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Abstract—This article studies distributed algorithms to control
self-organizing flying drones with massive MIMO networking
capabilities - a network scenario referred to as mDroneNet. We
attempt to answer the following fundamental question: what is
the optimal way to provide spectrally-efficient wireless access to
a multitude of ground nodes with mobile hotspots mounted on
drones and endowed with a large number of antennas; when we can
control the position of the drone hotspots, the association between
the ground users and the drone hotspots, as well as the pilot
sequence assignment and transmit power for the ground users?
To the best of our knowledge, this is the first time that massive
MIMO capabilities are considered in self-organizing flying drone
networks.

We first derive a mathematical formulation of the problem
of joint power, association and movement control in mDroneNet,
with the objective of maximizing the aggregate spectral efficiency
of the ground users. It is shown that the resulting network control
problem is a mixed integer nonlinear nonconvex programming
(MINLP) problem. Then, a distributed solution algorithm with
polynomial time complexity is designed by solving three closely-
coupled subproblems: access association, joint pilot sequence
assignment and power control, and drone movement control.
As a performance benchmark, a globally-optimal but centralized
solution algorithm is also designed based on a combination of the
branch and bound framework and convex relaxation techniques.
Results indicate that the distributed solution algorithm converges
fast (within tens of iterations) and achieves a network spectral
efficiency very close to the global optimum obtained by the
centralized solution algorithm (over 90% in average).

Index Terms—Wireless Drone Networking, Massive MIMO,
Distributed Control, Nonconvex Optimization.

I. INTRODUCTION

Wireless data traffic is drastically increasing following the
increased prevalence of video streaming applications and the
explosion of the Internet of Things (IoT), such as augmented
reality, intelligent transportation and surveillance [2]–[6]. This
has resulted in an increasing demand for faster wireless com-
munication networks with higher spectral efficiency, as well
as techniques to reduce the interference between co-located
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wireless links operating on the same spectrum bands and
hence to increase the spectral efficiency [7], [8]. In this article,
we focus on studying new approaches to provide ground
connectivity by exploring the application of self-organizing
flying drones (aka unmanned aerial vehicles or UAVs) with
massive MIMO networking capabilities, a network scenario
we refer to as mDroneNet.1

mDroneNet. As illustrated in Fig. 1, in mDroneNet there
are a set of many-antenna-enabled flying drones to collabo-
ratively provide data collection and forwarding services to a
group of single-antenna ground users, and send to the ground
users control commands generated either locally at the drones
or in a remote fusion center. A wide range of new applications
can be enabled by using massive MIMO on UAVs, includ-
ing high-data-rate mobile multimedia sensing and networking
through massive MIMO communications, beamforming-based
spectrum sharing and coexistence in the unlicensed spectrum
bands with redeployable drone base stations, secure wire-
less networking in contested environments through massive-
MIMO-based directional communications, aerial edge comput-
ing with massive-MIMO-enabled flying drones, among others.
In this article, we attempt to study the best way to provide
spectrally-efficient wireless access to a group of ground users
with mobile hotspots mounted on flying drones and endowed
with a large number of antennas; when we can control the
movement of the drones, access association, as well as the
pilot assignment and transmit power for the massive MIMO
communications between the ground users and the drones.
It is worth pointing out that the operation time of a drone
is affected by different factors, including the lifetime of the
battery, the energy source type, as well as the weight, speed
and flight trajectory of the drone, among others [10]. Recently
new technologies have been proposed to extend the battery
duration, e.g., automated battery swap and recharge [11], [12]
and dynamic recharging scheduling [13], [14].

In mDroneNet these network control strategies are tightly
coupled with each other and should therefore be jointly
considered to obtain the optimal network operating point.
Compared to infrastructure-based cellular networks with static
massive MIMO base stations [9], [15]–[18], a peculiar feature
of mDroneNet is that the drone hotspots can provide coverage

1It is reasonable to integrate massive MIMO on UAVs. This is because
massive MIMO can achieve realistic form factors as long as different ground
users have distinct spatial channel characteristics rather than that the antennas
observe uncorrelated channels [9]. As a result, e.g., at 2 GHz frequency
band it requires only a 0.75× 0.75 meter array to deploy 100 dual-polarized
antennas, for which it is practical to deploy the antennas on currently available
commercial off-the-shelf UAVs.
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Fig. 1: mDroneNet: Wireless networks with massive-MIMO self-organizing flying UAVs.

with higher spectral efficiency, by moving dynamically to
adapt to the changes in the location or traffic demands of the
ground nodes, nodes leaving or joining the network, as well as
time and the spatially-varying interference level, among others.
Moreover, in mDroneNet a massive MIMO transmission is
typically conducted in two phases: pilot-based channel esti-
mation and data transmission, while all the ground nodes are
allowed to operate over the entire available spectrum band and
at any transmission time. In this setting, the maximum number
of ground nodes associated to a drone hotspot is constrained
by the length (in symbols) of the pilot sequences used in
the channel estimation phase. Pilot contamination will occur
if the same pilot sequence is shared by multiple users, and
this will result in degraded accuracy of channel estimation
and hence lower spectral efficiency [19], [20]. Therefore, it
is imperative to jointly regulate the transmit power of the
ground nodes as well as the association among the ground
nodes, the drone hotspots and the available pilot sequences, to
eliminate the mutual interference caused by imperfect channel
orthogonalization in the case of limited number antennas at
each drone.

Novelty and Contributions. Massive MIMO networking
has recently received a significant attention in the scientific
literature [9], [15]–[18], [21]–[30]. Readers are referred to
[9], [19], [20], [31], [32] and references therein for ex-
cellent surveys of the main results in this area. However,
most existing research on massive MIMO has been focus-
ing on theoretical analysis of spectral/energy efficiency [15],
designing new beamforming signal processing technologies
[9], [16], increasing robustness against both unintended in-
terference [17], [18] and one-way/two-way droning [26]–[30]
in infrastructure-based cellular networks with static massive-
MIMO-enabled base stations, while the potential of massive
MIMO in infrastructure-less wireless ad hoc networks has not
been explored yet. While unmanned aerial networking has
also attracted extensive research in the past decade with a
large and growing body of literature [33]–[52], very few of
these work has taken massive MIMO into consideration. To
the best of our knowledge, this is for the first time massive
MIMO is considered in large-scale wireless networks with self-
organizing flying drone hotspots.

As will be clear in Section III, the resulting mDroneNet con-
trol problem studied in this article is a mixed integer nonlinear
nonconvex programming (MINLP) problem because of the
binary variables for access association and pilot assignment.

Such problems are generally NP-hard and there is no existing
solution algorithm that can be used to obtain the globally
optimal solution with polynomial computational complexity.
In this paper, we claim the following main contributions:
• mDroneNet framework and formulation. We study for

the first time mDroneNet, a new framework for self-
organizing aerial drone hotspots with massive MIMO
networking capabilities. Our objective is to maximize the
spectral efficiency of mDroneNet by jointly controlling
the movement of the drones, access association and pilot
assignment, as well as the transmit power of the ground
users.

• Distributed solution algorithms. As in [53], we focus on
distributed algorithm design for mDroneNet. Compared
to centralized control, distributed control does not require
the network to collect the full statistical channel state
information (CSI), the power of noise and locations,
among other network parameters, from all the ground
users and flying UAVs at a centralized control entity.
As a result, the network control does not suffer from
the single point of failure problem and hence is more
robust. Moreover, distributed algorithms are essential
particularly in large-scale wireless networks with multiple
self-organizing UAVs and ground users for scalable and
low-latency network control. In this work, we decompose
the resulting MINLP problem into three distributed sub-
problems based on primal decomposition, and design
solution algorithms for each of them: user-drone access
association, joint pilot assignment and power control, and
drone movement control.

• Globally optimal solution algorithm. To provide a perfor-
mance benchmark for the distributed solution algorithm,
we design a centralized but globally optimal solution
algorithm based on a combination of the branch and
bound framework and of convex relaxation techniques
that can result in an ε-optimal solution with ε being a
predefined level of optimality precision.

• Performance evaluation. The performance of the pro-
posed distributed solution algorithm is evaluated in terms
of network spectral efficiency by comparing it to the
global optimum through extensive simulation experi-
ments. Results indicate that the distributed solution al-
gorithm can achieve on average over 90% of the global
optimum. The convergence behaviors of the proposed
solution algorithms are also evaluated.
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The remainder of the paper is organized as follows. We review
related work in Section II, and describe the system model and
problem formulation in Section III. In Sections IV and V, we
present the distributed solution algorithm and the centralized
solution algorithm, respectively. Performance evaluation of the
proposed solution algorithms is presented in Section VI, and
finally we draw conclusions in Section VII.

II. RELATED WORK

There is a large and growing body of literature on un-
manned aerial vehicular networking, focusing on UAV-assisted
guidance [33], UAV-based data collection [34], [37], [38] and
relaying [35], [36], [39], [41], [43], [45], [46], ground-aerial
channel measurements [40] as well as tracking and control of
UAV networks [42], [44], [54]. Readers are referred to [47]–
[52] and references therein for an extensive survey of this
research area. Most of these works focus on single-antenna
aerial vehicles and conventional MIMO, with very few recent
efforts considering massive MIMO [54]. Different from [54],
where Chandhar et al. derived the achievable uplink capacity
from a many-antenna ground base station to a set of single-
antenna aerial drones, in this paper we maximize the aggregate
throughput of single-antenna ground nodes served by a set of
aerial drones each endowed with a large number of antennas.

Compared to conventional multiuser MIMO, massive
MIMO can attain much higher spectral efficiency by using
a large number of antennas with low-complexity linear pre-
coding technologies [16], [19], [27]–[30], [55]. In [29], the
authors derived an exact achievable rate expression in closed-
form for maximum-ratio combining/maximum-ratio transmis-
sion (MRC/MRT) processing and an analytical approximation
of the achievable rate for zero-forcing (ZF) processing for
multi-pair full-duplex massive MIMO relay system. In [27],
Jin et al. derived the ergodic rates in the case of a finite
number of antennas and concluded that the ergodic sum-rate
can be maintained while the relay power is scaled down by
a factor of the number of the antennas at the relay over
the number of users. Amarasuriya investigated in [28] multi-
user massive MIMO relay networks with ZF-processing by
deriving the achievable sum rate expressions in both perfect
and imperfect CSI cases. In [55], the problem of joint power
and time allocation is addressed for secure communications
in a decode-and-forward massive MIMO relaying system in
the presence of adversary eavesdroppers. In [30], the spectral
and energy efficiency for multiple amplify-and-forward two-
way full-duplex massive MIMO relay systems are studied.
Finally, [9], [19], [20], [31], [32] contain good surveys and
tutorials on massive MIMO networking. These papers are
focused on infrastructure-based cellular networks with static
many-antenna-enabled base stations, and focus on asymptotic
performance analysis with respect to a single network param-
eter (e.g., power). Our paper, instead, considers for the first
time aerial drone hotspots with massive MIMO capabilities in
infrastructure-less network scenarios2.

2Each drone hotspot is essentially a mobile base station and can serve
as the mobile infrastructure for ground wireless networks. In this paper by
infrastructure-less networks we refer to wireless networks without centralized
coordination of the self-organizing flying hotspots.

TABLE I: Summary of Key Notations

Notation Physical Meaning
A Set of all aerial drones
G Set of all ground users
Ga Set of ground users associated to drone a ∈ A
W Set of pilot sequences available to mDroneNet
αga 1 if ground user g is associated to drone a, and 0 otherwise
α Access association vector: (αga)

a∈A
g∈G

pg Transmit power of ground user g ∈ G
p Transmit power vector of ground nodes: (pg)g∈G

µgw
1 if pilot sequence w ∈ W is used by ground user g,
and 0 otherwise

µ Pilot sequence assignment vector: (µgw)w∈W
g∈G

xa, ya, za x-, y- and z-axis coordinates of drone a ∈ A

x,y, z
x-, y- and z-axis coordinate vector of drones: (xa)a∈A,
(ya)a∈A, and (za)a∈A

pmax Maximum transmit power of ground node
γg Achievable SINR of ground node g ∈ G
τ Pilot sequence length in symbol
M The number of antennas of each drone hotspot
a(g) Service aerial drone of node g ∈ G
βg′g Channel gain from ground node g′ to aerial drone a(g)

Ig
The set of ground users sharing the same pilot sequence
with user g

A(Ig) Set of aerial drones of interfering nodes in Ig
Hg′g Path loss from ground node g′ to aerial drone a(g)
ρg Nominal SNR for ground user g
Ga The number of ground users served by drone a ∈ A
Gmax Maximum of Ga

Rg Achievable throughput of ground node g ∈ G

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider wireless networks where a set of many-antenna
drone hotspots serve a set of single-antenna ground users,
as illustrated in Fig. 1. The drones collect field information
from the users, make action decisions either locally at each
drone or by sending the information fusion results to a remote
control center, and finally send the action commands back to
the ground users. Our objective is to maximize the network-
wide spectral efficiency for the uplink transmissions since
it causes only low-level traffic load to transmit information
fusion results and control commands in the downlinks. We
consider joint control of the movement of aerial drones, the
association among the ground users and the drones, as well as
the pilot sequence assignment and transmit power control for
the ground nodes. It is worth pointing out that we consider
single-antenna ground users in mDroneNet because we want
to keep the theoretical analysis and algorithm design tractable,
while the control of mDroneNet with multiple-antenna ground
users will be studied in our future research. Next, we formalize
the network control problem by describing the system model.
The key notations are summarized in Table I for the reader’s
convenience.

System Model. As mentioned in Section I, a massive
MIMO transmission is typically accomplished in two phases,
i.e., channel estimation and data transmission [19], [20], [31].
In our case, the ground users send a set of pilot sequences
to the drones for channel estimation in the first phase, while
in the second phase the drones detect the data from the users
based on the estimated channel state information (CSI). Denote
A, G and W as the sets of the drone hotspots, ground users,
and the available pilot sequences, respectively. Define αga as
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the access association variable. Let αga = 1 if user g ∈ G is
associated with drone a ∈ A, and αga = 0 otherwise. Denote
the access association vector as α , (αga)a∈Ag∈G . Similarly,
let µ = (µgw)w∈Wg∈G represent the pilot sequence allocation
vector, with µgw = 1 if pilot sequence is associated to ground
user g and µgw = 0 otherwise. We consider single-home
accommodation for the ground users in favor of tractable
complexity in modeling and theoretical analysis, i.e., each
ground user is associated to at most one drone hotspot and
at most one pilot sequence. Then we have

αga ∈ {0, 1}, ∀g ∈ G, a ∈ A (1)
µgw ∈ {0, 1}, ∀g ∈ G, w ∈ W (2)∑
a∈A

αga ≤ 1, ∀g ∈ G, (3)∑
g∈G

αga ≤ Gmax, ∀a ∈ A, (4)∑
w∈W

µgw ≤ 1, ∀g ∈ G, (5)

where Gmax is the maximum number of ground users that
can be served by each drone hotspot a ∈ A.3 Let Ga ⊂ G
and G′w ⊂ G represent the set of users associated with drone
a and the set of users sharing the same pilot sequence w,
respectively, i.e., Ga , {g| g ∈ G, αga = 1} for each
a ∈ A, and G′w , {g| g ∈ G, µgw = 1} for each w ∈ W .
Denote w(g) as the pilot sequence used by ground user g, and
let Ig(µ) , G′w(g) represent the set of users using the same
pilot sequence as user g. Similarly, denote a(g) as the service
drone of ground user g ∈ G.

Let xa, ya and za represent respectively the x-, y- and z-axis
coordinates of drone a, and define the coordinate vector for the
drones in A as x = (xa)a∈A, y = (ya)a∈A and z = (za)a∈A.
Then, the distance between user g′ and the service drone of
user g (i.e., drone a(g)), denoted as dg′g , can be expressed as

dg′g , dg′g(xa(g), ya(g), za(g))

=
√

(xa(g) − x̃g′)2 + (ya(g) − ỹg′)2 + (za(g) − z̃g′)2, (6)

where x̃g′ , ỹg′ and z̃g′ represent the x-, y- and z-axis coor-
dinates of ground user g′ ∈ G, respectively. Further denote
βg′g as the channel gain between ground user g′ ∈ G and
drone a(g) (i.e., the service drone of user g). Then βg′g
can be expressed as βg′g = Hg′gζg′g , where ζg′g represents
the log-normal slow fading between user g′ and drone a(g),
Hg′g , d−χg′g is location-dependent path loss with χ being path
loss factor and the distance dg′g defined in (6).

3The maximum number of served ground nodes cannot exceed the number
of antennas available to each aerial drone and the length of pilot sequences
used in channel estimation [15].

In this work we focus on the applications of UAVs in
networking environments in rich-scattering environments with
dense and high blockage, while UAV networking in other
scenarios [9], [54], [56]–[59], e.g., LoS-dominant wireless
environments, will be studied in our future work. In this
setting, we consider a model similar to [60], [61] to express
the effective SINR achievable by uplink massive MIMO
communication links, which jointly considers the effects of
pilot contamination and mutual interference among the ground
users. Then, a lower bound of the link capacity achievable by
ground user g in the data transmission phase, denoted as Cg ,
can be represented as

Cg = B log2(1 + γg), (7)

with γg being a lower bound of the effective SINR achievable
by ground user g ∈ G given as in (8) at the bottom of
this page,4 where τ is the length (in symbols) of each pilot
sequence, M represents the number of antennas available
at each aerial drone, ρg is nominal transmit signal-to-noise
ratio (SNR) at ground user g; |Ga(g)(α)| is the cardinality of
Ga(g)(α), i.e., the set of ground users served by the service
drone of user g; and finally

ξg′g ,
∑

l∈Ig′ (µ)

ρlβlg (9)

and φg′g is defined as

φg′g =

 βg′g, if a(g′) /∈ A(Ig(µ))

βg′g

(
1− τρg′βg′g

1+τξg′g

)
, otherwise,

(10)

with A(Ig(µ)) , {a(g′)|g′ ∈ Ig(µ)} representing the set
of service drones of the ground users in Ig(µ), i.e., the
users sharing the same pilot sequence with user g. The
average rate achievable in the channel estimation and data
transmission phases, denoted as Rg , can then be expressed
as Rg = (1− τ

T )Cg , where Cg is the link capacity achievable
in the data transmission phase in (7), and τ and T are
the length of pilot sequences and the period of a massive
MIMO transmission in symbols, respectively [62]. In this
work, we design distributed control algorithms for mDroneNet

4It is worth pointing out that we do not assume perfect CSI in this
paper. This is because the SINR model accounts for different practical
factors that affect massive MIMO networks, including channel-estimation
error, the type of linear spatial multiplexing/de-multiplexing, power control,
noncoherent inter-cell interference, and coherent inter-cell interference due to
pilot contamination, among others [60], [61]. In this setting, as pointed out in
[61], (8) provides a lower bound on the achievable SINR while deriving the
exact closed-form expression of the achievable SINR is still an open problem
as of today. In this work, we study the distributed joint power, association and
flight control in self-organizing massive-MIMO drone networks taking this
SINR model as an example, while the resulting network control framework
is not restricted to any specific SINR models.

γg , γg(α, µ, p, x, y, z) =

(
M − |Ga(g)(α)|

)
τρgβ

2
gg(x, y, z)pg/(1 + τξgg)

1 +
∑
g′∈G

φg′gpg′ +

τ(M−|Ga(g)(α)|)
∑

g′∈Ig(µ)\g
ρg′β

2
g′g(x, y, z)pg′

1+τξgg

(8)
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Fig. 2: Diagram of the distributed solution algorithm. The shaded blocks with dashed border represent operations of the drone
hotspots while blocks with solid border for the ground users.

by considering data-transmission-phase link capacity (7) and
fixed length of pilot sequences in channel estimation phase.

Problem Statement. Our objective is to maximize the
aggregate capacity of all the ground users in G and hence
the network spectral efficiency of the mDroneNet, by jointly
determining the access association vector α, pilot sequence
assignment vector µ, the location vectors x, y and z for the
drones, as well as the transmit power vector p. The problem
is formalized in Problem 1 as follows.

Problem 1
Given : A, G, Gmax,M, x̃, ỹ, z̃

Maximize
α,µ,p,x,y,z

: U ,
∑
g∈G

Cg(α,µ,p,x,y, z)

Subject to : 0 ≤ pg ≤ pmax, ∀g ∈ G,
xmin ≤ xa ≤ xmax, ∀a ∈ A,
ymin ≤ ya ≤ ymax, ∀a ∈ A,
zmin ≤ za ≤ zmax, ∀a ∈ A,
Constraints (1), (2), (3), (4), (5)

(11)

where x̃, ỹ and z̃ are the location vectors of the ground users;
Cg(α,µ,p,x,y, z) = Cg , the objective function of user g, is
the lower bound of the rate achievable by the user, as defined
through (7)-(10); pmax is the maximum transmit power of each
of the ground users in G; and finally [xmin xmax] represent the
x-axis movement range of the drones while [ymin ymax] and
[zmin zmax] are the ranges of the y- and z-axis, respectively.

The utility function U in (11) is a nonlinear nonconcave
function with respect to the control variables because of the
complicated mathematical expression of the effective SINR
in (8). Moreover, Problem 1 in (11) is a mixed integer-
continuous programming problem because of the binary access
association variables α and pilot assignment variables µ.
Given an arbitrary such problem, there is in general no existing
solution algorithm that can be used to obtain the global
optimum in polynomial computational complexity. Next, we
first present in Section IV a distributed solution algorithm
that can be used to achieve a sub-optimal solution to provide
a lower-bound on the utility function U in (11). Then in
Section V we will design a centralized solution algorithm to
provide a performance benchmark for the distributed solution
algorithm.

IV. DISTRIBUTED SOLUTION ALGORITHM

A key step of the distributed solution algorithm design is to
decompose the original network control problem into a series
of subproblems, by solving which in a distributed manner

the original problem can be solved [63], [64]. However, in
our case the control variables α,µ,p,x, y and z are closely
coupled with each other in the complicated mathematical
expression of the effective SINR in (8). As a result, the
network control problem, i.e., Problem 1 in (11), is architec-
turally indecomposable.5 In this work, the distributed solution
algorithms are designed by decomposing the network control
problem following a primal decomposition approach. Roughly
speaking, with primal decomposition Problem 1 in (11) is
solved by dividing the feasible set of the original problem into
multiple parts by fixing a subset of variables at a time, which
are drone location variables x,y and z, association variables
α as well as transmit power vector p and pilot sequence
assignment variables µ. The overall diagram of the algorithm
design is illustrated in Fig. 2, where the original problem
is solved by iteratively solving three subproblems obtained
from primal decomposition, i.e., access association, joint pilot
assignment and power control, and movement control for the
drones.
A. Access Association

The core idea of the proposed access association strategy is
to let the ground users in G interact iteratively with the drone
hotspots in A to compete for association opportunities based
on certain locally-calculated preference criterion, as illustrated
in Fig. 2. To this end, in each iteration the ground users first
report their own association preferences to the drones, which
then make association offers based on the received preference
information. Let x(ν), y(ν) and z(ν) represent the coordinates
of the drones in current iteration ν. Then in iteration ν +
1 the objective of the access association is to maximize the
aggregate capacity of all the ground users in A by determining
the association vector α(ν+1) subject to association constraints
(1), (3) and (4).

Denote A(ν)
g ⊂ A as the set of drones nearby ground user

g ∈ G (i.e., the drones in the communication range of the
ground user). Then, the association preference of ground node
g with respect to drone a ∈ A(ν)

g , denoted as λga, can be
computed as

λga =
log(1 + γga)∑

a′∈A(ν)
g

log(1 + γga′)
, (12)

5A problem is architecturally decomposable if its dual problem obtained by
introducing Lagrange multipliers can be rewritten into a set of subproblems,
each of which can be solved locally in a single protocol layer and network
device [63].
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where γga′ represents the interference-free single-input-single-
output (SISO) SINR, i.e., the SINR achievable with single
antenna and without interference from the other ground users
co-located in the mDroneNet, achievable by ground user g if
the user is associated with drone a′ ∈ A(ν)

g . In this work, the
SINR γga′ is defined as

γga′ , ρgβgg|a(g)=a′ , (13)

with ρg being the transmit SNR for ground user g and
βgg|a(g)=a′ being the path loss for the wireless channel
between ground user g and its service drone a(g). Denote
λa = (λga)g∈G̃a as the preference vector drone a receives

from its nearby ground users in G̃a , {g|g ∈ G, a ∈ A(ν)
g }.

Then, each drone a ∈ A(ν)
g first sorts λa in a descending

order and then sends association offers to a preferred set of
maximum Gmax of ground users, as follows,

λdsc
a = (λg1a, λg2a, · · · , λgGmaxa︸ ︷︷ ︸

Preferred Ground Users

, · · · ), (14)

where Gmax is the maximum number of users each drone
can serve at the same time. Let Aoffer

g represent the subset
of the drones that send an association offer to ground user
g, and denote |Aoffer

g | as the cardinality of Aoffer
g . Then, each

user accepts the association offer it receives from the drones
corresponding to the highest SISO SINR, i.e., associate with
drone a∗ with

a∗ , arg max
a∈Aoffer

g

λga, (15)

where λga is the association preference defined in (12). The
above procedure is executed until no ground user receives
more than one association offer. The output of this step is
the updated access association strategies, i.e., α(ν+1). The
association strategy is summarized in Algorithm 1.

Remark 1: In the association strategy described in
Algorithm 1, the rationale of computing the association
preference as in (13), i.e., based on the interference-free SISO
SINR, is as follows. In massive MIMO settings, particularly
when the number of antennas M is large, the received SINR
is dominated by the power of noise and large-scale fading
effects, e.g., path loss, shadow fading. Therefore, the capacity
with interference-free SISO capacity, i.e., (12), can serve as a
good indication of association preference and can be computed
with low computational complexity.
B. Joint Pilot Assignment and Power Control

With given coordinates of the drones and the updated access
association vector, i.e., α(ν+1) obtained in Section IV-A, as

Algorithm 1: Competition-based Access Association

Data: Drone coordinates x(ν), y(ν) and z(ν)

Result: Updated association vector α(ν+1)

1 Initialization: Set |Aoffer
g | = |A|, ∀g ∈ G;

2 Operations for Ground Users:
3 while ∃g ∈ G, |Aoffer

g | > 1 do
4 for each user g ∈ G do
5 if |Aoffer

g | ≤ 1 then
6 continue;
7 else
8 for each drone a ∈ Ag , calculate association

preference λga based on (12) and (13);
9 broadcast the calculated λga;

10 end
11 accept association offers based on (15);
12 update α(ν+1);
13 end
14 end
15 Operations for Drones:
16 for each drone a ∈ A do
17 make association offers based on (14);
18 end

shown in Fig. 2, the objective in the second network control
subproblem is to jointly determine the pilot assignment and
transmit power for the ground users. The subproblem can be
formalized as

Problem 2
Given : x(ν),y(ν), z(ν),α(ν+1)

Maximize
µ, p

: U ,
∑
g∈G

Cg(µ, p)

Subject to : 0 ≤ pg ≤ pmax, ∀g ∈ G,
Constraints (2), (5).

(16)

As discussed in Section III, Problem 2 in (16) is a mixed inte-
ger nonlinear and nonconvex programming (MINLP) problem
because of the complicated mathematical expression of the
effective SINR γg(µ, p) in (8) and that the pilot sequence as-
signment variables take only binary values. Such problems are
generally NP-hard and there is typically no existing solution
algorithm than can be used to obtain the global optimum in
polynomial computational complexity. In this section, we solve
Problem 2 by designing a pricing-based distributed solution
algorithm. To this end, we first reformulate Problem 2 by
relaxing the binary pilot sequence assignment variables µ.

Problem Reformulation. We first relax the pilot sequence

γgw(p̃) =

(
M − |Ga(g)|

)
τρgβ

2
ggpgw/(1 + τξgg)

1 +
∑
g′∈G

∑
w′∈W

µg′g(µ)pg′w′ +

τ(M−|Ga(g)|)
∑

g′∈Ig\g

∑
w′∈W

ρg′β
2
g′gpg′w′

1+τξgg

(19)

=

(
M − |Ga(g)|

)
τρgβ

2
ggpgw

(1 + τξgg)(1 +
∑
g′∈G

∑
w′∈W

µg′g(µ)pg′w′) + τ
(
M − |Ga(g)|

) ∑
g′∈Ig\g

∑
w′∈W

ρg′β2
g′gpg′w

(20)
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Problem 2 (penal)
Given : x,y, z,α, p̃(ν)

Maximize
p̃g

: Ug(p̃g; p̃
(ν)
−g) +

∑
g′∈G\g

∇p̃gUg′(p̃
(ν))(p̃g − p̃(ν)

g )

︸ ︷︷ ︸
Penalization Item

−ψg
2
‖p̃g − p̃(ν)

g ‖2︸ ︷︷ ︸
Convexification Item

Subject to : Constraints (24), (25)

(27)

Algorithm 2: Pricing-based Joint Pilot and Power
Control
Data: Drone coordinates x, y, z; association strategy

α; ν = 0; current transmit power vector p̃(ν);
η(ν) > 0

Result: Updated transmit power p̃(ν+1);
1 for each user g ∈ G do
2 Compute p̂g by solving Problem 2 (penal) in (27);
3 Set p̃

(ν+1)
g = p̃

(ν)
g + η(ν)(p̂g − p̃

(ν+1)
g );

4 end
5 if p̃(ν+1) satisfies certain termination criterion then
6 STOP;
7 else
8 Set ν = ν + 1; go to Step 1.
9 end

assignment variables µ by allowing each ground user to use
multiple pilot sequences. For this purpose, let pgw represent
the transmit power that ground user g ∈ G allocates to pilot
sequence w ∈ W and define p̃ = (pgw)w∈Wg∈G . Then the power
constraints in (16) can be rewritten as

0 ≤ pgw ≤ pmax, ∀g ∈ G, w ∈ W , (17)∑
w∈W

pgw ≤ pmax, ∀g ∈ G. (18)

Then, for each pilot sequence w ∈ W , the effective SINR
γg defined through (8)-(10) can be redefined as γgw(p̃) for
each ground user g ∈ G, as in (19) and (20) at the bottom of
this page. Then, Problem 2 in (16) can be reformulated as
Problem 2 (reform):

Problem 2 (reform)
Given : x(ν),y(ν), z(ν),α(ν+1)

Maximize
p̃

: U ,
∑
g∈G

∑
w∈W

Cgw(p̃)

Subject to : Constraints (17), (18),

(21)

where Cgw(p̃) = B log2(1 + γgw(p̃)) with γgw(p̃) defined in
(19) and (20). Next we solve Problem 2 (reform) in (21) by
designing a distributed pricing-based solution algorithm.

Pricing-based Solution Algorithm. As illustrated in Fig. 2,
the main idea of the pricing-based solution algorithm is to let
each ground user iteratively determine its own pilot assignment
and transmit power by maximizing a penalized version of its
own utility in each iteration. Let p(ν)

gw represent the power of
ground user g when transmitting using pilot sequence w in

Algorithm 3: Pilot Sequence Claim
Data: Results of joint pilot and power control: p∗

Result: Updated pilot assignment vector µ;
1 Initialization: Set Wg =W,∀g ∈ G;
2 Set µgw = 1, ∀g ∈ G, w ∈ W;
3 for each user g ∈ G do
4 Set µgw = 0 with w∗ = arg min

w∈Wg

p∗gw;

5 Set Wg =Wg \ w∗;
6 end
7 if

∑
w∈W

µgw ≤ 1 is satisfied for all users in G then

8 STOP;
9 else

10 Run Algorithm 2;
11 Go to Step 3.
12 end

current iteration ν. Define

p̃(ν)
g = (log(p(ν)

gw ))w∈W , (22)

p̃
(ν)
−g = (log(p

(ν)
g′w))w∈Wg′∈G\g. (23)

Then the transmit power constraints in (17) and (18) can be
rewritten as, in each iteration ν = 1, 2, · · · ,

p̃(ν)
gw ≤ log(pmax), ∀g ∈ G, w ∈ W , (24)∑
w∈W

ep̃
(ν)
gw ≤ pmax, ∀g ∈ G. (25)

Then, the pricing-based solution algorithm can be formal-
ized in Algorithm 2 at the top of the next page, where
Ug(p̃g, p̃

(ν)
−g) =

∑
w∈W

Cgw(p̃g, p̃
(ν)
−g) is the individual rate

achievable by ground user g, η(ν) is the step size in iteration
ν. The convergence of Algorithm 2 is given in Theorem 1.

Theorem 1. If Algorithm 2 doesn’t stop after certain number
of iterations and suppose that the step-size sequence {η(ν)} is
chosen to satisfy

η(ν) ∈ (0, 1], η(ν) → 0,
∑
ν

η(ν) = +∞, (26)

then the algorithm converges to a stationary point of
Problem 2 (reform) defined in (27), and none of the station-
ary points is local minimum of the problem.

Proof. We first show that the utility function of
Problem 2 (reform) in (27) is a strongly concave function
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with respect to the transformed power control variables
p̃

(ν)
g of ground user g with given control strategies p̃

(ν)
−g

for the other users in G \ g. Since the penalization item
is an affine function of p̃

(ν)
g and the convexification item

is strongly concave with ψg > 0, we only need to show
that Ug(p̃g; p̃

(ν)
−g) is concave and the feasbile set defined by

constraints (24) and (25) is convex. Consider high SINR in
massive MIMO setting, i.e., γgw(p̃) � 1 in (19) and (20),
then, with the logarithm transformation in (22) and (23), the
achievable rate Rgw(p̃) in (21) can be represented in the form
of minus-log-sum-exp and hence is a concave function [65].
Similarly, the left-hand side of constraint (25) has a form of
log-sum-exp and hence the constraint defines a convex set.
Then, the convergence of Algorithm 2 follows Theorem 3
in [66].

Remark 2: In Theorem 1, the conditions on the choice of
step-size sequence {η(ν)} is relatively weak; for instance all
the step-size rules using in diminishing gradient-like schemes
can be used here. The following are two effective rules [66],
given η(0) = 1:

Rule 1 : η(ν) = η(ν−1)(1− εη(ν−1)), ν = 1, 2, · · · (28)

Rule 2 : η(ν) =
η(ν−1) + β1

1 + β
(ν)
2

, ν = 1, 2, · · · (29)

where ε ∈ (0, 1) and β1, β2 ∈ (0, 1) are predefined constants
with β1 < β2.

Pilot Sequence Claim. Recall in Section III that we
consider that each ground user occupies at most one pilot
sequence. This is accomplished by pilot sequence claim based
on the results of the joint pilot and power allocation de-
scribed above. Let p∗ = (p∗gw)w∈Wg∈G represent the output of
Algorithm 2. Then the pilot sequence claim can be summa-
rized in Algorithm 3 as follows, where the rationale of the
pilot sequence claim is to let each user claim not to use the
pilot sequence that has been allocated the least transmit power.

C. Movement Control

As illustrated in Fig. 2, in the third subproblem each drone
determines its own best coordinates to adapt to the changes in
association strategies and transmit power of the ground users
resulting from solving the previous two subproblems. With the
newly obtained association vector α(ν+1) and transmit power
vector p(ν+1), the subproblem of aerial drone movement can
be written as, for each drone a ∈ A,

Problem 3
Given : α(ν+1),µ(ν+1),p(ν+1)

Maximize
x, y, z

:
∑
g∈Ga

Cg(x, y, z),

Subject to : xmin ≤ xa ≤ xmax, ∀a ∈ A,
ymin ≤ ya ≤ ymax, ∀a ∈ A,
zmin ≤ za ≤ zmax, ∀a ∈ A,

(30)

where Ga represents the set of ground users associated with
drone a with given access association vector α(ν+1). In this
subproblem, the mathematical expression of utility function
Cg(x, y, z) defined in (7) has a log-convex form, which
is in general nonconcave with respect to coordinate variables

x, y and z. In this paper we solve subproblem (30) using
an interior point method [65] to search for locally-optimal
coordinates for each aerial drone in favor of a low-complexity
distributed solution.

D. Complexity Analysis

In the distributed solution algorithm, the above three sub-
problems are solved iteratively and sequentially at each it-
eration. In the ground-drone association subproblem, the as-
sociation strategy is determined iteratively as well. In each
iteration, the association variable αga can be determined for at
least one ground node, and therefore the maximum number of
associations is |G|, and the overall computational complexity
of the association is O(|G|). The subproblem of joint power
and pilot control in (27) and the aerial drone movement control
subproblem (30) can be solved in polynomial computational
complexity, i.e., O(|G||A|). Therefore, the complexity of the
overall distributed solution algorithm is O(|G|(|A| + 1)) for
each iteration.

Summary: So far, we have presented a distributed solution
algorithm for mDroneNet (i.e., wireless ad hoc networks
with massive-MIMO drone hotspots) to jointly control the
movement of the drone hotspots, the ground-drone association
as well as power control and pilot sequence assignment for the
ground users. A natural question is: How does the distributed
solution algorithm compare to the global optimum in terms
of aggregate spectral efficiency? In the remainder of the
paper we answer this question by designing a centralized
solution algorithm to provide a performance benchmark for
the distributed solution algorithms.

V. CENTRALIZED SOLUTION ALGORITHM

Recall from Section III that, in the social network control
problem, i.e., Problem 1 in (11), the individual through-
put Cg(α,µ,p,x,y, z) defined through (7)-(9) is a noncon-
vex/nonconcave function with respect to coordinates variables
x, y, z and transmit power variables p. Moreover, the as-
sociation variables α and pilot sequence assignment variables
µ take only binary values. Therefore the resulting network
control problem is a mixed integer nonlinear nonconvex pro-
gramming (MINLP) problem, for which there is in general
no existing solution algorithm that can be used to obtain the
global optimum in polynomial computational complexity. In
this paper, we design a globally optimal solution algorithm
based on a combination of the branch and bound framework
and of convex relaxation techniques [67], [68]. Next we first
describe the overall algorithm design framework.

A. Overall Algorithm

Denote Γ0 = {α, µ, p, x, y, z| constraints in (11)} as
the feasible set of initial problem (11) and let U∗(Γ0) represent
the global optimum of problem (11) over Γ0, then the objective
of our algorithm is to iteratively search for a U so that

U(Γ0) ≥ εU∗(Γ0), (31)

where ε ∈ (0, 1] is predefined optimality precision. To this
end, the algorithm maintains a set Γ = {Γi, i = 0, 1, 2, · · · }
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of subproblems by iteratively partitioning feasible set Γ0 into
a series of smaller subsets (see Section V-C)6. The algorithm
also maintains a global upper bound Uglb(Γ0) and a global
lower bound Uglb(Γ0) on U∗(Γ0) so that

Uglb(Γ0) ≤ U∗(Γ0) ≤ Uglb(Γ0) (32)

to drive the iterations of subproblem partitions, as follows.
• Global upper bound Uglb(Γ0): For each subproblem

Γi ∈ Γ, the algorithm computes a local upper bound
U lcl(Γi) on network utility function U via convex relax-
ation (see Section V-B). Then the global upper bound
Uglb(Γ0) can be updated as

Uglb(Γ0) = max
Γi∈Γ
{U lcl(Γi)}. (33)

• Global lower bound Uglb(Γ0): Similarly, for each sub-
problem Γi ∈ Γ a local lower bound U lcl(Γi) is
computed based on the solution obtained by solving the
relaxed convex network control problem. Then the global
lower bound Uglb(Γ0) can be updated as

Uglb(Γ0) = max
Γi∈Γ
{U lcl(Γi)}. (34)

The algorithm terminates if Uglb(Γ0) ≥ εUglb(Γ0) is reached
and the global optimum U∗(Γ0) is set to U∗(Γ0) = Uglb(Γ0)
as a upper-bound benchmark. Otherwise, the algorithm selects
a subproblem from Γ and further partitions its feasible set into
two smaller subsets, computes local upper and lower bounds
and updates the global bounds Uglb(Γ0) and Uglb(Γ0) as in
(33) and (34), respectively. In our algorithm, we select the
subproblem Γi ∈ Γ with the highest local upper bound to
partition, i.e.,

Γi = arg max
Γi

U lcl(Γi). (35)

Based on the global bounds update criterion in (33) and (34),
the gap between the two global bounds converges to 0 as the
partition progresses. Furthermore, from (32), Uglb(Γ0) and
Uglb(Γ0) converge to the global optimum U∗(Γ0).

B. Convex Relaxation

For each subproblem Γi ⊂ Γ, which is MINLP in our case,
a key step is to obtain a relaxed but convex version of Γi so
that it is easy to compute a tight local upper bound U lcl(Γi).
In this paper the convex relaxation is designed following a
two-phase approach as follows.
Phase 1: In this phase the relaxation is accomplished by
assuming i) there is no mutual interference among ground
nodes, i.e., interference items in the denominator of (8) are
set to zero, and that all ground nodes use different pilot
sequences in channel estimation and hence ξgg = 0 in (8);
ii) the maximum number of the ground nodes that can be
associated with a drone hotspot is not limited to Gmax in (4).
Then, the objective of the relaxed network control problem
is to maximize the aggregate capacity of ground nodes by

6In this paper we use Γi to refer to both subproblem i and the corresponding
feasible set.

determining the optimal coordinate x, y and z of the drones,
i.e.,

Problem 4

Maximize
x, y, z

: U ,
∑
g∈G

Cg(x, y, z)

Subject to : xmin ≤ xa ≤ xmax, ∀a ∈ A,
ymin ≤ ya ≤ ymax, ∀a ∈ A,
zmin ≤ za ≤ zmax, ∀a ∈ A,

(36)

where Cg(x, y, z) = B log2(1 + γg(x, y, z)) with
γg(x, y, z) defined in (8). Since γg(x, y, z) � 1,
Rg(x, y, z) can be approximated as

Cg(x, y, z) ≈ B log2(γg(x, y, z)) (37)

≤ B log2

(
Mτρgp0ζ

2
ggH

2
gg(x, y, z)

)
(38)

= B log2

(
Mτρgp0ζ

2
gg

dχgg(x, y, z)

)
(39)

= B log2(Mτρgp0ζ
2
gg)− χB log2(dgg(x, y, z)),

(40)

where the inequality in (38) holds since Ga(g) ≥ 0 in (8), χ is
path loss factor and dgg(x, y, z) is distance (in meter) from
ground node g to its service aerial drone a(g).

Since dgg(x, y, z) in (40) is a convex Euclidean norm
with respect to x, y and z [65], log2(dgg(x, y, z)) cannot be
theoretically guaranteed to be concave. In this phase, we obtain
a convex relaxation of (40) based on linear approximation of
logarithmic function. To this end, we first replace dgg(x, y, z)
in (40) with t, then log2(dgg(x, y, z) in (40) can be
represented as log2(t) subject to t ≥ dgg(x, y, z). Then,
log2(t) can be further relaxed using a set of linear functions,
e.g., as shown in Fig. 3, using a segment and three tangent
lines.
Phase 2: Phase 2 of relaxation is invoked if the algorithm is
done with partitioning coordinate variables x, y and z, i.e.,
for each aerial drone a ∈ A,

xmax,a − xmin,a ≤ ∆x, (41)
ymax,a − ymin,a ≤ ∆y, (42)
zmax,a − zmin,a ≤ ∆z, (43)

where xmax,a and xmin,a (ymax,a and ymin,a) are upper and
lower bounds of x-axis coordinate xa (y-axis coordinate ya),

t

lo
g(

t)

t3t2t1

Tangent 
Line 3

Segment Line

Tangent 
Line 2

Tangent 
Line 1

Fig. 3: Approximiation of log(t) using three tangent lines and one
segment line.
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and ∆x, ∆y and ∆z are predefined movement step size of
aerial drones in x- and y-axis, respectively. The objective in
this phase is to determine the optimal association vector α
with given aerial drones coordinates vectors x∗, y∗ and z∗

and without considering mutual interference among ground
nodes as in Phase 1 relaxation. Let Cga represent the capacity
achievable by ground node g ∈ G if g is associated to aerial
drone a ∈ A, then the optimal association can be obtained by
solving the following linear optimization problem:

Problem 5
Given : x∗, y∗, z∗

Maximize
α

:
∑
a∈A

∑
g∈G

αgaCga(α, x∗,y∗, z∗)

Subject to : 0 ≤ αga ≤ 1, ∀a ∈ A, g ∈ G,∑
g∈G

αga ≤ Gmax, ∀a ∈ A,∑
a∈A

αga ≤ 1, ∀g ∈ G.

(44)

As variable partition progresses, the association variable αga
becomes fixed either to 0 or 1 in all subproblems, for which
the optimal transmit power p and pilot sequence assignment µ
can be obtained by solving a geometric programming problem
as in Section IV.

C. Variable Partition

Variable partition can be conducted by partitioning associa-
tion variable α and movement variables x, y and z. For exam-
ple, given a subproblem Γi ∈ Γ, by fixing association variable
αga subproblem Γi can be partitioned into two subproblems
with feasible sets Γi,1 = {(α, p, x, y, z) ∈ Γi|αga = 0}
and Γi,2 = {(α, p, x, y, z) ∈ Γi|αga = 1}, respectively.
For movement variables, say xa ∈ [xmin,a xmax,a] for aerial
drone a ∈ A, the partition can be conducted by splitting xa
from the half, resulting in two subproblems with feasible sets

Γi,1 = {(α,p,x,y, z) ∈ Γi|xa ∈ [xmin,a xmid,a]}, (45)
Γi,2 = {(α,p,x,y, z) ∈ Γi|xa ∈ [xmid,a xmax,a]}, (46)

where xmid,a , xmin,a+xmax,a

2 . As variable partition pro-
gresses, the algorithm converges to the global optimum, as
stated in the following theorem.

Theorem 2. With convex relaxation the variable partition
strategies in Sections V-B and V-C, global upper bound Uglb

and global lower bound Uglb converge to the global optimum
U∗ of the original social network control problem formulated
in (11).

Proof. To show convergence of the globally optimal solution
algorithm, it is sufficient to show that the algorithm converges
with respect to aerial drone movement variables x, y and z
since i) there is a finite number of possible combinations of
association strategies for a given set A of aerial drones and
set G of ground nodes, and ii) the power control subproblem
is a convex optimization problem.

For this purpose, we first redefine the domain set based on
the notation of hyper-rectangle. The initial ranges of aerial
drone movement variables xa, ya and za for each aerial drone
a ∈ A are [0 xmax], [0 ymax] and [0 zmax], respectively.

This results in an initial feasible set, which is an L = 2|A|-
dimensional hyper-rectangle denoted as Γinit with |A| being
the number of aerial drones in A. As in Section V, denote Γ
as the set of sub-rectangles obtained from partitioning Γinit as
the iteration goes. For any sub-rectangle Γ̃ ∈ Γ, denote vlupp

and vllwr as the upper and lower bound of the lth edge of the
rectangle with l = 1, · · · , L. For example, for the x-axis of the
initial domain set Γinit, we have vllwr = 0 and vlupp = xmax.
Further define the size, volume (vol), and condition number
(cond) of Γ̃ as follows:
• size(Γ̃) ≡ max

l=1,··· ,L
1
2 (vlupp − vllwr), i.e., the maximum of

half edge length;
• vol(Γ̃) ≡

∏
l=1,··· ,L

(vlupp − vllwr), i.e., the edge length

production;

• cond(Γ̃) ≡
max

l=1,··· ,L
(vlupp−v

l
lwr)

min
l=1,··· ,L

(P lupp−P llwr)
, i.e., the ratio of the

maximum and the minimum edge lengths.
Then, considering the domain partition strategy described in
Section V (i.e., in each iteration, partition the variable that has
the largest range from its middle), after a sufficiently large
number of iterations, say k, the following inequality holds:

min
Γ̃∈Γ

size(Γ̃) ≤ max{cond(Γinit), 2}
(

vol(Γinit)

k

)
, (47)

which implies that the minimum size (hence the largest range
of movement variables) in all subproblems converges to zero
as k →∞, i.e., the ranges of aerial drone movement variables
xa and ya shrink to constant for all drones a ∈ A.

Denote Γ̃∗ as the sub-rectangle with the smallest size.
Then, inequality (47) further implies that the local upper and
lower bounds over Γ̃∗, i.e., U(Γ̃∗) and U(Γ̃∗), converge to
each other if i) it holds for any sub-rectangle Γ̃ ∈ Γ that
the local upper bound U(Γ̃) is non-increasing as Γ̃ shrinks,
which is true because that the algorithm partitions aerial drone
movement variables (x, y and z) from their middle, and
ii) the local upper bounds U(Γ̃)) are non-increasing, which
follows that the highest local lower bound is always used in
the algorithm.

Then, as the local upper and lower bounds over Γ̃∗ converge
to each other, we can find a δ > 0 for any optimality precision
ε ∈ (0 1) such that any sub-rectangle Γ̃ with size(Γ̃) ≤ δ
satisfies U(Γ̃) ≥ εU(Γ̃). Take the iteration index k sufficiently
large so that the size of all sub-rectangles in Γ̃ do not exceed δ,
then we have Uglb = max

Γ̃∈Γ
U(Γ̃) ≥ εmax

Γ̃∈Γ
U(Γ̃) = Uglb.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed network
control solution algorithms by considering a network area of
500×500 m2 while the altitude of the drone hotspots is set to
100 meters for simplicity of the simulations. The number of
the ground users is set to {2, 4, 6, 8, 10, 12}, and the number
of the drone hotspots is set to {2, 3}. The number of antennas
of each drone hotspot is set to {10, 20, 30, 40, 50, 100}. The
maximum transmit power of each ground user is set to
{20, 40, 60, · · · , 500} mW. The path loss factor is set to
χ = 2, and the average noise power is set to 10−8 mW. The
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Fig. 4: (a) x- and y-axis of the drone hotspots and (b) aggregate network spectral efficiency with the distributed solution
algorithm; (c) optimality ratio with the centralized solution algorithm.
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Fig. 5: Aggregate network spectral efficiency with the distributed and centralized solution algorithms with (a) 4 ground users,
2 drone hotspots with each having 100 antennas, and 8 pilot sequences, and (b) 8 ground users, 2 drone hotspots with each
having 20 antennas, and 6 pilot sequences.

number of the available pilot sequences is set to {6, 8}, and the
length of each pilot sequence is set to 10 symbols. The results
are obtained by averaging over 20 independent simulation
instances with network topology randomly generated. Next,
we first discuss the convergence of the distributed and cen-
tralized solution algorithms, and then evaluate the optimality
of the distributed solution algorithm by comparing it to the
centralized. Finally we study the effects of different network
control strategies on the aggregate network spectral efficiency.

Convergence. The convergence of the distributed solution
algorithm and the centralized solution algorithm is shown in
Fig. 4. In Fig. 4(a), two drone hotspots and eight ground
users are considered and the initial locations of the drones
are randomly generated within the networking area. It can be
seen that the movement of the drone hotspots converge quickly
in around 40 iterations. In Fig. 4(b) we plot the resulting

aggregate network spectral efficiency of all the ground users.
It can be seen that the network spectral efficiency converges
quickly as well. The convergence of the centralized solution
algorithm is shown in Fig. 4(c). The optimality precision is
set to 90% and the maximum number of iterations is set
to 5000. In can be seen that the optimality ratio converges
monotonically as the interation progresses and the prede-
fined optimality precision is reached in 600 iterations. The
computational complexity of the distributed and centralized
solution algorithms is compared in terms of the number of
iterations required to converge in the case of different number
of ground nodes. We tested 20 more network instances with the
number of ground nodes varying from 2 to 10. Results showed
that both the distributed and centralized solution algorithms
converge in all the tested instances. With distributed solution
algorithms it takes on average 25 iterations to coverage, e.g.,
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Fig. 6: Network spectral efficiency in the case of different number
of ground users.

15, 26 and 35 iterations in the cases of 2, 8 and 10 ground
nodes, respectively. The centralized solution algorithm takes
more iterations than the distributed to converge. For example,
it takes 4592 iterations for the centralized solution algorithm
to converge in the case of 8 ground nodes and 4688 iterations
on average. It is worth pointing out that while the centralized
solution algorithm has higher computational complexity, the
objective of the centralized solution algorithm is to provide a
benchmark performance for the distributed solution algorithm.

Optimality. Figure 5 reports the network spectral efficiency,
i.e., the spectral efficiency summed over all the users in the
network, achievable by the distributed solution algorithm and
the centralized global optimum. Four ground users, 2 drone
hotspots and 8 pilot sequences are considered in Fig. 5(a)
while 8 ground users, 2 drones and 6 pilot sequences in
Fig. 5(b). It can be seen that in both cases the distributed
solution algorithm achieves an aggregate network spectral
efficiency very close to the global optimum in all of the 20
tested network topology instances, with average optimality of
97% and 91% for Figs. 5(a) and (b), respectively. Comparing
Fig. 5(b) to Fig. 5(a) it can be found that, as expected, the
aggregate network spectral efficiency increases as more users
are accommodated in the network, e.g., from 105 bps/Hz to
165 bps/Hz for the distributed solution algorithm.

The average performance of the achievable network spectral
efficiency is reported in Fig. 6 with different number of ground
users. Results indicate that in average around 92.5% of the
global optimum can be achieved by the distributed solution
algorithm, and the optimality is 97%, 98% and 88.6% with 4,
8 and 12 ground users, respectively. It is also noticed that the
achievable network spectral efficiency increases linearly with
the number of the served ground users in the setting of the
considered mDroneNet.

In Fig. 7 we plotted the achievable network spectral effi-
ciency against the maximum transmit power of the ground
users. Eight ground users and 2 drone hotspots each having
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Fig. 7: Network spectral efficiency in the case of different maximum
transmit power for the ground users.

100 antennas are considered in this experiment. On average
over 93% of the global optimum can be achieved by the
distributed solution algorithms, with 95%, 97% and 90%
for transmit power in [20 80] mW, [100 160] mW and
[180 220] mW, respectively. From the results of the central-
ized solution algorithm we noticed that the aggregate network
spectral efficiency rises only around 4.5% by increasing the
maximum transmit power by 2.4 times from 100 to 240 mW.
This is because in massive MIMO setting the network basically
operates at high SINR regime, i.e., in bandwidth-limited
regime.

The network spectral efficiency is reported in Fig. 8 with
the number of antennas for each drone hotspot varies from
20 to 100, with 8 ground users and 6 pilot sequences. The
distributed network control strategy achieves on average over
93.5% of the global optimum obtained by the centralized
solution algorithm. We notice that the achievable network
spectral efficiency monotonically increases with the number
of antennas but at a decreasing speed. This is consistent with
the results in [9, Fig. 4(a)]. It is worth pointing out that,
comparing to [9, Fig. 4(a)], the network spectral efficiency
gain achievable by using more antennas is less significant in
our case, e.g., in this experiment the effect of increasing the
number of antennas is only marginal if each drone hotspot
has more than 30 antennas. This is because our objective is
to study joint power, association and flight control in self-
organizing massive-MIMO-enabled UAV networks, and in this
setting the network spectral efficiency is jointly determined
by all the affecting factors. As a future research direction we
will study how many antennas are required to achieve certain
spectral efficiency in self-organizing UAV networks.

We further study the effects of different network con-
trol strategies on the achievable network spectral efficiency
through Figs. 9-10, where the joint network control strategy is
compared to the other four strategies: (i) the locations of the
drone hotspots are randomly generated in “w/o Aerial Drone
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Fig. 8: Network spectral efficiency in the case of different number
of antennas for the drone hotspots.

Movement”; (ii) the transmit power is randomly generated
for the ground users in “w/o Power Control”; (iii) the ac-
cess association is executed only once in “w/o Association
Control”; and (iv) the pilot sequence assignment is executed
only once in “w/o Pilot Assignment”. In Fig. 9 the experiment
considers 12 ground users sharing 6 pilot sequences and 2
drone hotspots each having 100 antennas. We can see that the
joint network control achieves the highest aggregate network
spectral efficiency in almost all of the tested instances. An
obvious performance degradation can be observed without
power control for the ground users or movement control for the
drone hotspots, which are 5% and 4% on average, respectively.
It can also be noticed that a spectral efficiency very close
to that of joint control can be achieved by “w/o Association
Control” and “w/o Pilot Assignment”. This implies that only
one-time access association and one-time pilot assignment
would be sufficient in the joint network control. Similar results
are reported in Fig. 10 where three drone hotspots are used
to serve 12 ground users with each drone endowed with
100 antennas. Unsurprisingly, the aggregate network spectral
efficiency can be significantly improved by using more drone
hotspots, while the performance degradation because of the
lack of power control reduces to less than 4% on average.

VII. CONCLUSIONS

We studied wireless ad hoc networking with massive-MIMO
drone hotspots. The network control objective is to maximize
network-wide spectral efficiency by jointly controlling the
movement of the drones, associating single-antenna ground
nodes to many-antenna drones, and adapting the transmit
power as well as the pilot sequence assignment for the ground
nodes. The network control problem was formulated as a
mixed integer nonlinear nonconvex programming (MINLP)
problem. Both distributed and globally optimal solution algo-
rithms have been designed and evaluated with extensive sim-
ulation results. Results indicated that the distributed solution
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Fig. 9: Network spectral efficiency achievable with different network
control strategies: 12 ground users, 2 drone hotspots.
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Fig. 10: Network spectral efficiency achievable with different net-
work control strategies: 12 ground users, 3 drone hotspots.

algorithm converges within tens of iterations and can achieve
around 90% of the global optimum.
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