BA2A;
_i 2, the algorithm computes a local upper boundhere Cy(x; y; z) = Blogy(1 + g(x; y; 2z)) with
Uil (i) on network utility functionU via convex relax-  4(x; y; z) dened in (8). Since 4(x; y; 2z) 1,
ation (see Section V-B). Then the global upper bounRy(x; y; z) can be approximated as
Ugp ( 0) can be updated as
. B Cy(x;y; 2) Blogy( o(x;y; 2)) (37)
Ugb( o) = mngUlcl( i)g: (33) Blog, M gpo 2HZ,(X; Y; 2) (38)
2
Global lower boundUgy, ( o): Similarly, for each sub- = B log, ﬂ (39)
problem ; 2 a local lower boundU,,( ;) is do(X; Y 2)
computed based on the solution obtained by solving the = Blog,(M gPo &) B log,(dge(x; ¥; 2));
relaxed convex network control problem. Then the global (40)
lower boundUg, (' o) can be updated as where the inequality in (38) holds sin@y g 0in (8), is
U = max fU. Yo 34 path loss factor andyy(X; y; z) is distance (in meter) from
Ygn( o) i2 ()9 (34) ground node to its service aerial drona(g).

- : Wit . Since dgg(x; y; z) in (40) is a convex Euclidean norm
;:s ';:gorllghbzltg”:i]r:srfjs (ﬂgl; (is (;)et toLLJng(b( )02 |sUreaEch(§d with respect tox, y andz [65], log,(dge(X; y; 2)) cannot be
9 P 0 0/~ ~glbA 0) theoretically guaranteed to be concave. In this phase, we obtain

as a upper-bound benchmark. Otherwise, the algorithm seleé:t onvex relaxation of (40) based on linear approximation of

a subproblem from and further partitions its feasible set intq . . . . o
arithmic function. To this end, we rstreplacigy(X; v; z)
two smaller subsets, computes local upper and lower boungg

= - ~7InT(40) with t, then log,(dgq(X; Vy; 2z) in (40) can be
and updates the global bountlg, (o) andUgy, ( o) as in represented akog,(t) sulzaje(?;J tot  dgg(X; y; 2). Then,
(33) and (34), respec_nvely. In. our algorithm, we select ”\‘ng(t) can be further relaxed using a set of linear functions,
subproblem ; 2 with the highest local upper bound to

- . e.g., as shown in Fig. 3, using a segment and three tangent
partition, i.e., Iin%s 9 9 9 9

Phase 2:Phase 2 of relaxation is invoked if the algorithm is
one with partitioning coordinate variables y andz, i.e.,
Eeach aerial drona 2 A,

i =argmax U (1): (35)
Based on the global bounds update criterion in (33) and (3
the gap between the two global bounds converges to 0 as t

partition progresses. Furthermore, from (3R, ( o) and Xmax:a Xminaa X (41)
Ugib ( 0) converge to the global optimutd ( o). Ymax:a Ymina Y (42)
Zmax;a Zmin;a Z; (43)

B. Convex Relaxation
whereXmax:a and Xmin-:a (Ymax:a andYmin.a) are upper and

For each subproblem; » which is MINLP in our case, |ower bounds of x-axis coordinate, (y-axis coordinatey,),
a key step is to obtain a relaxed but convex version 060

that it is easy to compute a tight local upper bouwhg ( ;).

In this paper the convex relaxation is designed following a
two-phase approach as follows.

Phase 1:In this phase the relaxation is accomplished by
assuming i) there is no mutual interference among ground
nodes, i.e., interference items in the denominator of (8) are
set to zero, and that all ground nodes use different pilot
sequences in channel estimation and henge= 0 in (8);

i) the maximum number of the ground nodes that can be
associated with a drone hotspot is not limited3gax in (4).
Then, the objective of the relaxed network control problem
is to maximize the aggregate capacity of ground nodes by

Fig. 3: Approximiation of log(t) using three tangent lines and one

6In this paper we use; to refer to both subprobleinand the corresponding ;
segment line.

feasible set.
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and x , y and z are prede ned movement step size ofThis results in an initial feasible set, which is &n= 2jAj -
aerial drones in x- and y-axis, respectively. The objective imensional hyper-rectangle denoted ag: with jAj being
this phase is to determine the optimal association vectorthe number of aerial drones . As in Section V, denote
with given aerial drones coordinates vectars y andz  as the set of sub-rectangles obtained from partitionipg as
and without considering mutual interference among grourie iteration goes. For any sub-rectan§le denotevap
nodes as in Phase 1 relaxation. &t represent the capacityandv),, as the upper and lower bound of tH% edge of the

achievable by ground nodg2 G if g is associated to aerial rectangle witH =1; ;L. For example, for the x-axis of the
dronea 2 A, then the optimal association can be obtained hyitial domain set i, , we havevl'Wr =0 and vap = Xmax -
solving the following linear optimization problem: Further de ne the size, volume (vol), and condition humber
cond) of € as follows:
Problem 5 ( s?ze(e) max 3(Vlpp Vi), i-€., the maximum of
Given: i), Z half edgellen@h
Maximize : C P XY .
miz a2a g2 gal $ X5y 52) vol(€) (vupp vi,, ), i.e., the edge length
; . . . . 44 I=1; L
Subjectto: @ ga 1, 8a2A;g2G; (44) production:
ga  Gmax; 8aZA; max  (Vipp Vier )
9pc cond(®) =, i.e., the ratio of the
ga 1, 802G =M (Pupo Piue
a2A maximum and the minimum edge lengths.

As variable partition progresses, the association variagle Then, considering the domain partition strategy described in
becomes xed either to 0 or 1 in all subproblems, for whicksection V (i.e., in each iteration, partition the variable that has
the optimal transmit powgy and pilot sequence assignment the largest range from its middle), after a suf ciently large
can be obtained by solving a geometric programming problemmber of iterations, saly, the following inequality holds:

as in Section V. vol( init )
min size®) maxfcond( init ); 29 T’”' ;
€2

which implies that the minimum size (hence the largest range
Variable partition can be conducted by partitioning associgf movement variables) in all subproblems converges to zero
tion variable and movement variables y andz. For exam- ask!1 | i.e., the ranges of aerial drone movement variables
ple, given a subproblem; 2, by xing association variable andy, shrink to constant for all drones2 A .
ga subproblem ; can be partitioned into two subproblems Denote € as the sub-rectangle with the smallest size.
with feasible sets ;1 = f( ; p; X; ¥; 2) 2 ij ga =09 Then, inequality (47) further implies that the local upper and
and 2= f( ; p; X;y; 2)2 ij ga=1g, respectively. |ower bounds oveff , i.e., U(® ) andU(€ ), converge to
For movement variables, sa 2 [Xmin;a Xmax:a] for aerial each other if i) it holds for any sub-rectangf® 2  that
dronea 2 A, the partition can be conducted by splitting  the local upper bound(€) is non-increasing a§ shrinks,
from the half, resulting in two subproblems with feasible setghich is true because that the algorithm partitions aerial drone
o ey r ) ) . movement variablesx( y and z) from their middle, and
i1= T ipixiy;2) 2 Xa 2 [Xminia Xmig iald:  (45) ii) the local upper bounds)(€)) are non-increasing, which
52= FIPIXiYi2) 2 ijXa 2 [Xmid;a Xmax:al0  (46)  foliows that the highest local lower bound is always used in

where Xmga , *matXmcs  As variable partiion pro- (€ algorithm.
gresses, the algorithm converges to the global optimum, asl "€ as the local upper and lower bounds dveconverge
stated in the following theorem. to each other, we can nd a> O for any optimality precision

2 (0 1) such that any sub-rectangf with size(®)
Theorem 2. With convex relaxation the variable partitionsatis esU(€) "U(®). Take the iteration indek suf ciently
strategies in Sections V-B and V-C, global upper bouh@ |arge so that the size of all sub-rectangle€ido not exceed,
and global lower boundJ;, converge to the global optimuminhen we haveJ U, =max U(8) "maxU(€)= Ug,. O
U of the original social network control problem formulated e2 e2
in (11).

Proof. To show convergence of the globally optimal solution VI. PERFORMANCEEVALUATION

algorithm, it is suf cient to show that the algorithm converges We evaluate the performance of the proposed network

with respect to aerial drone movement varialskesy andz  control solution algorithms by considering a network area of

since i) there is a nite number of possible combinations 00 500 n? while the altitude of the drone hotspots is set to

association strategies for a given getof aerial drones and 100 meters for simplicity of the simulations. The number of

setG of ground nodes, and ii) the power control subprobleithe ground users is set f@; 4; 6; 8; 10; 129, and the number

is a convex optimization problem. of the drone hotspots is set t@; 3g. The number of antennas
For this purpose, we rst rede ne the domain set based avf each drone hotspot is set £d0; 20; 30; 40; 50; 100g. The

the notation of hyper-rectangle. The initial ranges of aerialaximum transmit power of each ground user is set to

drone movement variables,, y, andz, for each aerial drone f 20; 40; 60; ;5000 mW. The path loss factor is set to

a2 A are[0 Xmax], [0 Ymax] and [0 zmax], respectively. =2, and the average noise power is setlb ® mW. The

(47)

C. Variable Partition
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@) (b) (©

Fig. 4: (a) x- and y-axis of the drone hotspots and (b) aggregate network spectral ef ciency with the distributed solution
algorithm; (c) optimality ratio with the centralized solution algorithm.

() (b)
Fig. 5: Aggregate network spectral ef ciency with the distributed and centralized solution algorithms with (a) 4 ground users,

2 drone hotspots with each having 100 antennas, and 8 pilot sequences, and (b) 8 ground users, 2 drone hotspots with eac
having 20 antennas, and 6 pilot sequences.

number of the available pilot sequences is séfBg, and the aggregate network spectral ef ciency of all the ground users.
length of each pilot sequence is setlfosymbols. The results It can be seen that the network spectral ef ciency converges
are obtained by averaging over 20 independent simulatiqnickly as well. The convergence of the centralized solution
instances with network topology randomly generated. Nextlgorithm is shown in Fig. 4(c). The optimality precision is
we rst discuss the convergence of the distributed and ceset to 90% and the maximum number of iterations is set
tralized solution algorithms, and then evaluate the optimalitp 5000. In can be seen that the optimality ratio converges
of the distributed solution algorithm by comparing it to thenonotonically as the interation progresses and the prede-
centralized. Finally we study the effects of different networkned optimality precision is reached in 600 iterations. The
control strategies on the aggregate network spectral ef cienopmputational complexity of the distributed and centralized
solution algorithms is compared in terms of the number of
Convergence The convergence of the distributed solutioferations required to converge in the case of different number
algorithm and the centralized solution algorithm is shown igf ground nodes. We tested 20 more network instances with the
Fig. 4. In Fig. 4(a), two drone hotspots and eight groungumber of ground nodes varying from 2 to 10. Results showed
users are considered and the initial locations of the drongt both the distributed and centralized solution algorithms
are randomly generated within the networking area. It can benverge in all the tested instances. With distributed solution

seen that the movement of the drone hotspots converge quicklyorithms it takes on average 25 iterations to coverage, e.g.,
in around 40 iterations. In Fig. 4(b) we plot the resulting
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Fig. 6: Network spectral ef ciency in the case of different numbefFig. 7: Network spectral ef ciency in the case of different maximum
of ground users. transmit power for the ground users.

15, 26 and 35 iterations in the cases of 2, 8 and 10 groubh@0 antennas are considered in this experiment. On average
nodes, respectively. The centralized solution algorithm takeser 93% of the global optimum can be achieved by the
more iterations than the distributed to converge. For examptistributed solution algorithms, with 95%, 97% and 90%
it takes 4592 iterations for the centralized solution algorithfior transmit power in[20 80] mW, [100 160] mW and
to converge in the case of 8 ground nodes and 4688 iteratigh80 220] mW, respectively. From the results of the central-
on average. It is worth pointing out that while the centralizeided solution algorithm we noticed that the aggregate network
solution algorithm has higher computational complexity, thepectral ef ciency rises only around 4.5% by increasing the
objective of the centralized solution algorithm is to provide maximum transmit power by 2.4 times from 100 to 2#A0V.
benchmark performance for the distributed solution algorithrthis is because in massive MIMO setting the network basically
Optimality . Figure 5 reports the network spectral ef ciencypperates at high SINR regime, i.e., in bandwidth-limited
i.e., the spectral ef ciency summed over all the users in thregime.
network, achievable by the distributed solution algorithm and The network spectral ef ciency is reported in Fig. 8 with
the centralized global optimum. Four ground users, 2 drotlee number of antennas for each drone hotspot varies from
hotspots and 8 pilot sequences are considered in Fig. 528) to 100, with 8 ground users and 6 pilot sequences. The
while 8 ground users, 2 drones and 6 pilot sequences distributed network control strategy achieves on average over
Fig. 5(b). It can be seen that in both cases the distributé8.5% of the global optimum obtained by the centralized
solution algorithm achieves an aggregate network spectsalution algorithm. We notice that the achievable network
ef ciency very close to the global optimum in all of the 20spectral ef ciency monotonically increases with the number
tested network topology instances, with average optimality of antennas but at a decreasing speed. This is consistent with
97% and 91% for Figs. 5(a) and (b), respectively. Comparinghe results in [9, Fig. 4(a)]. It is worth pointing out that,
Fig. 5(b) to Fig. 5(a) it can be found that, as expected, tlvemparing to [9, Fig. 4(a)], the network spectral ef ciency
aggregate network spectral ef ciency increases as more usgaén achievable by using more antennas is less signi cant in
are accommodated in the network, e.g., fr@65 bpsHz to our case, e.g., in this experiment the effect of increasing the
165 bpsHz for the distributed solution algorithm. number of antennas is only marginal if each drone hotspot
The average performance of the achievable network specttas more than 30 antennas. This is because our objective is
ef ciency is reported in Fig. 6 with different number of groundto study joint power, association and ight control in self-
users. Results indicate that in average around 92.5% of thrganizing massive-MIMO-enabled UAV networks, and in this
global optimum can be achieved by the distributed solutisetting the network spectral ef ciency is jointly determined
algorithm, and the optimality is 97%, 98% and 88.6% with 4y all the affecting factors. As a future research direction we
8 and 12 ground users, respectively. It is also noticed that twél study how many antennas are required to achieve certain
achievable network spectral ef ciency increases linearly witbpectral ef ciency in self-organizing UAV networks.
the number of the served ground users in the setting of thewe further study the effects of different network con-
considered mDroneNet. trol strategies on the achievable network spectral ef ciency
In Fig. 7 we plotted the achievable network spectral ef through Figs. 9-10, where the joint network control strategy is
ciency against the maximum transmit power of the grourmbmpared to the other four strategies: (i) the locations of the
users. Eight ground users and 2 drone hotspots each haudngne hotspots are randomly generated in “w/o Aerial Drone






