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Abstract

This paper aims at designing high-data-rate swarm UAV networks with distributed beamforming capabilities. The pri-
mary challenge is that the beamforming gain in swarm UAV networks is highly affected by the UAVs’ flight altitude,
their movements and the resulting intermittent link blockages, as well as the availability of channel state information
(CSI) at individual UAVs. To address this challenge, we propose FlyBeam, a learning-based framework for joint
flight and beamforming control in swarm UAV networks. We first present a mathematical formulation of the control
problem with the objective of maximizing the throughput of swarm UAV networks by jointly controlling the flight
and distributed beamforming of UAVs. Then, a distributed solution algorithm is designed based on a combination
of Echo State Network (ESN) learning and online reinforcement learning. The former is adopted to approximate the
utility function for individual UAVs based on online measurements, by jointly considering the unknown blockage
dynamics and other factors that affect the beamforming gain. The latter is used to guide the exploitation and explo-
ration in FlyBeam. We further design a scheme referred to as AutoESN to automate the training of the ESN model.
AutoESN can update the configurable ESN parameters automatically using a combination of loss function and step
size. The effectiveness of FlyBeam is evaluated through an extensive simulation campaign on UBSim, a Python-based
Universal Broadband Simulator for integrated aerial and ground wireless networking. The performance of FlyBeam
is compared with two benchmark schemes, one designed based on traditional optimization techniques and the other
based on learning with utility function approximation through Long Short-Term Memory (LSTM). In the performance
evaluation, we consider both Zero-Forcing (ZF) and Maximum Ratio Transfer (MRT) for beamforming with sequen-
tial and simultaneous channel state estimation. It is shown that significant (up to 450%) beamforming gain can be
achieved by FlyBeam. We also investigate the effects of blockages and UAV flight altitude on the beamforming gain.
It is found that, somewhat surprisingly, higher (rather than lower) beamforming gain can be achieved by FlyBeam
with denser blockages in swarm UAV networks.

Keywords: Swarm UAV Networks, Distributed Beamforming, Echo State Network, Reinforcement Learning.

∗Corresponding author
1A preliminary shorter version of this paper appeared in the Proceedings of IEEE International Conference on Communications (ICC), Vir-

tual/Montreal, Canada, 2022 [1].
2ACKNOWLEDGMENT OF SUPPORT AND DISCLAIMER: (a) Contractor acknowledges Government’s support in the publication of this

paper. This material is based upon work funded by AFRL, under AFRL Contract No. FA8750-20-1-0501 and FA8750-20-C-1021, and in part by
the NSF under Grant SWIFT-2229563. (b) Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of AFRL.

3Distribution A. Approved for public release: Distribution unlimited AFRL-2023-0492 on 30 Jan 2023.

Preprint submitted to Elsevier May 2, 2023

This work has been accepted to publish in Elsevier Computer Networks



1. Introduction

Unmanned aerial vehicles (UAVs) have been envisioned as an enabling technology for a wide set of new applica-
tions, because of their features of fast deployment, high mobility and small size [2–5]. Examples of these applications
include small cells with flying base stations, UAV-aided guidance, swarm networking for field sensing and data collec-
tion, emergency wireless networking in the aftermath of disasters, among others. While UAVs can certainly enable a
wide set of new applications, their wide deployment will impose a significant burden on the capacity of the underlying
wireless networks. In this work, we focus on designing high-data-rate wireless UAV networks by exploring spatial
diversity through collaborative beamforming among the UAVs.

Since it is not easy to mount many antennas on individual UAVs because of their small size, in this work we
consider a swarm of UAVs collaborating with each other to perform distributed beamforming. One of the primary
challenges is in the formation of UAV clusters for collaborative beamforming. In swarm UAV networks, beamforming
can be typically accomplished in two phases. In the first phase, the UAVs estimate the channel state information (CSI)
of the wireless links from them to the users they serve and then share the obtained CSI among the UAVs; in the second
phase, the UAVs collaborate with each other to perform distributed beamforming for data transmission. While higher
beamforming gain can be achieved by forming a larger UAV cluster with more antennas, it takes longer for the CSI
sharing in the first phase and hence reduces the time available for data transmission in the second phase. Therefore,
a tradeoff needs to be achieved between beamforming gain and channel utilization. Moreover, the beamforming gain
is closely coupled with the statistical behaviors of the wireless channels, which are affected by the flight altitude of
the UAVs, the dynamic movements of UAVs and the resulting intermittent existence of blockages. Roughly speaking,
non-line-of-sight (NLOS) transmissions decrease and line-of-sight (LOS) transmission increase as UAVs fly higher.
Additionally, the interference level in the network can be effectively lowered with more and larger blockages, and this
also affects the beamforming gain.

To account for these coupled factors that jointly affect the beamforming gain in swarm UAV networks, in this paper
we propose FlyBeam, a learning-based framework for joint flight and beamforming control in swarm UAV networks
with unknown blockage dynamics. The main contributions of the paper are as follows.

• FlyBeam Control Problem Formulation. We first present a mathematical formulation of the FlyBeam control
problem, where the objective is to maximize the aggregate capacity of swarm UAV networks with a set of single-
antenna UAVs collaborating with each other to perform distributed beamforming. Two channel estimation
schemes are considered in the formulation, namely sequential and simultaneous channel estimations.

• Distributed Solution Algorithm Design. We then design a distributed solution algorithm to solve the FlyBeam
control problem based on a combination of Echo State Network (ESN) learning and reinforcement learning
(RL), where the former provides an approximation of the utility functions of the UAVs with unknown block-
age dynamics based on online measured data, and the latter is adopted to achieve a good tradeoff between
exploitation and exploration in FlyBeam. Furthermore, we propose an iterative ESN training approach, based
on which data samples are collected at network run time and are used to re-train the initially trained ESN model
to improve the overall prediction accuracy.

• Automated Tuning of ESN Parameters. In order to automate the training the ESN model we design a scheme
referred to as AutoESN. AutoESN can update the configurable ESN parameters automatically using a combi-
nation of loss function and step size. This scheme can enable faster and more accurate tuning of the meta
parameters of the ESN model with reduced human intervention.

• Experimental Evaluation. We evaluate the effectiveness of FlyBeam by conducting an extensive simulation
campaign over a Python-based simulator called UBSim, a Universal Broadband Simulator for integrated aerial
and ground wireless networking. First, we analyse the performance of FlyBeam and compare it with a bench-
mark with utility function approximation through Long Short-Term Memory (LSTM) learning. Then we show
the effectiveness of AutoESN for automated tuning of ESN meta parameters. We further analyse the perfor-
mance of FlyBeam by comparing it with a benchmark scheme based on traditional optimization techniques. We
also investigate the effects of blockages and UAV flight altitude on the beamforming gain considering both ZF
and MRT beamforming with sequential and simultaneous channel estimation.
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To the best of our knowledge, FlyBeam is the first RL framework for swarm UAV networks with iterative ESN-
based utility function approximation jointly considering UAV movement, blockage- and altitude-dependent wireless
channels, as well as CSI-sharing in distributed beamforming with network run-time feedback to improve the prediction
accuracy of the distributed solution algorithm.

The remainder of this paper is organized as follows. We discuss the related work in Section 2. In Section 3,
we describe the system model and problem formulation. In Section 4, we describe the design of FlyBeam. The
performance evaluation results are discussed in Section 5, and finally we draw the main conclusions in Section 6.

2. Related Work

Wireless UAV networking has drawn significant research attention over the past years [6–11]. For example, in [6]
Azari et al. study power control for wireless communications among single-antenna UAVs in cellular networks. In
[7], the authors maximize the throughput in UAV-enabled orthogonal frequency-division multiple access (OFDMA)
systems with delay-constrained data traffic. The authors of [8] jointly optimize the trajectory and communication in
multi-UAV wireless networks to achieve better fairness among users. In [9], we propose a new framework for auto-
mated control of swarm UAV networks based on recent results on principled software-defined wireless networking.
Readers are referred to [10, 11] and references therein for a good survey of the main results in this area. Different from
these works, which focus on non-collaborative single-antenna UAV communications, in this paper we explore spatial
diversity in swarm UAV networks by allowing the UAVs to perform distributed beamforming.

Machine learning techniques such as Echo State Learning [12–15], Long Short-Term Memory [16–20] and RL
[21–24] have been used as a possible solution to different network problems. For example, in [12], the authors use
ESN to predict the future trajectories of user equipment to enable dynamic repositioning of UAV base stations. In
[13], Liu et al. use ESN-based prediction algorithm to predict the future positions of users based on the real dataset.
In [14], the authors use ESN to allocate resources for virtual reality (VR) users communicating using an UAV-enabled
LTE over unlicensed (LTE-U) network. In [15], Liu et al. propose an ESN based prediction algorithm to predict the
future positions of users based on anonymous user-trajectories in the physical world. In [16], the authors propose a
deep RL (DRL) based flight resource allocation framework leveraging LSTM to predict network dynamics resulting
from time-varying airborne channels and energy arrivals at the ground devices. In [17], Lin et al. adopt a combination
of DRL and LSTM to accelerate the convergence speed of the dynamic spectrum interaction algorithm for UAV
communications. In [18], the authors propose an LSTM-based deep learning location-aware predictive beamforming
scheme to track the beam for UAV communications in dynamic scenarios. In [19], Yao et al. design a deep LSTM
model for real-time path planning in unknown environments. The authors of [21] merge Deep Q Learning based DRL
with massive MIMO to optimize the UAV navigation. In [22], Cui et al. develop a multi-agent RL algorithm for
resource allocation in UAV networks. In [23], the authors develop an interference-aware path planning scheme using
DRL algorithm based on ESN for cellular-connected UAVs. In [24], Wang et al. propose an RL-based user association
and resource allocation algorithm for multi-UAV enabled mobile edge computing (MEC) applications. Unlike these
efforts, in this work we propose an online learning solution called FlyBeam based on the combination of iterative
ESN-based RL control for the UAV swarm control problem considering the factors that affect the beamforming gain
in swarm UAV networks with unknown blockage dynamics.

Distributed beamforming has also been extensively studied in wireless networks [25–34]. For example, in [25],
Mohanti et al. propose an SDR-based experimental framework for UAV networks to assign beamforming weights
to ensure high level of directivity. In [26], the authors study beamforming vector generation and updating based on
recursive channel estimation. The beamforming algorithms for UAV swarm are studied in [27] where the swarm
is modeled as a morphing volumetric random array. However, unlike our work, [27] did not consider the dynamic
movements of swarm UAVs and the effects of blockages on the beamforming gain. The authors of [28] present
a cooperative communication scheme for cache-enabled UAVs to jointly decide the UAV placement and transmit
beamforming based on outdated CSI information. Similar to [27], [28] did not consider the effect of blockages either.
In [29], Yuan et al. consider a single UAV-user pair and develop a deep learning-based predictive beamforming scheme
that can recover from beam misalignment caused by UAV jittering. Position-based beamforming is studied in [30]
to enhance the capacity of UAV communications in LTE networks in the presence of direction-of-arrival estimation
errors. In [31], the authors discuss the feasibility and enabling techniques for distributed beamforming in swarm
UAV networks. In our previous work [32], we design distributed algorithms for joint power, association and flight
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Notation Physical Meaning
M Set of single-antenna UAVs
U Set of ground users
S Set of blockages

Ls,Ws,Hs Length, width, height of a blockage s ∈ S
Cs, θs Center and orientation of a blockage s ∈ S

Pblk
s (Cs, Ls,Ws,Hs, θs) Set of points contained in blockage s ∈ S

codu Location vector of user u ∈ U
codm Location vector of UAV m ∈ M
Plink

mu Set of points on line connecting UAV m and user u
Pblk

mus Set of intersection points
S mu Total number of blockages on the link [u,m]
I(·) Indicator function
f Operating frequency band

Hmu( f ) Path loss for link [u,m]
C Speed of light
η0 Per-blockage absorption coefficient

dmu Distance between UAV m and user u
βmu( f ) Path-loss exponent

K Rician Factor
hmu Channel fading coefficient
ym Received pilot signal by UAV m ∈ M
pu Pilot sequence of user u ∈ U
n0

m Vector of Additive White Gaussian Noise (AWGN)
h̃mu Estimated channel gain of link [u,m]
test Time overhead for the channel estimation for user
Nplt Number of bits in each pilot sequence

r Data rate for pilot transmission
w Beamforming weight vector
tcsi Time overhead for CSI sharing

tbeam Time overhead for beamforming weight feedback
tovhd Overall time overhead
γ Channel utilization coefficient
tslt Duration of each time slot
N0

u Noise power at ground user u
T Total network running time
ρt

m Input to ESN module
Γ′tm Index of UAV m′’s rectangle in time t
ξt

m Set of actions for UAV m
Q Set of sub-channels

Table 1: Summary of Key Notations.

control in swarm UAV networks with each UAV endowed with a large number of antennas. Please refer to [33, 34]
and references therein for an extensive survey of the latest results in this area. None of these works have studied
distributed beamforming in swarm UAV networks by explicitly considering all the factors that affect the beamforming
gain discussed in Section 1, including the flight of UAVs, the resulting dynamic blockages, and CSI-sharing among
UAVs.

3. System Model and Problem Formulation

We consider swarm UAV networks with a setM of single-antenna UAVs collaborating with each other to serve
a set U of ground users. Here, we consider pre-clustered swarm UAVs. The clustering of UAVs can be achieved
by using swarm-intelligence-based localization and clustering schemes [35], mobility and location-aware stable clus-
tering [36], among others. The UAVs are allowed to form a virtual MIMO UAV cluster to enhance the quality of
the aerial-ground wireless links through distributed beamforming. Focusing on the downlink communications in this
setting, our objective is to investigate the effects of those factors that affect the beamforming gain, including block-
ages in the network, flight altitude of the UAVs as well as the altitude-dependent fading channels, among others. The
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results obtained in this paper can also be extended to uplink scenarios. Next we describe the blockage, channel and
beamforming models sequentially.

3.1. Blockage Model

Denote S and |S| as the set and the number of blockages in the network, respectively. For each blockage s ∈ S,
let Cs, Ls, Ws, Hs and θs represent the center, length, width, height and orientation of the blockage, respectively. The
orientation θs is considered to be uniformly distributed in [0, 2π], and the other blockage parameters are randomly
generated with the average corresponding to the typical size of blockages in real networks, e.g., the buildings. Let
Pblk

s (Cs, Ls,Ws,Hs, θs) represent the set of points contained in blockage s ∈ S.
Denote the location vector of user u ∈ U as codu = (xu, yu, zu), with xu, yu, zu representing the x-, y- and

z-axis coordinates, respectively. Similarly, denote codm = (xm, ym, zm) as the location vector of UAV m ∈ M.
Let Plink

mu denote the set of points on the line connecting UAV m ∈ M and user u ∈ U. Further denote Pxt
mus =

Plink
mu ∩ Pblk

s (Cs, Ls,Ws,Hs, θs) as the resulting intersection set of points. Then, given the set S of blockages, the total
number of blockages on the link between user u and UAV m, denoted as S mu, can be expressed as

S mu =
∑
s∈S

I(codm, codu, s), ∀m ∈ M, ∀u ∈ U, (1)

where

I(codm, codu, s) =

1, if Pxt
mus , ϕ

0, otherwise
(2)

is the indicator function taking the value of 1 if blockage s is blocking the link and 0 otherwise.

3.2. Channel Model

Denote Hmu( f ) as the path loss for the link between UAV m ∈ M and ground user u ∈ U operating in frequency
band f ∈ F . Then we model Hmu( f ) as in [37] as follows:

Hmu( f ) = ηS mu
0

(4π f
C

)2
(dmu)βmu( f ), (3)

where C is the speed of light, βmu( f ) is the path-loss exponent for the link between UAV ∈M and ground user u ∈ U
in frequency band f , S mu defined in (1) represents the number of blockages in the link, η0 ∈ [0, 1] is the per-blockage
absorption coefficient [38] 4, and finally dmu = dmu(codm, codu) denotes the distance between UAV m ∈ M and user
u ∈ U.

The transmission time is divided into a set of consecutive time slots. We consider block fading channels in each
time slot, i.e., the channel coefficient is considered to be fixed in each time slot and change to another random value
following certain distribution in the next. The Rician fading model is adopted to characterize the fading behavior of
the wireless channels, with the Rician factor K depending on whether the link is blocked or not. For NLOS links, i.e.
S mu , 0 in (3), factor K is set to 0; for LOS transmissions, i.e., S m,u = 0, factor K is given as K = 13 − 0.03 × dmu

[39]. Denote the resulting channel fading coefficient as hmu for the wireless link between UAV m ∈ M and ground
user u ∈ U.

3.3. Channel Estimation Model

We consider pilot-based channel estimation, which can be accomplished in either a sequential or simultaneous
manner. In the former case, the ground users broadcast their pilot signals in each time slot sequentially, and hence the

4The per-blockage absorption coefficient is used to take into account the attenuation of signal after passing though a blockage. For example, if
signal x passes through a blockage that has an absorption coefficient of η0, then the η0 × x of signal will be absorbed allowing 1 − η0 × x of signal
pass through the blockage. Again, if this signal again passes through another blockage of same absorption coefficient η0, then the resulting signal
will be η0 × η0 × x which is η2

0 × x, and so on.
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problem of pilot contamination can be avoided but at the cost of more estimation time. In contrast, with simultaneous
channel estimation all the users broadcast their pilot signals at the same time, and hence it takes less time at the cost
of lower estimation accuracy. Next, we describe the two estimation techniques briefly.

Sequential Channel Estimation. Denote yseq
m = [yseq

m1 , · · · , y
seq
mNplt

] as the pilot signal received by UAV m ∈ M,
with ymν, ν = 1, · · · ,Nplt being the vth symbol of the received pilot signal. Then y

seq
m can be given as

y
seq
m =

√
Hmuhmupu + n0

m, (4)

where pu = [pu1, · · · , puNplt ] is the pilot sequence of user u ∈ U, and n0
m = (n0

mν)
Nplt

ν=1 is the vector of Additive White
Gaussian Noise (AWGN) at UAV m ∈ M. Let h̃mu represent the estimated channel gain for the link between UAV
m ∈ M and user u ∈ U. Then, if a least-square estimator [40] is considered, we have

h̃seq
mu = y

seq
m × p

†
u(pu × p

†
u)−1, (5)

where (·)† denotes the conjugate transpose and (·)−1 represents the matrix inverse operation.
Let test,u denote the time overhead for the channel estimation for user u ∈ U and test as the total time overhead for

all the users inU. Then we have

tseq
est =

∑
u∈U

test,u. (6)

where test,u = Nplt/r with Nplt being the number of bits in each pilot sequence and r the data rate for pilot transmission.
Simultaneous Channel Estimation. In Simultaneous channel estimation, all the users broadcast their pilot sig-

nals at the same time which takes less estimation time however will degrade the estimation accuracy because of pilot
contamination. For a large-scale network with pilot reuse, pilot decontamination can be achieved by using orthogonal
pilot sequences with time-shifted protocol (TSP) for pilot transmission [41], combination of TSP with power alloca-
tion algorithms [42], covariance based channel estimation[43], among others. In this work, we consider the simple
yet effective orthogonal pilot sequence based channel estimation, while this work can also be extended to other pilot
decontamination techniques [44, 45]. Denote ysim

m = [ysim
m1 , · · · , y

sim
mNplt

] as the pilot signal received by UAV m ∈ M,
with ymν, ν = 1, · · · ,Nplt being the vth symbol of the received pilot signal. Then the received pilot signal ysim

m can be
expressed as

ysim
m =

∑
u∈U

√
Hmuhmupu + n0

m, (7)

and the estimated channel gain can be expressed similar to (5). Denote the resulting time overhead for simultaneous
channel estimation as tsim

est .

3.4. Beamforming Model
Each UAV m ∈ M sends its CSI obtained above to a pre-selected leading UAV of the swarm, denoted as m′ with

m′ ∈ M/m, which will then calculate the beamforming weights for the whole swarm. Denote tcsi as the resulting time
overhead, then we have

tcsi =
∑

m∈M/m′
Ncsi/Cmm′ (8)

where Cmm′ represents the capacity of the link between UAVs m and m′, and Ncsi is the amount of CSI data in bits to
be shared by UAV m ∈ M, i.e., h̃m = (̃hmu)u∈U with h̃mu obtained in (5). Here, we consider sequential transmission
for CSI sharing. Based on the collected CSI, the beamforming weights can be calculated at the leading UAV. Denote
the resulting beamforming weight vector as w = (wm)m∈M, where wm = (wmu)u∈U with wmu being the beamforming
weight of UAV m for ground user u. For example, based on Zero Forcing (ZF) beamforming [46], wm can be given as

wm = h†m (hmh
†
m)−1, (9)
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where (·)† denotes the conjugate transpose and (·)−1 is the matrix inverse operation. The obtained beamforming weight
is then sent back to the corresponding UAVs for the actual use in the following data transmission. Denote the resulting
time overhead as tbeam and can be given as

tbeam =
∑

m∈M/m′
Nbeam/Cmm′ (10)

where Nbeam is the amount of beamforming data in bits to be shared by the leading UAV m′ to other UAVs. Then, the
overall time overhead denoted as tovhd can be written as

tovhd = test + tcsi + tbeam, (11)

where test, tcsi and tbeam are the above defined time overhead for channel estimation, CSI sharing and beamforming
weight feedback, respectively.

3.5. FlyBeam Control Problem

For a given frequency f , bandwidth B and coordinates codu, u ∈ U, as well as the set of blockages S, the control
objective of FlyBeam is to maximize the aggregate network capacity by jointly controlling the flight and beamforming
of the UAVs, as formulated as follows.

max γB
∑

u∈U
log2

(
1 +

∑
m∈M

Pmuψmu∑
u′∈U/u

∑
m∈M

Pmu′ψmu′+N0
u

)
,

s.t. :
∑

u∈U
Pmu ≤ Pmax, ∀m ∈ M,

(12)

where ψmu = Ĥmu |̂hmuŵmu|
2, Ĥmu = Hmu(codm), ĥmu = hmu(codm) and ŵmu = wmu(codm, π) denote the path loss, chan-

nel fading and beamforming weights for user u and UAV m, respectively, with π denoting the beamforming strategy;
similarly ψmu′ = Ĥmu′ |̂hmu′ŵmu′ |

2, Ĥmu′ = Hmu′ (codm), ĥmu′ = hmu′ (codm) and ŵmu′ = wmu′ (codm, π) denote the path
loss, channel fading and beamforming weights for user u′ and UAV m, respectively, with π denoting the beamforming
strategy; Pmu and Pmu′ are the transmission power of UAV m ∈ M allocated to users u and u′, respectively; Pmax is the
maximum transmission power of each UAV; N0

u is the power of noise at ground user u ∈ U; and finally γ = tslt−tovhd
tslt

represents the channel utilization coefficient with tslt being the duration of each time slot and tovhd defined in (11).

4. FlyBeam Algorithm Design

In (12), the optimization variable is wmu = wmu(codm, π) which is the beamforming weights for user u and UAV
m with π denoting the beamforming strategy. Here, the UAV coordinate is controlled using FlyBeam which in turn
affects the beamforming strategy. The primary challenge in solving problem (12) is that the wireless channel hence the
beamforming weight wmu and the channel utilization coefficient γ are closely coupled with the UAV location variables
codm and hence the resulting dynamic blockages, for which the complete information is unknown to the UAVs. To
address this challenge, in this work we solve the problem by designing distributed control algorithms based on a
combination of ESN learning [47] and RL techniques. In this work, we optimize the flight control of the swarm UAVs
while the UAVs are collaboratively serving the users following given beamforming strategy. The overall architecture
of FlyBeam framework is shown in Fig. 1. It consists of two main modules, namely the ESN Module and the RL
module. Particularly, the ESN is used to approximately model the mapping from the input signals to the output signals
of a system, by training its input weights Win, the reservoir weights W and output weights Wout using a sigmoidal
transfer function (e.g., hyperbolic tangent). ESN uses a leaky-integrated discrete-time RNN units. For such an ESN
network, the update equation can be given as

R̃es
t
= tanh (Win[1; inpt] +W Rest−1) (13)

Rest = (1 − αleak)Rest−1 + αleakR̃es
t

(14)
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Figure 1: Diagram of the FlyBeam framework based on a combination of Echo State Learning and Reinforcement learning.

where Rest is the vector of reservoir neuron activation at time t, R̃es
t

is the corresponding update and Rest−1 is
the vector of reservoir neuron activation at time t − 1, αleak is the leaking rate, [· : ·] represents the vertical vector
concatenation.

Finally, the output of the ESN outt can be represented as

outt =Wout [1; inptt; Rest] (15)

where [· : ·; ·] represents the vertical vector concatenation.
Compared to traditional Neural Networks (NN), which are computationally expensive, it is incredibly simple to

train ESNs, while they are still able to model the complex time-varying behaviors of dynamical systems. Furthermore,
compared to traditional NNs requires more data and time to train the network which may not be desirable for UAV
applications due to the fact that UAVs have limited battery life. Also, traditional NN suffers from a problem called
as vanishing/exploding gradient in which the neurons of hidden layers do not perform as expected. In contrast, this
problem is non-existent with ESN. In this work, we use ESN to approximate the utility function in (12), as described
in Sec. 3, jointly considering the UAV flight, the channel estimation and beamforming strategies, as well as the effects
of blockages on beamforming. Based on the ESN-approximated utility function, online RL is then adopted to guide
the exploitation and exploration in favor of higher aggregate capacity. The ESN module consists of four components:
Agent, Input, Action and Reward Function. In FlyBeam, the ESN is implemented in individual UAVs, i.e., each UAV
is an Agent.

4.1. ESN Input Design

Let T denote the total network running time. In each time slot t ∈ T , each UAV m ∈ M feeds an Input (denoted as
ρt

m) and a candidate Action (denoted as ξt
m) to its ESN module, which will then output the expected Reward Function

value of the UAV in the next time slot. For UAV m the input to FlyBeam’s ESN module in time slot t, defined
as ρt

m ≜ {codt
−m}, comprises of the locations of all the other UAVs codt

−m = (codt
m′ )m′∈M/m with codt

m′ being the
coordinate vector of UAV m′ in time slot t. The dimension of ρt

m increases quadratically5 with the scale of the network
which can slow down the training of FlyBeam’s ESN module and hence degrade the utility approximation accuracy in
large-scale networks. To address this challenge, the network area of dimensions Lx × Ly × Lz is divided into a number
Nx × Ny × Nz of three-dimensional rectangles, each with Lx

Nx
, Ly

Ny
and Lz

Nz
for width, length and height, respectively.

5The input dimension is said to increase quadratically because of all the possible combinations of UAV locations.
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Denote N as the set of the resulting rectangles. Each rectangle n ∈ N is represented using a vector rn = (c̃odn, Γn),
where c̃odn is the coordinate vector of the center point of rectangle n ∈ N , and Γn = 0, 1, · · · ,Nx × Ny × Nz − 1 is the
index of the rectangle. Based on this policy, the input of FlyBeam’s ESN module can be rewritten as ρt

m = (Γt
m′ )m′∈M/m,

with Γt
m′ is the index of UAV m′’s rectangle in time slot t.

4.2. ESN Action and Reward

Given input ρt
m for FlyBeam’s ESN module for UAV m in time slot t, UAV m makes its action decisions and

observes an output of the action. To this end, UAV m chooses to move to a new rectangle in N except those occupied
by other UAVs. The set of actions for UAV m, denoted as ξt

m for time slot t, can be written as

ξt
m = {Γv|v ∈ N/{nt(m′), m′ ∈ M/m}}, (16)

where nt(m′) represents the rectangle index of UAV m′ in time slot t. The corresponding reward is defined as the
aggregate network capacity achievable through distributed beamforming as defined by (12). Denote the resulting
output capacity as Ct for time slot t.

4.3. ESN Training

We train the designed ESN module based on online collected capacity data. In the training phase, the objective
of the FlyBeam ESN module is to learn a model with output Ct that minimizes the root-mean-square error (RMSE)
between Ct (i.e., predicted sum capacity) and Ct

tgt (i.e., target sum capacity) defined as

E(Ct,Ct
tgt) =

1
Nout

Nout∑
i=1

√√√
1
|T |

|T |∑
t=1

(Ct −Ct
tgt)2, (17)

where Nout denotes the output units of the ESN, | · | represents the cardinality of a set and T denotes the number of time
slots in the training phase. To this end, we measure the sum capacity based on (12) and the measured sum capacity is
used as the Ct

tgt in (17).
Automated Meta Parameter Tuning. In order to train the ESN module and obtain an accurate prediction, the

one needs to modify all the tunable parameters to achieve the optimal or at least a desirable performance. The tunable
parameters of ESN includes the number of reservoir units, teacher scaling, teacher shift, input scaling and input shift
denoted as Nres, Ts, Tsh, Is, Ish, respectively. However, this process of manual tuning of each parameter is time
consuming and may not be accurate. Therefore, to ease the need of manual tuning of ESN parameters we design
AutoESN. AutoESN uses an iterative process to update the tunable parameter. For our FlyBeam control problem, we
use a sufficiently large number of reservoir units (i.e., Nres >> Ninp), where Ninp = |M| is the number of inputs and
Nres is the number of reservoir units. The Is and Ish are vectors of respectively ones and zeros with a total length of
the vector equal to the number of input Ninp. The values of Is and Ish determine the non-linearity of the reservoir
response. Therefore, the optimizable parameter for our problems are Ts, Tsh. Ts is a multiplicative term whereas Tsh

is an additive term. For our problem, we set the Ts to 16 and focus on optimizing the Tsh.
Denote the current value of the tunable parameter (i.e., Tsh) as T cur

sh updated by a small value α ∈ [0, 1] to obtain
the new parameter value T new

sh which is then set as the current value for the next iteration as follows

T new
sh ←

T cur
sh + α, if ∆util < 0

T cur
sh − α, if ∆util > 0

, (18)

T cur
sh ← T new

sh , (19)

where ∆util denote the difference between the predicted sum capacity Ct and target sum capacity Ct
tgt introduced earlier

in Sec. 4.3. Since we consider for each time slot t during the training process and with the number of output units Nout

6Here, we do not optimize the Ts because it is a scaling factor and can be be set to a constant value.
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set to 1, (17) can be rewritten as

∆util ← Ct −Ct
tgt. (20)

Here, we assume that the difference of utility is a monotonic function of the tunable parameter because at each time
step of ESN training, the next step is computed based on the sum of the dot product of the weights W and current
state of the network, Win and scaled/shifted input vector, and feedback weight Wfb with scaled/shifted output vector.
The size of input and output vectors are determined by the product of number of training samples and number of input
and output units, respectively. Therefore, by increasing or decreasing the teacher shift value, the output weight Wout
of the ESN also increases or decreases proportionally, thereby achieving the desired performance.

This iterative process is terminated when the following termination criteria is met.

∆util ≤ ∆th, (21)

where ∆th is the tolerable error between the predicted and the actual (target) utility value pre-defined before the training
process. The newly tuned parameter (T cur

sh = T new
sh ) can then be used for both testing, as well as, to predict the utility

for any given input ρt
m.

4.4. ESN-Based RL Control

Based on the trained ESN-module, each UAV m ∈ M can determine its own optimal next-step location m as Γt∗
m .

However, this may lead to a local optimum for our swarm control problem defined in (12), which is not desirable. In
this work, we use RL to guide the exploration and exploitation in the flight control of the UAVs. RL [48] has been
widely used to solve complex problems that cannot be solved by conventional techniques. In this work, we consider
RL algorithm with an ϵ-greedy exploration strategy [48]. As the network runs, the online collected data will be used
to update the training dataset and then retrain the ESN module.

4.5. Two-Phase FlyBeam ESN Design

There are two phases of FlyBeam. The first one is (i) initial training and testing phase and the second one is (ii)
training update phase. The former takes care of collecting the initial data samples to train the ESN model which can
be used in RL control while the latter collects real time data samples which can be used to re-train the pre-trained
ESN model thereby increasing the overall prediction accuracy.

Initial Training and Testing. Let Tinit denote the time duration to collect the initial training data set Sampinit

expressed as

Sampinit =


ρ1

m ξ1
m C1

ρ2
m ξ2

m C2

...
...

...

ρ|Tinit |
m ξ|Tinit |

m C |Tinit |

 . (22)

The collected Sampinit data is then used to train the ESN module discussed in Sec. 4.3. The trained ESN module is
further used by the RL module for flight and beamforming control introduced in Sec. 4.4.

Training Update. Let Tupdt denote the periodic update time interval. As the network runs, for each time slot
t ∈ Tupdt we collect the input data and the corresponding reward as discussed in the first phase. Then, the collected
data samples denoted as Sampupdt can be expressed as

Sampupdt =


ρ1

m ξ1
m C1

ρ2
m ξ2

m C2

...
...

...

ρ
|Tupdt |
m ξ

|Tupdt |
m C |Tupdt |

 . (23)
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Figure 2: Diagram of the UBSim Simulator.

The collected data samples Sampupdt are then fed back to the ESN module (as shown in Fig. 1) to update its initially
trained coefficients with the newly collected data samples. This periodic update of ESN based on the collected samples
during network run-time can improve the prediction accuracy of the ESN Module of FlyBeam.

4.6. Theoretical Proof of Convergence for ESN-Based RL Control

The FlyBeam distributed solution algorithm converges to a stationary operating point at which no UAV has an
impetus to move to a new location if other UAV stays at its own location assuming mixed strategies are adopted by all
the UAVs in the network.

Proof. Given the finite set of actions ξt
i defined in (16), denote ∆(ξt

i) as the set of all probability distributions over
the elements of ξt

i and Pi ∈ ∆(ξt
i) as the probability distribution used by UAV i ∈ M to select an action from its

action set ξt
i . Then, the mixed strategy profile for UAV i, denoted as P∗i ∈ ∆(ξt

i),∀ i ∈ M, can be given as P∗i =
[P∗i (Γ1), · · · ,P∗i (Γ|N|)], where |N| being the cardinality of the set of rectangles defined in Section 4.1. The flight control
and collaborative beamforming can then be reformulated as a non-cooperative game and the theorem can be proved
by showing that this game converges to a mixed Nash Equilibrium (MNE) with mixed strategy probability [49], that
is, we need to show the following condition holds for a mixed strategy profile P∗i = [P∗i (Γ1), · · · ,P∗i (Γ|N|)] = (P∗i ,P

∗
−i),

i.e., ũi(P∗i ,P
∗
−i) ≥ ũi(Pi,P∗−i).

Recall that ϵ-greedy exploration strategy is adopted in FlyBeam to ensure that the probability of choosing an
action ξt

i is always greater than 0. Then, the probability of UAV i ∈ M choosing an action ξt
i can be given as

Prob(ξt
i) =


1 − ϵ + ϵ

|ξt
i |
; arg max

ξt
i

C(ξt
i)

ϵ
|ξt

i |
; a random action

(24)

Let ξ̃t+1,∗
i denote the action that results in optimal reward given the optimal mixed strategy (P∗i ,P

∗
−i). Then the
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utility function of UAV i can be given as

ũi(P∗i ,P
∗
−i) − ũi(Pi,P∗−i) =

∑
ξ̃t+1

i ∈ξ
t
i

[P∗
i,̃ξt+1

i

∑
ξ̃t+1
−i ∈ξ

t
−i

ui(ξt+1
i , ξt+1

−i )P∗i,ξt+1
−i
− Pi,̃ξt+1

i

∑
ξ̃t+1
−i ∈ξ

t
−i

ui(ξt+1
i , ξt+1

−i )P∗i,ξt+1
−i

] (25)

=
∑
ξ̃t+1

i ∈ξ
t
i

E[ui (̃ξt+1
i )]{P∗

i,̃ξt+1
i
− Pi,̃ξt+1

i
} (26)

= (1 − ϵ)
(
E[ui (̃ξt+1,∗

i )] − E[ui (̃ξt+1
i )]
)

(27)

where (27) is obtained from (24). We can then conclude that E[ui (̃ξt+1,∗
i )] − E[ui (̃ξt+1

i )] ≥ 0 based on the fact that in
FlyBeam the optimal action ξt+1,∗

i results in optimal E[ui (̃ξt+1,∗
i )] and the value of E[ui (̃ξt+1

i ) cannot exceed the optimal
value and therefore the difference is always greater than or equal to 0. This completes the proof. ■

Notation Physical Meaning Value
Lx × Ly × Lz Network area 200 ×200 × 200
Nx × Ny × Nz 3-D rectangle dimensions 20 ×20 × 20

Lx/Nx × Ly/Ny × Lz/Nz. Number of grids 10 ×10 × 10
f Frequency 2.1 GHz
B Bandwidth 40 MHz

Pmu Transmit Power 1 W
βmu( f ) Path-loss exponents (LOS, NLOS) 2, 4
T Initial Training time slots 3000
Tupdt Training update time slots 1000
Tcoh Channel Coherence Time 100 ms

Table 2: Key Simulator Configuration Variables.

5. Performance Evaluation

We consider a swarm UAV network with area of 200 × 200 × 200 m3. The frequency and bandwidth are set to
2.1 GHz and 40 MHz, respectively. The transmission power of each UAV is set to 1 W. The LOS and NLOS path-loss
exponents are considered to be 2 and 4, respectively. The duration of each time slot is set to 100 ms (equal to coherence
time). The users, UAVs and blockages are uniformly distributed in the network area. Two beamforming schemes are
considered: Zero Forcing (ZF) and Maximum Ratio Transmission (MRT) [46]. The corresponding FlyBeam schemes
are referred to as FlyBeam-ZF and FlyBeam-MRT, respectively. We set T and Tupdt as 3000 and 1000 time slots
for initial training and training update phases, respectively. The simulations have been conducted over UBSim, a
newly developed event-driven universal broadband simulator for integrated aerial and ground wireless networking by
modifying the earlier version of UBSim (and SimBAG) designed as a port of our prior research [3], [4], to include
additional features such as channel estimation, channel state information measurement, among others.. In addition
to the beamforming schemes discussed in this paper, UBSim also supports other network control problems that deals
with multiple spectrums including support for 6 GHz band, ground and flying base stations, integrated access and
backhaul links, beam alignment for directional communications. In addition to the above mentioned features, we
implemented a benchmark scheme based on UBSim for performance comparison. The major notations and their
values are summarized in Table. 2.

UBSim Simulator Design. The overall architecture of UBSim simulator is shown in Fig. 2. UBSim is a Python
based event-driven simulator for universal broadband integrated aerial-ground wireless networks. UBSim compries of
four major modules, namely Network Configuration Module (NCM), Network Element Module (NEM), Discrete Event
Driver (DED), and Custom Algorithm Module (CAM). The NCM module allows users to define the network topology,
define the network parameters such as the number of UAVs, the number of users; simulation parameters such as
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Figure 3: (a) Single-Cell LSTM Architecture; Comparison of Prediction Accuracy (b) FlyBeam-ESN ; (c) FlyBeam-LSTM.

simulation time, iteration count, among others, and finally set the hyperparameters required for different solution
algorithms. The NEM module defines the classes for all the network elements, such as network, UAVs, blockages,
users, links, interference, among others. All these classes follow a hierarchical architecture with the general network
element class at the highest level. This class defines the basic network element attributes and operations such as
registering an element in the network, specifying the parent and children elements of an element. The discrete network
simulation is orchestrated by the DED, which is designed based on the open-source library SimPy [50]. Finally, the
CAM module hosts the custom-designed network control algorithms discussed in Sec. 4, such as FlyBeam ESN,
FlyBeam LSTM as well as FlyBeam RL.

5.1. Benchmark: Lower Bound Without Beamforming

In this benchmark scheme, no collaborative beamforming is considered, and the UAVs access the channel in
a frequency division multiple access (FDMA) manner and further serve their users based on time division multiple
access (TDMA). Each UAV maximizes the aggregate capacity of the users it serves based on Sequential Least Squares
Programming (SLSQP) [51], to dynamically allocate their transmission power among different sub-channels to avoid
mutual interference.

Given : S,M,U,Q, B, codu, codm,∀u ∈ U,∀m ∈ M
Maximize :

∑
m∈M

∑
q∈Q

∑
u∈Um

Cmqu

S ub ject to :
∑

q∈Q

∑
u∈Um

Pmqu ≤ Pmax, ∀m ∈ M
(28)

Cmqu = Bqlog2

(
1 +

PmquLmqu∑
m′∈M/m

∑
u′∈Um′

Pm′qu′Lm′qu′+ Nmqu

)
(29)

where Q represents the set of subchannels and Bq is the bandwidth of subchannel q ∈ Q; Pmqu is the transmission
power UAV m allocates to user u ∈ Um on subchannel q ∈ Q; here, Um denotes the set of users served by UAV m,
which is determined based on the shortest-distance association policy, i.e., each user associates to the nearest UAV;
Nmqu is the noise power at user u on subchannel q ∈ Q.

5.2. Effectiveness Validation of ESN Learning

We first validate the effectiveness of ESN learning. To this end, we compare ESN-based training to that based
on Long Short-Term Memory (LSTM) [16–20] To this end, we design an LSTM-based utility prediction algorithm
that can be used to solve the FlyBeam control problem (12). LSTM networks are a special kind of Recurrent Neural
Network (RNN), capable of learning long-term dependencies. A typical LSTM network is comprised of different
memory blocks called cells as shown in Fig. 3(a). The main function of these blocks is to remember and manipulate

13

This work has been accepted to publish in Elsevier Computer Networks



the information to the memory (memt−1). This is achieved through three major mechanisms, called gates. In general,
a LSTM cell consists of three gates, namely forget gate, input gate and output gate (red dashed box in Fig. 3(a)).

Forget Gate. The forget gate is responsible for removing information that is of less importance from the cell state
using a sigmoid function (SF) so that the performance of the LSTM network is optimized. To this end, the forget gate
outputs a value between 0 and 1 for each cell memory state (memt−1) by comparing output (outt−1) and input (inpt). If
the value is closer to 1, then the information is retained and if it is closer to 0, then the information can be discarded.
Forget Vector (FV) can be represented as

FV = S F(WF · [outt−1, inpt] + Bt
F), (30)

where, WF denotes the weight matrix between the forget and the input gates, Bt
F denotes the associated bias.

Input Gate. The input gate is responsible for adding information to the cell state using sigmoid and hyperbolic
tangent (tanh) functions. The tanh functions creates a vector of new candidate values. Then, input vector (IV) and
candidate values vector (CV) can be expressed as

IV = S F(WI · [outt−1, inpt] + Bt
I), (31)

CV = T H(WC · [outt−1, inpt] + Bt
C), (32)

where WI and WC denotes the weight matrix of sigmoid function between the input and output gates and the associated
biases are denoted by Bt

I and Bt
C , respectively.

Next step is to store the information to the memory cell (memt). This is done by multiplying the previous cell state
(memt−1) with forget vector (FV)

memt = FV ∗memt−1 + IV ∗ CV, (33)

If the obtained result is 0, then the values will get dropped in the cell state memt

Output Gate The output gate is responsible for determining the output by selecting useful information from the
current cell state leveraging the capabilities of tanh function and a filter designed based on sigmoidal function. This
output is then sent to the hidden state of the next cell. The output vector (OV) and the LSTM output memt can be
expressed as

OV = S F(WO · [outt−1, inpt] + Bt
O), (34)

outt = OV ∗ tanh(memt), (35)

where WO denotes the weight matrix of output vector and the associated biases is denoted by Bt
O.

We first compare the prediction accuracy of FlyBeam-ESN and FlyBeam-LSTM. The LSTM-based utility pre-
diction model (FlyBeam-LSTM) is designed following the principles of the three gates and leveraging some key
open-source libraries available for LSTM such as “adam” optimizer [52], “mean squared error” loss function [53] and
MinMaxScaler [54], among others. The results are reported in Fig. 3. In this experiment, we consider 1000 time slots
for the initial training data samples and use the first 900 data samples for training and the remaining for testing. For
LSTM, we use the same dataset with epoch counter set to 50 iterations. As we can see from the Figs. 3 (b) and (c),
FlyBeam-ESN is able to predict the utility at least with 75% accuracy while it is less than 40% for FlyBeam-LSTM.
This verifies the effectiveness of ESN-based utility prediction with limited training samples, and we will focus on
ESN-based FlyBeam in the following performance evaluation.

Next, we analyse the effectiveness of the designed autotuning framework (AutoESN). In this experiment, we use
the same training data as that used to train the model used in Fig. 3(b). As discussed in Sec. 4.3, in general ESN
has a variety of parameters such as number of reservoirs, input shift, input scaling, teacher shift, teacher scaling as
well as the activation functions. For the FlyBeam problem, we mainly focus on the teacher shift which is an additive
term applied to the target signal. By optimizing the teacher shift (ts) value, the loss function ∆util defined in (20) can
be reduced. The number of reservoirs is set to 100, input shift vector and input scaling vector are set to 0 and 1,
respectively. The value of teacher shift is varied from -1 to +1 in steps of 0.2 and the value of alpha (refer (18)) is set
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Figure 5: (a) Running average sum capacity (b) Running average sum capacity for time slots 40 to 80 ; (c) Location indices of one
UAV and (d) X- and Y- coordinate of one UAV.

as 0.17. The resulting loss function (∆util) is reported in Fig. 4. It can be seen that irrespective of the starting value of
the ”ts”, AutoESN is able to converge to a value of −0.6 which is the optimal teacher shift value for the considered
training dataset. The newly optimized teacher shift value can then be used in the testing phase.

5.3. Performance Analysis
In the first experiment we analyze the running average sum capacity of the network as the UAVs move to different

location based on the FlyBeam ESN-RL algorithm for a network with 3 UAVs collaboratively serving 10 users. We
compare FlyBeam (FlyBeam-ZF and FlyBeam MRT) with the benchmark scheme and the results are reported in
Fig. 5. In Fig. 5(a), we show the running average sum capacity of the 3-UAV network and Fig. 5(b) shows the running
average sum capacity of the network between the time slots 40 to 80 for better visualisation. We consider UAV 1
as an example and plot its location index in Fig. 5(c) and the corresponding x- and y- coordinates in Fig. 5(d). It is
important to note here that the fluctuations in the location index (Fig. 5(c)) is not random, but based on the movement
of the UAV in upward or downward direction. For example, at time slot 14, the location index is 47 and at time slot
15, the location index is 37, this is due to the fact that the UAV took an action to move down. Recall from Table 2 that
there are 10 grids in each row. This downward movement can be further verified from Fig. 5(d) where the y-coordinate
value changes from 85m to 65m. This is because, the distance between two grid points in 20m (refer Table 2). The
similar trend can be observed at time slots 54 and 55 as the UAV moves up and at time slots 56 and 57, when the UAV

7Please note that the value of α can be set to a value less than 0.1 for applications that require even finer tuning. For FlyBeam problem, with
α = 0.01 and α = 0.001, the value of teacher shift (ts) converges to −0.56 and −0.551 and takes 34 and 252 iterations, respectively.
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Figure 6: Average sum capacity with different number of UAVs using (a) Sequential Channel Estimation ; (b) Simultaneous Channel
Estimation.
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Figure 7: Capacity gain with different number of users using (a) Sequential Channel Estimation ; (b) Simultaneous Channel Esti-
mation.

moves down. Furthermore, at time slots 18 and 19 as the UAV moves right or left, the change in x-coordinate can be
seen in Fig. 5(d).

Next, we evaluate the capacity performance of FlyBeam. The number of UAVs is varied from 2 to 30 in step of 2
and the number of ground users is set to 10. The results are reported in Fig. 6(a) and (b) for sequential and simultaneous
channel estimation, respectively. It can be seen from Fig. 6(a) that significant capacity gain can be achieved by
FlyBeam. For example, average capacities of 915.20 Mbps and 960.12 Mbps can be achieved with FlyBeam-ZF and
FlyBeam-MRT, respectively, which are 3.56 and 3.73 times higher than that achievable by Benchmark Scheme 2
(257 Mbps). Similar results can also be observed in Fig. 6(b) for simultaneous channel estimation.

The effectiveness of distributed beamforming in swarm UAV networks is further verified in Fig. 7 in terms of
average capacity gain with 10 UAVs and the number of users varying from 2 to 22 in steps of 4. We can see that
with sequential channel estimation both FlyBeam-ZF and FlyBeam-MRT are able to achieve a capacity gain between
312% and 457% with an average of 380% as shown in Fig. 7(a). This observation is further verified with simultaneous
channel estimation as shown in Fig. 7(b) where we can see that FlyBeam-ZF and FlyBeam-MRT are able to achieve a
capacity gain between 322% and 392% with an average of 360%. It is worth mentioning here that For the performance
evaluation, we consider random distribution of blockages, altitude of blockages, users and UAVs in the network at
the start for different cases studied. Therefore, there are fluctuations in the obtained results in Fig. 7. However, it
is important to note here that, the key takeaway from this analysis is the performance gain of FlyBeam-MRT and
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Figure 8: Average sum capacity with varying flight altitude using (a) Sequential Channel Estimation ; (b) Simultaneous Channel
Estimation.
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Figure 9: Average sum capacity with varying number of blockages using (a) sequential channel estimation and (b) simultaneous
channel estimation.

FlyBeam-ZF compared to the benchmark scheme.
In this experiment, we further investigate the effects of the UAVs’ flight altitude on the beamforming gain, consid-

ering 10 ground users and 10 UAVs. The flight altitude of the UAVs is varied from 10 m to 100 m in steps of 10 m.
The results are plotted in Fig. 8. Similar to that in Figs. 6 and 7, significant capacity gains can be achieved by FlyBeam
in all the tested cases. It can also be found that the sum capacity achievable by FlyBeam is only slightly affected by the
UAV flight altitude. For example, with sequential channel estimation as shown in Fig. 8(a) an average sum capacity of
854 Mbps can be achieved by FlyBeam-ZF with a flight altitude of 10 m, which is 816 Mbps for an altitude of 100 m.
Similar results can also be achieved by the FlyBeam-MRT. This performance can also be observed with simultaneous
channel estimation as shown in Fig. 8(b). This is expected because as discussed in Section 1, while flying lower can
reduce the propagation distance to the ground users, the transmissions may experience higher attenuation because of
a higher probability of being blocked.

The effects of blockages on the beamforming gain is further studied in Fig. 9. The number of blockages is varied
from 0 to 500 in steps of 100. The minimum and maximum dimensions of the blockages are set to 2 m and 8 m
for length and width, respectively. The height of the blockages is fixed to 15 m, and the UAV flight altitude is
set to 30 m. It can be found in Fig. 9(a) that with sequential channel estimation FlyBeam-ZF and FlyBeam-MRT
can yield respectively an average capacity of 1106.9 Mbps and 1127.5 Mbps, which are 6.74 and 6.87 times larger
than Benchmark Scheme 2. The sum capacity achievable with Benchmark Scheme 2 decreases monotonically with
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Figure 10: (a) Average sum capacity with different slot duration; (b) Ratio of average sum capacity with Sequential Channel
Estimation to average sum capacity with Simultaneous Channel Estimation.
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Figure 11: Communication overhead of FlyBeam.

the number of blockages because of larger signal attenuation with more blockages. A surprising observation is that a
higher rather than lower sum capacity can be achieved by FlyBeam with more blockages in the network. For example,
an average sum capacity of 786 Mbps can be achieved by the FlyBeam-ZF with no blockages, which are 1025 Mbps
and 1301 Mbps with 200 and 500 blockages, respectively. This is primarily because denser blockages introduce more
diversity in the wireless channels, and hence higher spatial diversity gain can be achieved through beamforming. The
similar performance can be seen with simultaneous channel estimation as well as shown in Fig. 9(b).

We further study the effect of varying time slot duration on the average sum capacity and the results are reported
in Fig. 10(a). The time slot duration was varied from 10 to 200 in steps of 10. We consider FlyBeam-ZF and
FlyBeam-MRT schemes with sequential (FlyBeam-ZF-Seq, FlyBeam-MRT-Seq) as well as simultaneous (FlyBeam-
ZF-Sim, FlyBeam-MRT-Sim) channel estimation methods. The corresponding ratio of average sum capacity with
sequential channel estimation to that with simultaneous channel estimation is shown in Fig. 10(b). As expected, the
network performance with collaborative beamforming outperforms the distributed benchmark scheme with an average
sum capacity of 825 Mbps, which is 3.31 times larger than that of the benchmark scheme (249 Mbps). Moreover,
Fig. 10(b) shows that it is more desirable for UAVs to collaborate in distributed beamforming based on zero-force
precoding and simultaneous channel estimation. It is worth mentioning here that in the performance evaluation we
compared the average capacity gain and average sum capacity for FlyBeam-MRT and FlyBeam-ZF compared to
the benchmark scheme. Here for FlyBeam-MRT and FlyBeam-ZF we considered collaborative beamforming where
multiple UAVs can serve a single user. However, in the benchmark scheme we consider FDMA for UAVs channel
access and TDMA to serve the users. Due to this, the average capacity (or gain) achieved is lower compared to the
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Figure 12: Convergence of FlyBeam with different updating periods.

collaborative beamforming achieved by FlyBeam-MRT and FlyBeam-ZF. Furthermore, at the start of the simulation,
all the UAVs and users are randomly placed. At this point, the link between UAVs and users may be LOS dominant or
NLOS dominant. Therefore, by allowing the UAVs to explore the network area it can determine the sweet-spot where
the best network performance is achieved.

5.4. Complexity and Convergence
We study the computational complexity and communication overhead of FlyBeam control in Fig. 11. The exper-

iments are conducted on a workstation with Intel(R) Core(TM) i7 − 10510U CPU @ 1.80 GHz 2.30 GHz, memory
of 16.0 GB, and 64-bit Windows Operating System. We fix the number of users as 10 and vary the number of UAVs
from 3 to 10 at a step of 1. Figure 11(b) plots the corresponding communication overhead, i.e., the time taken for
CSI and beamforming weights sharing. We can see with 3 UAVs, the time taken is 1.31 ms which yields 98.69 ms
for the actual communication which is 98% of the coherence time. Furthermore, we can see that with 10 UAVs, the
time taken is 4.43 ms yielding 95.57% of coherence time for the communication. This verifies that with our proposed
algorithm has very little communication overhead in comparison to the available time for the communication.

We further study the effects of periodic updating of the ESN training on the network’s sum capacity, taking
FlyBeam-MRT as an example. The results are plotted in Fig. 12, where each curve is obtained by averaging over 20
simulations. The updating period is varied from 100 to 1000 time slots at steps of 300 time slots. It can be seen that the
convergence speed is significantly affected by the updating period. In most of the test cases, FlyBeam converges faster
with shorter updating periods. For example, FlyBeam converges in around 400 time slots with an updating period of
100 time slots, which is twice as fast as that with updating periods of 700 and 1000 time slots. However, interestingly,
we found that there is no monotonic mapping between the convergence speed and the updating period. This can
be seen when the updating period is set to 400 time slots. In future work, we will investigate the optimal updating
frequency for online RL by considering the involved interaction between ESN-based utility function approximation
and RL-based state exploration.

6. Conclusions

In this paper we proposed a high-data-rate swarm UAV network with distributed beamforming capabilities by
taking into account different factors that affect the beamforming gain. We designed FlyBeam to jointly control the
flight and beamforming in swarm UAV networks, based on a combination of ESN learning and RL. We considered
two beamforming schemes (ZF and MRT) as well as two channel estimation schemes (sequential and simultaneous).
We verified the performance of FlyBeam by considering two benchmark solution schemes based on traditional op-
timization and LSTM-based utility prediction. The performance evaluation was conducted over a newly developed
simulator called UBSim. Simulation results indicate that i) up to 450% capacity gain can be achieved by enabling
distributed beamforming in swarm UAV networks, and ii) with distributed beamforming, higher (rather than lower)
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network capacity can be achieved with denser blockages. In the future, we will further verify the performance of Fly-
Beam on software-defined radio based integrated aerial-ground network experimentation facilities being developed at
University at Buffalo [55].
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