Differential privacy

Definition
Given $\varepsilon, \delta \geq 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ)-differentially private iff for all adjacent database b_1, b_2 and for every $S \subseteq R$:

$$\Pr[Q(b_1) \in S] \leq \exp(\varepsilon) \Pr[Q(b_2) \in S] + \delta$$
Algorithm 2: Pseudo-code for the Laplace Mechanism

1: function \textsc{LapMech}(D, q, \epsilon)
2: \hspace{1em} Y \leftarrow \text{Lap}\left(\frac{\Delta q}{\epsilon}\right)(0)
3: \hspace{1em} \text{return } q(D) + Y
4: end function
Global Sensitivity

Definition 1.8 (Global sensitivity). The *global sensitivity* of a function \(q : \mathcal{X}^n \rightarrow \mathbb{R} \) is:

\[
\Delta q = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D' \in \mathcal{X}^n \right\}
\]
Definition 1.8 (Global sensitivity). The *global sensitivity* of a function $q : \mathcal{X}^n \rightarrow \mathbb{R}$ is:

$$\Delta q = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D' \in \mathcal{X}^n \right\}$$

Definition 1.14 (Local sensitivity). The *local sensitivity* of a function $q : \mathcal{X}^n \rightarrow \mathbb{R}$ at $D \in \mathcal{X}^n$ is:

$$\ell \Delta q(D) = \max \left\{ |q(D) - q(D')| \mid D \sim_1 D', D' \in \mathcal{X}^n \right\}$$
Calibrating noise to the local sensitivity

We may add noise proportional to the local sensitivity (LS).

Unfortunately, this does not guarantee privacy.

Suppose that for a given D we have $LS(D)=0$ but that we also have $D\sim D'$ with $LS(D')=10^9$.

We will see that we can do anyway better than GS.
Some methods

- Smooth Sensitivity
- Propose-Test-Release
- Releasing Stable Values
Definition 2.2 (Smooth sensitivity). For $\beta > 0$, the β-smooth sensitivity of f is

$$S^*_{f,\beta}(x) = \max_{y \in D^n} \left(L S_f(y) \cdot e^{-\beta d(x,y)} \right).$$

Definition 2.1 (A Smooth Bound on LS). For $\beta > 0$, a function $S : D^n \to \mathbb{R}^+$ is a β-smooth upper bound on the local sensitivity of f if it satisfies the following requirements:

$$\forall x \in D^n : \quad S(x) \geq L S_f(x) ;$$ \hspace{1cm} (1)

$$\forall x, y \in D^n, d(x, y) = 1 : \quad S(x) \leq e^{\beta} \cdot S(y) .$$ \hspace{1cm} (2)

[Nissim, Raskhodnikova, Smith '06]
Lemma 2.6. Let h be an (α, β)-admissible noise probability density function, and let Z be a fresh random variable sampled according to h. For a function $f : D^n \to \mathbb{R}^d$, let $S : D^n \to \mathbb{R}$ be a β-smooth upper bound on the local sensitivity of f. Then algorithm $A(x) = f(x) + \frac{S(x)}{\alpha} \cdot Z$ is (ϵ, δ)-differentially private.

For two neighbor databases x and y, the output distribution $A(y)$ is a shifted and scaled version of $A(x)$. The sliding and dilation properties ensure that $\Pr[A(x) \in S]$ and $\Pr[A(y) \in S]$ are close for all sets S of outputs.

[Nissim, Raskhodnikova, Smith ’06]
Admissible Noise

Adding noise $O(SS_q^\varepsilon(x)/\varepsilon)$ (according to a Cauchy distribution) is sufficient for ε-differential privacy.

Laplace and Gauss give (ε,δ)-DP

Computing the Smooth Sensitivity can be intractable.

[Nissim, Raskhodnikova, Smith ’06]
Propose-test-release Given $q : \mathcal{X}^n \rightarrow \mathbb{R}$, $\epsilon, \delta, \beta \geq 0$

1. Propose a target bound β on local sensitivity.

2. Let $\hat{d} = d(x, \{x' : LS_q(x') > \beta\}) + \text{Lap}(1/\epsilon)$, where d denotes Hamming distance.

3. If $\hat{d} \leq \ln(1/\delta)/\epsilon$, output \perp.

4. If $\hat{d} > \ln(1/\delta)/\epsilon$, output $q(x) + \text{Lap}(\beta/\epsilon)$.
Stability-based algorithms

Releasing stable values Given $q : \mathcal{X}^n \to \mathbb{R}$, $\epsilon, \delta \geq 0$

1. Let $\hat{d} = d(x, \{x' : q(x') \neq q(x)\}) + \text{Lap}(1/\epsilon)$, where d denotes Hamming distance.
2. If $\hat{d} \leq 1 + \ln(1/\delta)/\epsilon$, output \perp.
3. Otherwise output $q(x)$.

Proposition 3.3 (releasing stable values). For every query $q : \mathcal{X}^n \to \mathbb{Y}$ and $\epsilon, \delta > 0$, the above algorithm is (ϵ, δ)-differentially private.
Consider, for example, the mode function \(q : \mathcal{X}^n \rightarrow \mathcal{X} \), where \(q(x) \) is defined to be the most frequently occurring data item in \(x \) (breaking ties arbitrarily). Then \(d(x, \{x' : q(x') \neq q(x)\}) \) equals half of the gap in the number of occurrences between the mode and the second-most frequently occurring item (rounded up). So we have:

Proposition 3.4 (stability-based mode). For every data universe \(\mathcal{X} \), \(n \in \mathbb{N} \), \(\varepsilon, \delta \geq 0 \), there is an \((\varepsilon, \delta)\)-differentially private algorithm \(M : \mathcal{X}^n \rightarrow \mathcal{X} \) such that for every dataset \(x \in \mathcal{X}^n \) where the difference between the number of occurrences of the mode and the 2nd most frequently occurring item is larger than \(4\lceil \ln(1/\delta)/\varepsilon \rceil \), \(M(x) \) outputs the mode of \(x \) with probability at least \(1 - \delta \).
Stability-based Histogram

1. For every point $y \in X$:

 (a) If $q_y(x) = 0$, then set $a_y = 0$.

 (b) If $q_y(x) > 0$, then:

 i. Set $a_y \leftarrow q_y(x) + \text{Lap}(2/\varepsilon n)$.

 ii. If $a_y < 2 \ln(2/\delta)/\varepsilon n + 1/n$, then set $a_y \leftarrow 0$.

2. Output $(a_y)_{y \in X}$.
Utility: The algorithm gives exact answers for queries \(q_y \) where \(q_y(x) = 0 \). There are at most \(n \) queries \(q_y \) with \(q_y(x) > 0 \) (namely, ones where \(y \in \{x_1, \ldots, x_n\} \)). By the tails of the Laplace distribution and a union bound, with high probability all of the noisy answers \(q_y(x) + \text{Lap}(2/\varepsilon n) \) computed in Step 1(b)i have error at most \(O((\log n)/\varepsilon n) \leq O(\log(1/\delta)/\varepsilon n) \). Truncating the small values to zero in Step 1(b)ii introduces an additional error of up to \(2 \ln(1/\delta)/\varepsilon n + 1/n = O(\log(1/\delta)/\varepsilon n) \).
Accuracy with the standard histogram DP algorithm:

$$|q_h(D) - r_h| \leq O \left(\frac{\log(|\mathcal{X}|)}{n} \right)$$

Accuracy with the stable histogram DP algorithm:

$$|q_h(D) - r_h| \leq O \left(\frac{\log(1/\delta)}{n} \right)$$
Sample and aggregate

\[x \]

\[x_1, \ldots, x_{\frac{n}{k}} \]
\[\frac{n}{k} + 1, \ldots, \frac{2n}{k} \]
\[\ldots \]
\[\frac{(k-1)n}{k} + 1, \ldots, x_n \]

\[f \]
\[z_1 \]
\[z_2 \]
\[\ldots \]
\[z_k \]

\[\Lambda \]

\[SA(x) \]
Lemma 1.28 (Privacy amplification by subsampling). Let $M : \mathcal{X}^m \rightarrow R$ be an ϵ-differentially private mechanism for every $m \geq 1$. Let $S : \mathcal{X}^n \rightarrow \mathcal{X}^{\gamma n}$ be a subsampling (without replacement) mechanism returning a i.i.d. subsample of the data points of size γn, for $\gamma < 1$. Then, the mechanism $M' = M \circ S : \mathcal{X}^n \rightarrow R$ is $2\gamma(e^\epsilon - e^{-\epsilon})$-differentially private.