Differential privacy

Definition

Given $\varepsilon, \delta \geq 0$, a probabilistic query $Q : X^n \to \mathbb{R}$ is (ε, δ)-differentially private iff for all adjacent database b_1, b_2 and for every $S \subseteq \mathbb{R}$:

$$\Pr[Q(b_1) \in S] \leq \exp(\varepsilon) \Pr[Q(b_2) \in S] + \delta$$
Blatantly non-privacy

The privacy mechanism $M: X^n \to R$ is **blatantly non-private** if an adversary can build a candidate database $D' \in X^n$, that agrees with the real database D in all but $o(n)$ entries:

$$d_H(D,D') \in o(n)$$

M is blatantly non-private if we can reconstruct:

$$n-f(n)$$

entries for f sublinear.

This corresponds to require that the mechanism reconstructs a fraction $1-f(n)/n$ of the rows, and when $n \to \infty$ we have $1-f(n)/n \to 1$.
Differential privacy prevents blatantly non-privacy

Consider a uniformly random dataset $D \in \mathbb{X}^n$. Suppose $Q: \mathbb{X}^n \rightarrow \mathbb{R}$ is (ε, δ)-differentially private. Then the expected fraction of rows that any adversary can reconstruct is at most:

$$\frac{e^\varepsilon}{|\mathbb{X}|} + \delta$$

Let's try now to reason about the privacy parameters:

- $\varepsilon = 0.01$, $\delta = 10^{-15}$, $n = 1000$, $|\mathbb{X}| = 1000$
- $\varepsilon = 0.01$, $\delta = 10^{-1}$, $n = 1000$, $|\mathbb{X}| = 1000$
- $\varepsilon = 0.1$, $\delta = 10^{-15}$, $n = 10000$, $|\mathbb{X}| = 100$
Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under ε-DP?
Multiple queries

Question: how much perturbation do we have if we want to answer n counting queries with Laplace under ε-DP?

Using standard composition we have as a max error

$$O\left(\frac{n}{\epsilon_{\text{global}} n}\right) = O\left(\frac{1}{\epsilon_{\text{global}}}\right)$$

Notice that if we don’t renormalize this is of the order of

$$O\left(\frac{n}{\epsilon_{\text{global}}}\right)$$

bigger than the sample error.
Composition

The overall process is \((\varepsilon_1 + \varepsilon_2 + \ldots + \varepsilon_n)\)-DP
Composition

Theorem 1.18 (Standard composition for ϵ-differential privacy). Let $\mathcal{M}_i : \mathcal{X}^n \rightarrow R_i$ be ϵ_i-differentially private algorithms (for $1 \leq i \leq k$). Then, their composition defined to be $\mathcal{M}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D), \ldots, \mathcal{M}_k(D))$ is $\sum_{i=1}^{k} \epsilon_i$-differentially private.

Proof. Fix any pair of adjacent datasets $D \sim D'$. Fix also an output $\bar{r} = (r_1, \ldots, r_k) \in R_1 \times \cdots \times R_k$. We have:

$$\frac{\Pr[\mathcal{M}(D) = \bar{r}]}{\Pr[\mathcal{M}(D') = \bar{r}]} = \frac{\Pr[\mathcal{M}_1(D), \ldots, \mathcal{M}_k(D)] = (r_1, \ldots, r_k]}{\Pr[\mathcal{M}_1(D'), \ldots, \mathcal{M}_k(D')] = (r_1, \ldots, r_k)}$$

$$= \frac{\Pr[\mathcal{M}_1(D) = r_1] \cdots \Pr[\mathcal{M}_k(D) = r_k]}{\Pr[\mathcal{M}_1(D') = r_1] \cdots \Pr[\mathcal{M}_k(D') = r_k]}$$

$$= \left(\frac{\Pr[\mathcal{M}_1(D) = r_1]}{\Pr[\mathcal{M}_1(D') = r_1]}\right) \cdots \left(\frac{\Pr[\mathcal{M}_k(D) = r_k]}{\Pr[\mathcal{M}_k(D') = r_k]}\right)$$

$$\leq \exp(\epsilon_1) \cdots \exp(\epsilon_k) = \exp(\sum_{i=1}^{k} \epsilon_i).$$
Privacy Loss

In general we can think about the following quantity as the privacy loss incurred by observing r as output of \mathcal{M} on the databases D and D'.

$$
\mathcal{L}^{D \rightarrow D'}_{\mathcal{M}}(r) = \ln \left(\frac{\Pr[\mathcal{M}(D) = r]}{\Pr[\mathcal{M}(D') = r]} \right) = -\mathcal{L}^{D' \rightarrow D}_{\mathcal{M}}(r)
$$

The $(\epsilon, 0)$-differential privacy requirement corresponds to requiring that for every r and every adjacent D, D' we have:

$$
\left| \mathcal{L}^{D \rightarrow D'}_{\mathcal{M}}(r) \right| \leq \epsilon
$$

Theorem 1.18 (Standard composition for ϵ-differential privacy). Let $\mathcal{M}_i : \mathcal{X}^n \to R_i$ be ϵ_i-differentially private algorithms (for $1 \leq i \leq k$). Then, their composition defined to be $\mathcal{M}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D), \ldots, \mathcal{M}_k(D))$ is $\sum_{i=1}^k \epsilon_i$-differentially private.

Proof. Fix any pair of adjacent datasets $D \sim_1 D'$. Fix also an output $\vec{r} = (r_1, \ldots, r_k) \in R_1 \times \cdots \times R_k$. We have:

$$L_{\mathcal{M}}^{D \rightarrow D'}(\vec{r}) = \ln \left(\frac{\Pr[\mathcal{M}_1(D), \ldots, \mathcal{M}_k(D)] = (r_1, \ldots, r_k)}{\Pr[\mathcal{M}_1(D'), \ldots, \mathcal{M}_k(D')] = (r_1, \ldots, r_k)} \right)$$

$$= \ln \left(\frac{\Pr[\mathcal{M}_1(D) = r_1] \cdots \Pr[\mathcal{M}_k(D) = r_k]}{\Pr[\mathcal{M}_1(D') = r_1] \cdots \Pr[\mathcal{M}_k(D') = r_k]} \right)$$

$$= \ln \left(\frac{\Pr[\mathcal{M}_1(D) = r_1]}{\Pr[\mathcal{M}_1(D') = r_1]} \right) + \cdots + \ln \left(\frac{\Pr[\mathcal{M}_k(D) = r_k]}{\Pr[\mathcal{M}_k(D') = r_k]} \right)$$

$$= \mathcal{L}_{\mathcal{M}_1}^{D \rightarrow D'}(r_1) + \cdots + \mathcal{L}_{\mathcal{M}_k}^{D \rightarrow D'}(r_k) \leq \epsilon_1 + \cdots + \epsilon_k = \sum_{i=1}^k \epsilon_i.$$
(ε, δ)-Differential Privacy

We can also reformulate (ε, δ)-differential privacy in terms of the privacy loss. Informally, we would like that to be equivalent to:

$$\Pr \left[\left| \mathcal{L}_\mathcal{M}^{D \rightarrow D'} (r) \right| \leq \epsilon \right] \geq 1 - \delta$$
(ε, δ)-Differential Privacy

Lemma 1.20. A mechanism $\mathcal{M} : \mathcal{X}^n \rightarrow \mathcal{R}$ is (ϵ, δ)-differentially private iff for every adjacent D, D' there exist events E (depending on $\mathcal{M}(D)$) and E' (depending on $\mathcal{M}(D')$) such that $\Pr[E] \geq 1 - \delta$, $\Pr[E'] \geq 1 - \delta$ and such that:

$$\Pr[\mathcal{M}(D) \in T|E] \leq e^\epsilon \Pr[\mathcal{M}(D') \in T|E']$$

and

$$\Pr[\mathcal{M}(D') \in T|E'] \leq e^\epsilon \Pr[\mathcal{M}(D) \in T|E]$$
This corresponds to a privacy loss of the form:

\[
\mathcal{L}_{\mathcal{M}}^{D \rightarrow D'}(r) = \ln \left(\frac{\Pr[\mathcal{M}(D) = r | E]}{\Pr[\mathcal{M}(D') = r | E']} \right)
\]

The \((\epsilon, \delta)\)-differential privacy requirement corresponds to requiring that for every \(r\) and every adjacent \(D, D'\) we have:

\[
\Pr \left[\left| \mathcal{L}_{\mathcal{M}}^{D \rightarrow D'}(r) \right| \leq \epsilon \right] \geq 1 - \delta
\]
Theorem 1.22 (Standard composition for (ϵ, δ)-differential privacy).

Let $\mathcal{M}_i : \mathcal{X}^n \rightarrow R_i$ be (ϵ_i, δ_i)-differentially private algorithms (for $1 \leq i \leq k$). Then, their composition defined to be $\mathcal{M}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D), \ldots, \mathcal{M}_k(D))$ is $(\sum_{i=1}^k \epsilon_i, \sum_{i=1}^k \delta_i)$-differentially private.

Proof. Fix any pair of adjacent datasets $D \sim_1 D'$. Fix also an output $\bar{r} = (r_1, \ldots, r_k) \in R_1 \times \cdots \times R_k$. Since each $\mathcal{M}_i : \mathcal{X}^n \rightarrow R_i$ is (ϵ_i, δ_i)-differentially private, we have events E_i and E_i' such that $\Pr[E_i] \geq 1 - \delta_i$ and $\Pr[E_i'] \geq 1 - \delta_i$. We can then consider $E = E_1 \land \cdots \land E_k$ and $E' = E_1' \land \cdots \land E_k'$.
Theorem 1.22 (Standard composition for \((\epsilon, \delta)\)-differential privacy). Let \(\mathcal{M}_i: \mathcal{X}^n \rightarrow R_i\) be \((\epsilon_i, \delta_i)\)-differentially private algorithms (for \(1 \leq i \leq k\)). Then, their composition defined to be \(\mathcal{M}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D), \ldots, \mathcal{M}_k(D))\) is \((\sum_{i=1}^k \epsilon_i, \sum_{i=1}^k \delta_i)\)-differentially private.

We have:

\[
\mathcal{L}^{D \rightarrow D'}_{\mathcal{M}}(r) = \ln \left(\frac{\Pr[\mathcal{M}(D) = r|E]}{\Pr[\mathcal{M}(D') = r|E']} \right)
\]

\[
= \ln \left(\frac{\Pr[\mathcal{M}_1(D) = r_1|E_1] \cdots \Pr[\mathcal{M}_k(D) = r_k|E_k]}{\Pr[\mathcal{M}_1(D') = r_1|E'_1] \cdots \Pr[\mathcal{M}_k(D') = r_k|E'_k]} \right)
\]

\[
= \ln \left(\frac{\Pr[\mathcal{M}_1(D) = r_1|E_1]}{\Pr[\mathcal{M}_1(D') = r_1|E'_1]} \right) + \cdots + \ln \left(\frac{\Pr[\mathcal{M}_k(D) = r_k|E_k]}{\Pr[\mathcal{M}_k(D') = r_k|E'_k]} \right)
\]

\[
= \mathcal{L}^{D \rightarrow D'}_{\mathcal{M}_1}(r_1) + \cdots + \mathcal{L}^{D \rightarrow D'}_{\mathcal{M}_k}(r_k) \leq \epsilon_1 + \cdots + \epsilon_k = \sum_{i=1}^k \epsilon_i.
\]
Theorem 1.22 (Standard composition for (ϵ, δ)-differential privacy). Let $M_i : \mathcal{X}^n \rightarrow R_i$ be (ϵ_i, δ_i)-differentially private algorithms (for $1 \leq i \leq k$). Then, their composition defined to be $M(D) = (M_1(D), M_2(D), \ldots, M_k(D))$ is $(\sum_{i=1}^{k} \epsilon_i, \sum_{i=1}^{k} \delta_i)$-differentially private.

We still need to reason about the probability of E and E'. We know that for each E_i, E'_i we have $\Pr[E_i] \geq 1 - \delta_i$ and $\Pr[E'_i] \geq 1 - \delta_i$. So, by union bound we have $\Pr[E] \geq 1 - \sum_{i=1}^{k} \delta_i$ and $\Pr[E'] \geq 1 - \sum_{i=1}^{k} \delta_i$, and so we can conclude.
Advanced Composition

Question: how much perturbation do we have if we want to answer n queries under (ε, δ)-DP?

Using advanced composition we have as a max error

$$O\left(\frac{1}{\varepsilon_{\text{global}} \sqrt{n}}\right)$$

If we don’t renormalize this is of the order of

$$O\left(\frac{\sqrt{n}}{\varepsilon_{\text{global}}}\right)$$

comparable to the sample error.

[DworkRothblumVadhan10, SteinkeUllman16]
Theorem 1.23 (Advanced composition). Let $M_i : \mathcal{X}^n \rightarrow R_i$ be (ϵ, δ)-differentially private algorithms (for $1 \leq i \leq k$ and $k < 1/\epsilon$). Then, their composition defined to be $M(D) = (M_1(D), M_2(D), \ldots, M_k(D))$ is $(O(\sqrt{2k \ln(1/\delta')}), k\delta + \delta')$-differentially private for every $\delta' > 0$.

Intuition: some of the outputs have positive privacy loss (i.e. give evidence for dataset D) and some have negative privacy loss (i.e. give evidence for dataset D'). The cancellations gives a smaller overall privacy loss.

Strategy:
1. considering the expected value of the privacy loss,
2. bound the privacy loss of all the variables together
3. compute the probability
Theorem 1.23 (Advanced composition). Let $M_i : X^n \rightarrow R_i$ be (ϵ, δ)-differentially private algorithms (for $1 \leq i \leq k$ and $k < 1/\epsilon$). Then, their composition defined to be $M(D) = (M_1(D), M_2(D), \ldots, M_k(D))$ is $(O(\sqrt{2k \ln(1/\delta')}), k\delta + \delta')$-differentially private for every $\delta' > 0$.

Lemma 1.24. If M_i is ϵ-differentially private, where $\epsilon \leq 1$, then:

$$\mathbb{E}_{r_i \leftarrow M_i(D)}[[L^D_{M_i}(r_i)] \leq 2\epsilon^2$$

By linearity of expectation we have

$$\mathbb{E}_{r \leftarrow M(D)}[[L^D_{M}(r)] \leq kO(\epsilon^2)$$
Theorem 1.23 (Advanced composition). Let $\mathcal{M}_i : \mathcal{X}^n \to R_i$ be (ϵ, δ)-differentially private algorithms (for $1 \leq i \leq k$ and $k < 1/\epsilon$). Then, their composition defined to be $\mathcal{M}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D), \ldots, \mathcal{M}_k(D))$ is $(O(\sqrt{2k \ln(1/\delta')})\epsilon, k\delta + \delta')$-differentially private for every $\delta' > 0$.

Applying the Chernoff Bound for random variables whose absolute value is bounded by ϵ, we get that with probability at least $1 - \delta'$ over $\vec{r} \leftarrow \mathcal{M}(D)$, we have

$$
\mathcal{L}^{D \rightarrow D'}_{\mathcal{M}}(\vec{r}) \leq kO(\epsilon^2) + O(\sqrt{k \ln(1/\delta')})\epsilon \leq O(\sqrt{k \ln(1/\delta')})\epsilon
$$
Theorem 1.23 (Advanced composition). Let $\mathcal{M}_i : \mathcal{X}^n \to R_i$ be (ϵ, δ)-differentially private algorithms (for $1 \leq i \leq k$ and $k < 1/\epsilon$). Then, their composition defined to be $\mathcal{M}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D), \ldots, \mathcal{M}_k(D))$ is $(O(\sqrt{2k \ln(1/\delta')})\epsilon, k\delta + \delta')$-differentially private for every $\delta' > 0$.

So, let $\epsilon' = O(\sqrt{k \ln(1/\delta')})\epsilon$. For every $T \subseteq R$ we have

$$Pr[\mathcal{M}(D) \in T] \leq \Pr_{\bar{r} \leftarrow \mathcal{M}(D)} [L_{\mathcal{M}}^{D \rightarrow D'}(\bar{r}) > \epsilon'] + \sum_{\bar{r} \in T : L_{\mathcal{M}}^{D \rightarrow D'}(\bar{r}) \leq \epsilon'} \Pr[\mathcal{M}(D) = \bar{r}]$$

$$\leq \delta' + \sum_{\bar{r} \in T : L_{\mathcal{M}}^{D \rightarrow D'}(\bar{r}) \leq \epsilon'} e^{\epsilon'} \Pr[\mathcal{M}(D') = \bar{r}]$$

$$\leq \delta' + e^{\epsilon'} \Pr[\mathcal{M}(D') \in T]$$
Composition

We always need to think before applying composition to whether we have other options!
Answering multiple queries

We have seen several methods to answer a single query:
- Randomized Response
- Laplace Mechanism
- Exponential Mechanism

And methods to answer multiple queries with small error:
- Standard composition - we can answer \sqrt{n} queries.
- Advanced composition - we can answer n queries.