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I. INTRODUCTION

Game theory is formally a branch of mathematics developed to deal with
conflict-of-interest situations in social science. Although the origins of the
theory can be traced to early articles in the 19205 by mathermaticians Emile
Borel (1921, 1924) and John von Neumann (1928), the field was only defi-
nitely established when von Neumann and economist Oskar Morgenstern
published Theory of Games and Economic Behaviorin 1944, Since then, the
literature of the field has expanded enormously, with theoretical research or
applications of the theory blossoming in areas as diverse as operations re-
search, mathematics, military science, biology, law, sports, biblical siudies,
and moral philosophy. The expiosion of the paradigm has in fact been so
large that recently Colman (1982, p. vii) was led to remark, somewhat wist-
fully, that “the time has (alas) long passed when a single person could reason-

*I would like to thank Steven J. Brams, Jacek Kugler and Nicholas R. Miller for their heipful
comments and suggestions on an earlier version of this essay. Some parts of this chapter are
drawn from Zagare (1984a).
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ably hope to be an expert on all branches of game theory or on all of its
applications.”

The impact of the game-theoretic paradigm on the social sciences has been
particularly striking. Long ago, sociologists, political scientists, and interna-
tional relations specialists saw the relevance of game theory for studying the
processes underiying coalition formation and behavior, important areas of
concern in each of these disciplines. The enormous experimental literature on
Prisoners’ Dilemma and related games attests to the significant impact of
game-theoretic models in social psychology. And a recent review by Schotter
and Schwadiauer (1980) in the Journal of Economic Literature demon-
strates how deeply the theory of games has penetrated economics since the
publication of von Neumann and Morgenstern’s monumental work. Indeed
it is virtually impossible to be well-versed in any social science today without
taking cognizance of the contributions of game theorists. It may even be true,
as Howard (1971, p. 202) has persuasively argued, “that game theory is be-
coming a unifying force in the social sciences, encompassing economics, psy-
chology, politics, and history within a single mathematical theory capable of
being applied to the understanding of ail interactions between conscious
beings.”

With appropriate modifications, the observations of both Colman and

_Howard also apply to the game theory and politics literature. The influence

of game theory on the study of politics is both wide and diverse, with applica-
tions and extensions of the theory becoming increasingly prominent in each
of the major subfields of the discipline. Rather than attempting to review this
variegated literature in toto, this essay will highlight only those theoretical
advances made since the mid-1970s that have immediate and general implica-
tions for the study of politics. This means that purely formal contributions,
specific applications of the theory that are relevant to only certain subfields,’
and the vast experimental gaming literature will not be reviewed.? Neverthe-
less, to place the subsequent discussion in context, a short summary of the as-
sumptions, primitive concepts, and major divisions of the field wiil be pro-
vided in the next section.?

II. A BRIEF RESUME OF THE THEORY OF GAMES

As previously indicated, game theory is a theory of interdependent choice.
Technically, the simplest type of game is a one-person game, sometimes
called a game against nature, wherein a single player makes a decision in the
face of an environment assumed to be either indifferent or neutrai. One-

! Spatial models are discussed by Miller (this volume).

I For a recent overview of the experimental literature, see Colman (1932).

3 For a more comprehensive summary or a literature review of some specialized topics, see ei-
ther Riker and Ordeshook {1973} or Brams (1975).
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person games, though, have received only limijted attention from political sci-
entists for the obvious reason that most intriguing political situations involve
at least two players. Two-person games, therefore, are the most elementary
interactive situations of general concern to students of politics. Games that
involve more than two players are called n-person games.

In game theory, a player can be an individual, or a group of individuals,
functioning as a decision-making unit. Individuals or groups become players
when their decisions, coupled with the decision of at least one other actor,
produce an outcome. Outcomes are, by necessity, content-dependent and
therefore may range over the whole spectrum of possible societal states.

Players are assumed to be able to evaluate and compare the consequences
associated with the set of possible outcomes, and to assign numbers, called
utilities, to each outcome indicating a preference relationship among them.
When these numbers are judged to reflect only a rank ordering of the out-
comes, they are called ordinal utilities; when they indicate both order and in-
tensity of preference, they are called cardinal utilities.*

The options available to players to bring about outcomes are called strate-
gies. Strategies come in two types, pure and mixed. A pure strategy is a com-
plete contingency plan that specifies a choice for a player in every situation
that might arise in a game. A mixed strategy involves the use of a particular
probability distribution to select one pure strategy from among a subsetof a
player’s pure strategies.

Underlying the entire structure of game theory is the key assumption that
players in a game are rational (or utility maximizers). As game theorists use
this term, rationality simply means that a player in an interactive situation
will act to bring about the most preferred of the possible outcomes, given the
constraint that other players are also acting in the same way.

Games can be distinguished in a number of ways. In addition to the
standard dichotomy between two-person and n-person games, games are
sometimes categorized according to the extent to which the interests of the
players diverge. Games in which conflict is total and the interests of the
players diametrically opposed are known as zero-sum or constant-sum
games. Nonzero-sum games, by contrast, are those games in which players
have both competitive and complementary in-erests.

Games can also be divided according to the number of strategies available
to each player. When each player has a finite number of strategies, the game
is finite. If not, the game is infinite.

Finaily, games can be classified according to the rules assumed to govern
play. Games in which binding agreements are precluded are called nonco-
operative games. When binding agreements are possible, the game is termed
cooperative. '

+ A nontechnical treatment of utility theory can be found in Davis (1983, chap. 4). A mare
formai discussion is given in Luce and Raiffa (1957, chap. 2)-
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From a theoretical perspective, the distinction between noncooperative
and cooperative games is perhaps the most telling. For each of these two cate-
gories of games, a separate and not totally unified theory has evolved. For
this reason, it seems appropriate to review the developments within each
strand of theory individually. Recent advances in the noncooperative theory
will be discussed first.

III. NONCOOPERATIVE GAME THEORY

A. Noncooperative Game Theory: A Theoretical Overview
Nonceoperative game theory begins with the supposition that the players
are unable to communicate or negotiate binding agreements with each other.
Hence, this branch of game theory is particularly suited for analyzing situa-
tions where there are obstacles, such as antitrust laws, that block explicit
player communication, or where institutional mechanisms for enforcing con-
tracts do not exist, as might be the case in the international system.

In noncooperative game theory, the concept of an equilibrium outcome
plays a central role. An outcome is defined to be an equilibrium outcome
when no player has an incentive unilaterally to switch from his strategy asso-
ciated with it.

Since equilibrium outcomes represent stable points in the set of possible
societal states, they can be expected to be selected by rational agents on areg-
ular basis. Consequently, the identification of these regularly occurring out-
comes in both the model world of game theory and in the real world is a pre-
condition to the discovery and specification of general laws of social be-
havior.

In classical noncooperative game theory, the standard notion of stability
is due to Nash (1951). Briefly, Nash’s equilibrium concept assumes that
players consider only the immediate advantages and disadvantages of a uni-
lateral strategy switch. If no player can benefit immediately by changing his
strategy, the resulting outcome is a Nash equilibrium.

Nash’s equilibrium concept possesses a number of attractive features that
render it extremely appealing as the cornerstone of the theory of zero-sum
games. First is existence. In 1928, von Neumann proved his famous Minimax
Theorem, which established that all finite, two-person, zero-sum games have
a (Nash) equilibrium in either pure or mixed strategies. Second is equiva-
lence. Although several such equilibria may exist in a zero-sum game, each
equilibrium outcome is equivalent or has the same value. This means that
from the point of view of the players, there is no necessary tension among
various equilibria when multiple equilibria exist in a zero-sum game. And
finally, there is interchangeability. This means that an equilibrium outcome
is found at the intersection of all equilibrium strategies. Therefore, regardless
of the equilibrium strategy selected by a player in these games, the outcome
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will be a Nash equilibrium if the other player also selects some other equilib-
rium strategy.

Unfortunately, many of the attractive characteristics of Nash's equilib-
rium concept disappear when nonzero-sum games are examined. First, the
significance of Nash’s (1951) proof that all nonzero-sum games also have at
least one pure or mixed strategy equilibrium outcome is mitigated by the du-
bious relevance of the concept of a mixed-strategy in nonzero-sum games
(Shubik, 1982, pp. 250, 251). Moreover, when multiple Nash equilibria exist
in & nonzero-sum game, they are not necessarily equivalent or interchange-
able.

The limitations associated with Nash’s equilibrium concept present impor-
tant stumbling blocks for the development of a positive theory of politics
within a noncooperative game-theoretic framework. More specifically, un-
less competing equilibria can be eliminated in situations wherein muitiple
equilibria are found, or unless specific equilibria can be discovered where
none ostensibly exist, explanations and predictions derived from game-
theoretic models will be weak and less than fully satisfying. It is partly for this
reason that Ordeshook (1980, p. 450) has recently suggested that “the scien-
tific task before us ... appears no different from the one von Neumann and
Morgenstern confronted: generalizing and redefining the meaning of the
word ‘equilibrium.’ *?

Related to, but distinct from, the difficulties implied by either nonexistent
or nonequivalent and noninterchangeable Nash equilibria in nonzero-sum
games is a puzzle that stems from the possibility that an equilibrium out+
come, Nash or otherwise, may be less desireable than nonequilibria from the
vantage point of all of the players in a game. This puzzle manifests itself most
clearly in the game depicted in Figure 1, known as Prisoners’ Dilemma, after
a story,® attributed to A. W. Tucker, used to illustrate its structure.

In this nonzero-sum game, each of two players, A and B, is assumed to
have two strategies, either to cooperate, C, with the other player, or to desist,
D, from cooperation. These two strategies give rise to 2 X 2 = 4 possible
outcomes. In Figure 1, these outcomes are represented by the ordered pair in
each cell of the payoff matrix. For each player, the four outcomes are ranked
from best to worst, with “4” assizned to each player’s best outcome, “3” to
each player’s next-best outcome, and so on.’

1 As will be seen, Ordeshook’s observation applies equally well to cooperative game theory.

¢ For the original story, see Luce apd Raiifa (1957), p. 95.

* Game theorists have developed a number of devices for abstracting the essential fectures of
interactive situations. Games represented by a payoff matrix, as in Figure 1, are said to be repre-
sented in normal form. A normal form representation is 10 be contrasted with both the exrensive
(or game tree) form of representation in which a game 1ree is used to depict the sequence of moves
available to each player, and the characteristic function form of representation which specifies a
value, or the minimum payoff, that each player or coalition cxn guaraniee itself in a game.



RECENT ADVANCES IN GAME THEORY AND POLITICAL SCIENCE
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(2,2)

Figure 1 Prisoners’ Dilemma.

By convention, the first number in each cell of the payoff matrix repre-
sents the row player’s (i.e., A’s) evaluation of the associated outcome while
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the second number represents the evaluation of the column player (i.e., B).

For instance, if A chooses his strategy labeled “C,” and B chooses his strategy
labeled “D,” the outcome (1,4) results. This represents A's worst outcome

and B’s best outcome,

Notice from Figure 1 that desisting, (D), dominates cooperating, (C}, for
both players, that is, each player does better in this game by selecting his D
strategy, regardless of the strategy chosen by the other player. For instance,
if B cooperates, A induces his best outcome by desisting and his next-best
outcome by cooperating. And if B desists, A induces his next-worst outcome

by also desisting and his worst outcome by cooperating. By symmetry, a simi-

lar logic faces B.

Dominant strategies are unconditionally best strategies. Therefore, D is

each player’s optimal strategy. The resulting outcome, (2,2), is the unique

Nash equilibrium, and the next-worst for both players. Observe that if bork
players use their optimal strategy and desist, both are worse off than if both

use their nonoptimal strategy and cooperate. Paradoxically, however, since
each player has a dominant strategy, it remains true that each player is indi-

vidually better off using it and desisting.

Technically, the unique equilibrium outcome of this game is said to be
non-Pareto-optimal (or Pareto-deficient), that is, at lezst one player wouid

do better and the other would do no worse by switching 1o another outcome.

In this example, both players prefer (3,3) to (2,2). Conversely, the three

nonequilibria are all Pareto-optimal, that is, each is preferred to any other
outcome by at least one player. For instance, (3,3) is preferred to (1,4) by A,
to (4,1) by B, and to (2,2) by both players. Among the 78 distinct 2 » 2

games identified by Rapoport and Guyer (1976), Prisoners’ Dilemma alone is
uniquely characterized by these two features, i.e., dominant strategies lead-

ing to a Pareto-deficient equilibrium outcome.

Prisoner’s Dilemma is game theory’s most famous game, and it has

spawned an enormous amount of theoretical and experimental resezrch.

There are good reasons for this. First, the conflict between individual and
collective interest, highlighted and neatly summarized in this game, lies at the
heart of many important real-life situations with implications for political
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and other kinds of systems. For instance, a decision on whether or not to con-
tribute toward the acquisition of a public good, to cheat on one’s income tax,
to join a labor union, or to conserve electricity in a power shortage are all es-
sentiaily Prisoners’ Dilemma-type choices. They pit an individual’s narrow
self-interest against the interests of a community.

Moreover, this perverse game demonstrates the fallaciousness of Adam
Smith’s argument concerning the ultimate effect of an individual pursuing
“only his own gain.” Players in a Prisoners’ Dilemma game may, willy-nilly,
find themselves caught in a “catch 22” situation in which they are toth “done
in” by their rational calculations. Even though they are both better off if they
cooperate, the irrefutable logic of a dominant strategy dictates that each indi-
vidual, in pursuing his own selfish ends, defects from cooperation. Putina
slightly different way, in many significant real-world situations, there may be
“no invisible hand which brings the self-interest of one individual into har-
mony with the self-interest of another” (van den Doel, 1979, p. 55).

Finally, the paradoxical nature of the individually rational but collectively
irrational solution to this game has important ramifications for nations in
both their internal and external affairs. Internally, if in certain kinds of situa-
tions, individual members of a society are doomed to frustrate themselves
and produce nonoptimal societal states, the case for increased government
involvement in the private sector, and centralized political and econormic
control, would appear to be very strong. Indeed, the primary justification
given by political philosophers like Hobbes, Rousseau, and Hume for the’
very existence of the state is the premisc that individuals in Prisoners’
Dilemma-type situations will not cooperate with one another.®

Externally, if nations are unable to devise mechanisms for cooperating
with each other in areas of fundamental importance, we are condemned to
live in a world in which conflict is the norm and in which international peace
is but a respite for states preparing themselves for the next round of a prize
fight without a final bell, except perhaps in the case of apocalypse. Thus, for
a whole host of theoretical, philosophical and practicai reasons, a specifica-
tion of the conditions under which the dilemma of the prisoners can be over-
come would be welcome.

B. Noncooperative Game Theory: Recent Advances

In the previous section, the most salient theoretical problems, and the most
significant theoretical puzzle, of noncooperative game theory were ident-
ified. Since the mid-1970s, numerous efforts have been made to address one
or both of these areas of concern. In this section, the most persuasive of these
efforts are discussed.

1 For a specific discussion of the connection between Prisoners’ Dilemma and the work of
Hobbes and Hume, see Taylor (1976).
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1. The Fraser-Hipel Technique. Building upon earlier work by
Howard (1971), the Fraser-Hipel (1979) technique extends Nash’s notion of
an equilibrium outcome and, in the process, provides a useful new method-
ology for analyzing complex conflicts. To illustrate both the richness and the
empirical applicability of this new methodology, consider for now the Cuban
missile crisis of 1962.

As is well-known, the missile crisis began, at least for the United States, on
October 16, 1962, when President Kennedy was presented with the first hard
evidence that the Soviet Union was installing medinm- and intermediate-
range ballistic missiles in Cuba, The most realistic options available to United
States decision-makers at this time included:

1. Performing no aggressive action by either doing nothing or pursuing the
matter through normai diplomatic channels.

2. Launching a “surgical” air strike to destroy the missile sites.

3. Blockading Cuba.

Once the missiles were discovered, Soviet decision-makers also had to
make a choice from among three alternatives. They would either:

1. Withdraw the missiles.
2. Maintain the missiles.
3. Escalate the conflict.

Some of the options available to each superpower were mutually exclu-
sive, while others could be selected concurrently. For instance, the Soviets
could not simultaneously withdraw and maintain the missiles, although the
United States could blockade and attack the missile sites at the same time.

After eliminating four mutually exclusive combinations of options for
both players, twelve possible combinations, and hence, twelve different out-
comes, remain. These are listed as columns in Figure 2. In the last row of this
figure, the outcomes resulting from the various combinations of feasibie op-

Outcomes

us

Air Strike ¢ ! 01 0t 0 1 0 10 1

Blockade ¢ o 1 0 0 1 1 0 01 1
USSR

Withdraw o0 00111 1 0 00 0

Escalate o 00 0 0 0 00 1 1 1 |
Decimalized D1 2 3 4 5 6 7 8 9 1011

Figure2 Players, options and outcomes for the Cuban missile crisis (from Fraser &
Hipel, 1982).
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tions are “decimalized” or converted into a binary number which allows con-
venient mathematical operations to be performed on the outcomes (for de-
tails, see Fraser & Hipel, 1979, 1982). For the purposes of this essay,
however, these numbers will be used only to identify the various outcomes.

Each column in Figure 2 contains either a one (1) or a zero (0) next to each
option. A “one” indicates that the associated option has been selected, whilea
“zero” indicates that the option has not been selected.

Notice that the “do nothing” option of the United States and the “main-
tain” option of the Soviet Union, although not listed, are implicit in Figure 2.
The United States does nothing by not blockading or striking. The Soviet Un-
ion maintains by not withdrawing or escalating. Thus, in the first column, the
United States does nothing (note the zeros next to its two options) and the So-
viet Union maintains. In the second column (outcome 1), the United States
strikes (indicated by a one next to this option) and the Soviets maintain. The
options associated with the other ten outcomes are similarly interpreted.

In Figures 3 and 4, the various outcomes are arrayed in order of preference
(as established by Fraser & Hipel, 1982) for the United States and the Soviet
Union, respectively. For exampie, in this representation, the United States

Outcomes

us

Adr Strike ¢ 01110110 10 0

Blockade 01 0 1 1 01 1 01 0O
USSR

Withdraw 1 1171 0 0 0 00 O 0

Escalate o 00 0000 O0CT 11 1
Decimalized 4 6 5§ 7 2 1 3 01 9 10 8

Figure 3 Preference vector for the United States in the Cuban missile crisis (from
Fraser & Hipel, 1982).

Qutcomes

uUs

Air Strike ¢ 000111 11 10 0

Blockade o0 0! 100 1! 11 01 0
USSR .

Withdraw ¢ 1r 10 1t 01t 00 00¢ 0

Escalate O ¢ 0 0 0 0 0 01 1} !
Decimalized 0 4 6 2 5 1 7 31 9 10 8

Figured Preference vector for the USSR in the Cuban missile crisis (from Fraser &
Hipel, 1982).
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us
EE X X X X X X X X X X ] overall stability
r s u w r u uw u r u v ul player stability
4 6 5 7 1 3 0 119 108 1} preference vector
4 4 4 2 2 2 i1 n
6 6 11 g 9 Uls
5 3 10
USSR
r s r wr uor uvwouuwuu] player stability
0 4 2 5 1 7 3 119 108 ] preference vector
0 6 5 77 5 6 0
301 2 4 } Uls

Figure5 Stability analysis tablean for the Cuban missile crisis (from Fraser & Hipel,
1982).

most prefers outcome 4—in which the Soviets withdraw the missiles without
any overt American action —next most prefers outcome 6, and so on.

In Figure 5, the “unilateral improvements” (or “UJIs™ for each player from
each outcome are listed beneath the preference vector of each player. A uni-
lateral improvement is defined to be “an outcome to which a particular player
can unilaterally move by changing his strategy, assumning the other player’s
strategy remains the same” (Fraser & Hipel, 1982). For example, there is a
unilateral improvement from outcome 6 to 4 for the United States. From Fig-
ure 2 it can be seen that outcome 6 results when the United States blockades
and the Soviets withdraw. Thus the United States can induce outcome 4 from
6 by switching to its do nothing option. And since the United States is as-
sumed to prefer 4 to 6 (see Figure 3}, a unilaterat improvement from 6 to 4 is
listed in Figure 5.

To determine which of the twelve outcomes are equilibria, a four step
search procedure is necessary. The first three steps involve characterizing the
stability, or lack thereof, of each outcome from the point of view of each
player. In this regard, Fraser and Hipel (1979} identify three types of out-
comes: rational (r), sanctionec (s), and unstable (u).

Rational outcomes are defined as outcomes from which a player has no
unilateral improvement. Thus they represent a player’s best response to a
particular strategy of the other player. In Figure 5, all rational outcomes are
designated by an “r” above the preference vector of each player. For example,
the best outcomes of both the United States and the Soviet Union are judged
rational. Clearly, since these outcomes are best, neither player can induce a
better outcome by switching to another strategy, given the associated strategy
choice of the other.

Sanctioned outcomes, designated by an “s” in Figure 5, are those out-
comes for which the other player can credibly induce a worse outcome forthe
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player who acts upon a unilateral improvement and switches to another strat-
egy. A credible action is one which results in a more preferred outcome for
the player taking the action. When a player has at least one unilateral im-
provement for which the other player has no credible sanction, the outcome
is unstable, and is designated by a “u.”

For example, in Figure 5, 2 unilateral improvement for the United States
exists from outcome 6 to 4. But the Soviet Unon has a unilateral improve-
ment from 4 to cutcome 0, which is worse for the United States than 6. Hence
not only can the Soviet Union induce a worse outcomne for the United States if
the United States switches from 6 to 4, but it also has an incentive to do so.
Hence outcome 6 is sanctioned for the United States.

By contrast, outcome 5 for the United States is not sanctioned, and hence
is unstable. As was just demonstrated, the Soviets can sanction a move to 4,
but not to 6. Since 6 is rational for the Soviets, they have no credible response
to a United States move to 6. Thus, because the United States cannot credibly
be deterred from moving from 5 to 6, and also because it has an incentive to
so move, outcome 3 is listed as unstable for the United States.

After designating each outcome as either rational, sanctioned, or unsta-
ble, a test for stability by simultaneity is required to identify equilibrium out-
~omes. An outcome unstable for both players is rendered stable by simulta-
neity if, when both players move from a particular outcome simultaneously,
afl resulting outcomes are worse for both players.

For example, consider outcome I in Figure 5, which is unstable for both
players. The United States has a unilateral improvement from 1to 2, and the
Soviet Union has a unilateral improvement from I to 5. Tomovefrom I to 2,
the United States must switch from its strike option to its blockade option.
To move from I to 5, the Soviet Union must switch from its maintain option
to its withdraw option. If both change at the same time, i.e., the United
States blockades and the Soviet Union withdraws, cutcome 6 is induced.
Since outcome 6 is preferred by both players to outcome 1, outcome | is not
rendered stable by simultaneity, that is, it remains unstable. Each of the four
other outcomes in this game that are unstable for bo:h players are aiso not
stable by simultaneity.

After testing for stability by simultaneity, it is easy to determine which
outcomes are equilibria in this game. Any outcome that is not unstable for ei-
ther player is an equilibrium outcome. Only 4 and 6 pass this test, and in Fig-
ure 5 they are designated by an “E.” Nonequilibria are denoted by an “X.”

Fraser and Hipel (1979, pp. 810,,811) have proved that at least one such
equilibrium outcome exists in every game. To distinguish which of several
such equilibria will be selected when multiple equilibria exist, they suggest
that the status quo outcome, which was outcome 0 when the missiles were dis-
covered, be examined for clues. Although outcome 0 is rational for the Sovi-
ets, it is unstable for the United States which has a unilateral improvement to



RECENT ADVANCES IN GAME THEORY AND POLITICAL SCIENCE 71

three outcomes, of which its unilateral improvement to 2 is its' most
preferred. Qutcome 2, in turn, is unstable for the Soviets who have a unilat-
eral improvement from 2 to 6. Thus, by moving from 0 to 2, the United States
can induce outcome 6, which it also prefers to the original status quo. Of
course, 6 is one of the two equilibria in this game. Given the foregoing sce-
nario, one might expect it to evolve, which it did. Such considerations, inci-
dentally, introduce a dynamic element into the Fraser-Hipel methodology.

Notice that Fraser and Hipel have subtly extended the notion of a Nash
equilibrium?® by assuming that players not only assess the immediate conse-
quences of a strategy switch (this is the Nash criterion, i.e., outcomes that are
stable because they are rational for both players) but also take into account
both the rational response of the other player to a unilateral strategy switch
(i.e., outcomes that are rendered stabie by sanction), and the ramifications of
simultaneous strategy switches by all of the players (i.e., outcomes that are
rendered stable by simultaneity). Moreover, the extended notion of an equi-
librium outcome they have developed is not merely an exercise in definition.
The numerous empirical applications of their new methodology, including
the 1956 invasion (Wright et al., 1980) and subsequent nationalization
(Shupe et al., 1980) of the Suez Canal, the fall of France (Bennett & Dando,
1977, 1979), the Watergate tapes conflict (Meleskie, Hipel, & Fraser, 1982),
the 1979 Zimbabwe conflict {(Kuhn, Hipel, & Fraser, 1983), and the Alaskan
gas pipeline conflict (Savich, Hipel, & Fraser, 1983), demonstrate that their
equilibrium concept has both predictive and explanatory potential.

On the other hand, in some ways, Fraser and Hipel’s extension of Nash’s
stability criterion seems unnecessarily restrictive. More specifically, an arbi-
trary limit is imposed on the ability of the players to calculate the conse-
quences of moves and countermoves. More specifically, although their equi-
librium concept considers the possibility of a sanction being levied against a
player’s unilateral strategy switch, it does not take into account the possibil-
ity of countersanctions, subsequent countersanctions, and so on. Moreover,
when strategy switches by both players are considered, only the consequences
of simultaneous switches are examined, thus ignoring, again, the possibility
of sequential or aiternating moves by the players. Put in a slightly different
way, the criteria for stability advanced by Fraser and Hipel, while less my-
opic than Nash’s, do not seem farsighted enough.

Nevertheless, the Fraser-Hipel methodology does offer exciting possibili-
ties for anaiyzing a wide range of real-world conflicts. It is applicable to both
two-person and n-person games, Moreover, Fraser and Hipel have developed
mathematics that permit a computer analysis, using their basic algorithm, of
exceptionally large and complex conflicts. And finally, they have devised

* 1t is worth noting that the cooperative outcome, (3,3), in Prisoners’ Dilemma is rendered
stable if the criteria suggested by Fraser and Hipel are adopted.,
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methods for dealing with games in which some players might have erroneous
or partial information, called hypergames (Takahashi, Fraser, & Hipel, in
press), as well as for studying the effects of shifting or changing preferences,
thus adding an additional dynamic element to their model. Further refine-
ments and extensions of their new methodology can only be eagerly awaited.

2. Nonmyopic Equilibria. The concept of nonmyopic equilibrium,
recently developed by Brams and Wittman (1981), suggests one way to extend
the stability criteria of both Nash and Fraser and Hipel. Unlike both of these
equilibrium notions, the concept of a nonmyopic equilibrium places no
arbitrary limitation on the number of moves and countermoves players can
make. More specifically, it assumes that the following rules of play operate in
2 x 2 ordinal games:

1. Both players simultaneously choose strategies, thereby defining an initial
oufcome of the game.

2. Once at an initial outcome, either player can unilaterally switch his strat-
egy and change that outcome to a subsequent outcome.

3. The other player can respond by unilaterally switching his strategy,
thereby moving the game to a new outcome.

4. These strictly alternating moves continue until the player with the next
move chooses not to switch his strategy. When this happens, the game ter-
minates, and the outcome reached is the final outcome (Brams & Hessel,
1982).

The concept of a nonmyopic equilibrium also assumes that players are
able to anticipate the consequences of strategy choices made in games gov-
erned by these rules. Put another way, this equilibrium concept is a look-
ahead idea that assumes that a player will evaluate the consequences of de-
parting from an initial outcome, taking into account the probable response
of the other player, his own counterresponse, subsequent counterresponses,
and so on. If, for borh players, the starting outcome is preferred to the out-
come each player calculates he will end up at if he makes an initial departure,
the starting outcome is a nonmyopic equilibrium.!®

Nonmyopic equilibria exist in 37 of the 78 distinct 2 X 2 ordinal games
identified by Rapoport and Guyer (1966). Of these 37 games, only two have
rnonmyopic equilibria that are not also Nash equilibria. One of these is Pris-
oners’ Dilemma. Significantly, the other is “Chicken,” another notorious
game that has received considerable attention in the literature. In both of

19 It is imporiant Lo point out that in addition 10 surviving the backward induction process on
the trec for both piayers, for an outcome to be a nonmyopic equilibrium the process must termi-
nate, that is, it must not cycle back to the original ouicome. Brams and Wittman assume that
there will be no cycle if a node exists on the game tree whereby the player with the next move can
ensure his best outcome by staying at it.
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these games, the cooperative outcome is stable in the nonmyopic sense but
not in the sense of Nash. Thus this new equilibrium concept provides a ra-
tionale for cooperation in precisely the two games for which the question of
cooperative behavior is the most salient and problematic.

To see this, and to illustrate the calculation of this new equilibrium con-
cept, consider the game tree depicted in Figure 6, which lists the sequence of
moves and countermoves implied by a departure of Player A away from (3,3)
in the Prisoners’ Dilemma game of Figure 1. A’s incentive to move from this
outcome can be determined simply by working backwards up the game tree
and asking what the rational choice of each player is at each node or decision
point. If the outcome that is implied by this process is inferior to (3,3) for the
player postulated to have the first move on the tree — in this case, A—then
this outcome is stable in the nonmyopic sense for this player. If a similar cal-
culation also reveals that this outcome is stable in the nonmyopic sense for B,

A at

(3,3}

Stay Maove
/ \B at:
(3.3) “.0
Stay Move
A ar:
4.1 /(2,2)
Stay Move
Bar:
2.2 (1,4}
Stay/ Move
(1.4) (3.3

Figure6 Game Treerepresentation of moves in Prisoners’ Dilemma, starting with A
at (3,3).
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then it is a nonmyopic equilibrium outcome. On the other hand, if the out-
come implied by a departure from an initial outcome by either player, when
he is postulated to have the first move on the tree, is superior to the inttial out-
come, then this outcome is not stable in the nonmyopic or long-term sense.

At the last node on the tree, B must choose between staying at (1 ,4)—his
best outcome — or moving to (3,3)— his next-best outcome. Clearly, should
this node be reached in a sequence of moves and countermoves, B will ration-
ally choose to stay at (1,4).

But would such a sequence ever rationally get to this point if (3,3) is theini-

tial outcome? To determine this, consider A’s choice at (2,2). At this node, A
is faced with a choice of staying at (2,2)— his next-worst outcome —or mov-
ing to (1,4)— his worst outcome. Given this choice, A would not switch strat-
egies, thereby terminating the sequence of moves before B can choose at
(1,4).
Given A’s rational choice at (2,2), what shouid B do at the preceding node?
Here B can decide to stay at (4,1)—his worst outcome — or moveto {2,2) — his
next-worst outcome — which, because of the expected choice of A, would be-
come the final outcome. For B, the rational choice is to move to (2,2).

What should A do at the previous node, (3,3)?7 A can either stay at
(3,3) — his next-best outcome — Or Move to his best outcome at (4,1). How-
ever, as was just illustrated, a move to (4,1) implies (2,2) as the final outcome
in a sequence of moves and countermoves. Since A prefers (3,3) to {2,2), he
shouid rationally choose to stay at the original status quo-. Andsince A hasno
long-term incentive to depart from (3,3), the initial outcome is a nonmyopic
equilibrium for 4.

It is also a nonmyopic equilibrium for B. By symmetry, the calculus facing
B at (3,3) is identical to that of A. And since neither player has along-term in-
centive to move away from (2,3), this outcome is a nonmyopic equilibrium in
this game.

It should be pointed out, however, that (3,3) is not the only nenmyopic
equilibrium outcome in Prisoners’ Dilemma. The noncooperative ocutcome
(2,2)—th: unique Nash equilibrium and the conventional soiution to this
game —is also stable in the nonmyopic sense. If this outcome were the initial
outcome, neither player would have an incentive to change his strategy be-
cause the player with the subsequent move would immediately terminate the
process at the outcome best for him and worst for the departing player—
either (4,1) or (1,4).

More significant, though, is that (2,2) “absorbs” all other outcomes,
including itself, except for (3,3). This means that should either (1,4) or (4,1)
be reached in a sequence of alternating strategy choices, the outcome that
would be chosen would be (2,2), not (3,3). Thus the very calculations that en-
hance the stability of the compromise outcome can also undermine it.

Nevertheless, the cooperative outcome remains a NOnmyopic equilibrium
in this game. It thus provides a solution of sorts to Prisoners’ Dilemma. Pro-
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vided that the cooperative outcome is the initial outcome and that players can
make, and evaluate the consequences of, an unlimited number of moves and
countermoves, a strategy supporting the compromise outcome in a Prisoners’
Dilemma game is both farsightedly rational and stable in the long-term.

In addition to providing a new rationale for cooperative behavior in Pris-
oners’ Dilemma (and Chicken), the concept of 2 nonmyopic equilibrinm pos-
sesses a number of other features that render it both theoretically attractive
and empirically relevant, Perhaps the most appealing theoretical characteris-
tic of this new equilibrium concept is that it introduces a dynamic clement
into a normal-form, game-theoretic analysis. In addition, it is based on as-
sumptions that closely match the actuality of many real-life political games;
it is readily calculable and interpretable; and since it is based only on ordinal
utilities, it requires fewer “heroic assumptions” than other decision-making
models that rest upon the notion of cardinal utility.

Tt is also worth pointing out that the underlying dynamic approach postu-
Jated by Brams and Wittman has been extended in a number of interesting
ways. For example, Brams and Hessel (1982) have explored the absorbing
properties of outcomes inthe 412 X 2 games without nonmyopic equilibria.
Zagare (1984b) has examined the consequences of limitations on the ability
of players to make all of the logicaily possible moves and countermoves in a
2 x 2 game. And Kilgour (1984) has defined an extended nonmyopic equi-
librium for players who are able to predict the ramifications of an unlimited
number of strategy changes, including those that result in “cycling back” to
outcomes that have already been reached. In addition, several intuitively sat-
isfying notions of power have been defined and the implications of these defi-
nitions within a sequential framework explored. To wit: Brams (1 932a,
1982b) has studied the effect on outcome stability of “moving power,” or the
ability of one player to move indefinitely after the other player is forced to
stop after some finite number of moves. Brams and Hessel (1983, 1984) have
examined the consequences of both “staying power,” wherein one player can
make his initial strategy choice after the other and stay at this outcome until
after the other player moves from it, and “threat power,” where inan iterated
game, one player can threaten to movetoa Pareto-inferior outcome to deter
or compel the other player from making undesired choices in subsequent
plays o the game. (A comparison and synthesis of these various notions of
power is given in Brams, 1983). And Zagare (1985, in press) has explored the
implications of this new conceptual framework for deterrence in one-shot
games. Finally, like the methodology devised by Fraser and Hipel, the pre-
dictive and explanatory potentiai of the Brams-Wittman framework has
been demonstrated in several empirical applications, including the Polish
strategic situation of 1980-81 (Brams & Hessel, 1984), and the Middle East
conflicts of 1967 and 1973 (Zagare, 1981, 1983).

Tnough the concept of a nonmyopic equilibrium has been extended in sev-
eral directions relevant to the study of politics, some significant issues remain
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unanswered, and many important theoretical questions have yet to be exam-
ined in a systematic way. For example, this new equilibrium concept has only
been fully developed for 2 x 2 games and its extension to larger games re-
mains problematic (but see Kilgour, 1984 for one possible extension). In ad-
dition, not all 2 X 2 games have outcomes stable in the nonmyopic sense, al-
though, with somewhat stronger assumptions, a similar type of stability can
be induced in these games (Brams & Hessel, 1982). And the effects of back-
tracking on outcome stability have not yet been completely studied. Still, the
dynamic framework developed by Brams and Wittman, and extended by
others, represents a maturing methodology and provides a promising starting
point for examining the conditions leading to stability (or the lack thereof) in
many open-ended political games in which decision-makers think seriousiy
about the long-term as well as the short-term ramifications of their actions.
As such, it is certain to inspire further theoretical modification and refine-
ment and empirical testing and application.

3. Supergames. Through the concept of a nonmyopic equilibrium
provides one way of resolving the tension between individual and collective
interests, the conditions underlying the stability of the compromise outcome
in Prisoners’ Dilemma are somewhat restrictive and may not always be
satisfied. Are there any other conditions under which players might
cooperate in games of this type?

Almost from the time that the paradoxical nature of Prisoners’ Dilemma
was first recognized, game theorists have specuiated that cooperation is
rational when the players are faced with repeated plays (called supergames)
of this game with the same opponent. For instance, despite presenting
evidence that the use of any strategy that is an equilibrium strategy in a
Prisoners’ Dilemma supergame of finite and known length will result in the
repeated selection of the noncooperative outcome, (2,2), throughout the
sequence of games, Luce and Raiffa (1957, p. 101) asserted that they would
not choose (D) at every move if this game were played more than once, but
would try to teach the other player to cooperate by rewarding him if he does
and punishing him if he does not. And Davis (1983, p. 113) has suggested,
thoagh without proof, that Luce and Raiffa’s argument has merit, but only
when the number of times the game is iterated is not known.

s this intuition justified? Taylor (1976) has provided a provocative way of
addressing this question. He begins, first, by assuming that the number of
times the game will be repeated is not fixed. ! Following an eariier suggestion
by Shubik (1970}, he also assumes that players discount the value of thetr

13 Iterated games in which the last game occurs with some random probability known to the
piayers are usvally referred to as “stochastic games,” For a discussion of Prisoners’ Dilemma
played under these conditions, see Hill {1975).
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future payoffs, that is, that they value a present payoff more than a payoff
received at some unspecified time in the future. This does not mean that
future payoffs are seen as worthless, just worth less.'? And finally, since the
number of strategies in an iterated game is potentially very large, Taylor
assumes that only the following five strategies are available to the players:

D=: (D) is chosen every time the game is repeated.

C™: (C)ischosen every time the game is repeated.

Ayt (C)ischosen in the first game and in every subsequent game as long
as the other player chooses (C). If the other player chooses (D), (D) is
selected for the next k games regardless of what the other player
does. Then (C) is chosen until the other player chooses (D), in which
case (D) is chosen for the next &k + 1 games and so on.

B:  (C)is chosen in the first game and the choice of the other player is
chosen in the next and subsequent games.

B: Same as B except that (D) is chosen in the first game. (B and B’ are
two variations of a tit-for-tat strategy).

Arguing that these five strategies are the ones most likely to be considered by
players in an iterated Prisoners’ Dilemma game, at least ona conscious level,
Taylor (1976, pp. 32-33) asked whether any of the 5 x 5 = 25 outcomes
resulting from these five strategics are (Nash) equilibria in the Prisoners’
Dilemma supergame.

Not surprisingly, Taylor proves that (D=,D%) will always be an equilib-
rium in the iterated game, since a single player cannot do better by unilater- .,
ally switching to one of the four other strategies. Conversely, (C=.,C=)is
never an equilibrium since one player can always improve his payoff by
switching to (D) for the remaining plays of the game. In addition, as Taylor
(1976, pp. 31-43) shows, depending on the rate at which the players discount
future payoffs and the vaiue of the payoffs in the component games, the fol-
lowing are sometimes equilibria:

1. The four pairs in which each player uses ither A, or B. In each case, the
outcome is mutual cooperation in every ordinary game throughout the
supergame.

2. The three pairs in which each player chooses B’ and the other player B’ or
D. In each case, the outcome is mutual defection throughout the
Supergame.

3. The two strategy pairs (B,B") and (B',B). Here the outcome is an alteration
throughout the supergame of.(C,D) in one ordinary game and {D,C)inthe

12 The analysis of the payoffs to players in a repeated game requires that the sum of the
payoffs of each component game be finite. Such is the case if discounting is assumed (Taylor,
1976, pp. 29-30). For a discussion of other assumptions that impiy a finite payoff to playersina
repeated game situation, see Harris (1969) and Rapoport {1967).
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next, beginning with (C,D) in the first game in the case of (B,B’) and with
{D,C) in the case of (B',B).

In an empirical sense, equilibria of category (3) do not seem relevant for
many situations (e.g., an arms race) involving repeated plays of a Prisoners’
Dilemma game. Because minor complicarions are introduced when category
(3) equilibria are admitted, '3 they will be rejected on empirical grounds to fa-
cilitate the subsequent discussion.

If category (3) equilibria are eliminated from consideration, then it is pos-
sible for some or all four of the mutual defection equilibria to coexist with
some or all of the mutual cooperation equilibria of category (1). Basically,
this oceurs if each player’s discounting of future payoffs is “sufficiently low,”
that is, if each player does not prefer the payoff resulting from unilateral de-
fection in the first component game and mutual defection in afl subsequent
component games to the payoff resulting from mutual cooperation through-
out the repeated game (Taylor, 1976, p. 89). Since each murtual cooperation
equilibrium is both equivalent and interchangeable with every other one, and
in addition is Pareto-optimal under these conditions, it is clear that if at least
one equilibrium of category (1) exists, the outcome of the iterated Prisoners’
Dilemma game will result in the repeated selection of the cooperative out-
come on every move of the game!

Before euphoria takes over, however, it is important to remember that this
result applies only when the limited number of strategies considered by
Taylor are available to the players. But as two recent computer tournaments
{Axelrod, 1980a, 1980b) demonstrate, these five strategies hardly exhaust the
set of reasonable strategies. Hence, the relevance of Taylor’s results to a wide
variety of empirical situations must remain suspect.

By contrast, Axelrod’s (1981) “evolutionary approach” to the iterated
Prisoner’s Dilemma game is not restricted by arbitrary limits placed upon the
number of strategies available to the players. This approach, which considers
all possible strategies, posits “the existence of a whole population of individu-
als employing a certain strategy, B, and a single mutant individual employing
another strategy, A” {Axelrod, 1981, p. 310).

If the players in this game interact with each other one at a time, then it is
possible that the expected payoff of an individual using strategy A is higher
than the expected payoff of a member of the general population. In this case,
strategy A is said to invade strategy B. But if the converse is true, and if no
other strategy can invade B, B is said to be coflectively stable.'*

Are there any conditions under which a cooperative strategy can invade a

13 For a brief discussion, see Taylor (1976, pp. 88-89).

14 Axelrod's conception of a collectively stable strategy is based upon the idea of an evoiu-
tionary stable strategy developed by Maynard Smith and Price (1573) to study problems of bio-
logical evolution. For a discussion of this concept and subsequent developments in this field, see
Maynard Smith (1982).
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noncooperative strategy in an iterated Prisoners’ Dilemma game? And are
there any conditions under which a cooperative strategy is collectively stable
in such a game?

To answer this question, Axetrod, like Taylor, assumes a discount param-
eter, w—where0 < w < 1 —whichcan be interpreted as before, or as an esti-
mate that an individual player makes of the probability of encountering the
same opponent in a future game. Thus, the smaller w is, the less important
future payoffs become.

Interestingly, Axelrod proves that a tit-for-tat strategy that cooperates in
the first game and then reciprocates the previous choice of the other player in
each subsequent game —Taylor’s (B) strategy —is a collectively stable strat-
egy, provided that wis sufficiently large. Unfortunately, a strategy of se-
lecting (D) on every play of the iterated Prisoners’ Dilemma game is a/ways a
collectively stable strategy, regardless of the value of w. This means that a
population of unconditionally noncooperative players (called meanies) can-
not be invaded by conditionally cooperative players arriving in the popula-
tion one at a time.

To some extent, however, this dismal conclusion can be mitigated if new-
comers arrive in clusters, rather than individually, and if the newcomers in-
teract with each other more than they interact with members of the general
population. As Axelrod shows, under these conditions, a number of strate-
gies can invade a world of meanies. Of those strategies that can invade a pop-
ulation of noncooperative players, maximatly discriminating strategies re-
quire the smallest amount of interaction among members of the invading
cluster. “A strategy is maximally discriminating if it will eventually cooperate
even if the other has never cooperated yet, and once it cooperates it will never
cooperate again with ALL D but will always cooperate with another player
using the same strategy” (Axelrod, 1981, p. 316). Significantly, tit-for-tat is
one such maximally discriminating strategy.

From this and related results, Axelrod (1981) concludes that

cooperation can emerge even in a world of unconditional defection. The devel-
opment cannot take place if it is tried only by scattered individuals who haveno
chance 10 interact with each other, But cooperation can emerge from small clus-
ters of discriminating individuals, as fong as these individuals have even a small
proportion of their interactions with each other. Moreover, if nice strategies
(those which are never the first 1o defect) eventually come to be adopted by vir-
tually everyone, then those individuals can afford to be generous in dealing with
any others. The population of nice rules can also protect themselves against
clusters of individuals using any other strategy just as well as they can protect
themselves against single individuals....So mutual cooperation can emerge in a
world of egoists without central control, by starting with a cluster of individuals
who reiy on reciprocity. (p. 317)

This is a long way from the pessimistic assessment usually associated with
this game, and confirms what was suspected all along, namely that cooper-
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ation is rational in the indefinitely repeated Prisoners’ Dilemma game. Nev-
ertheless, because this result —and the results suggested by Brams and
Wittman (1981) and Taylor (1976} — depend upon highly specific sets of as-
sumptions, they should sensitize us to the fact that cooperation is not auto-
matic and may be difficult to achieve in the real world. Stated optimisticaily,
these iindings suggest that mutual cooperation in a Prisoners’ Dilemma situ-
ation is possible if piayers take a long-run view of things and consider the fu-
ture consequences of their present actions. Unfortunately, in many impor-
tant political games, it seems as if players take too seriously John Maynard
Keynes's well-known dictum that in the long-run we will all be dead.

IV. COOPERATIVE GAME THEORY

A. Cooperative Game Theory: A Theoretical Overview

The cooperative branch of game theory differs in both spirit and appear-
ance itom its noncooperative cousin. Most of these differences stem from the
assumption, missing in the noncooperative theory, that there are rules that
allow the players to negotiate binding agreements with each other.

The assumption about the possibility of binding agreements that distin-
guishes cooperative from noncooperative game theory has important impli-
cations for the outcomes that each branch of theory predicts are likely to be
selected by rational players. As already indicated, since the noncooperative
theory assumes that binding agreements are not possible, attention is focused
almost exclusively on outcomes that are, in effect, self-enforcing, that is, are
equilibrium outcomes. By contrast, in the cooperative theory, no special sta-
tus is afforded to equilibrium outcomes—as previously defined —since
players are assumed to be able to commit themselves to any outcome. In-
stead, cooperative game theory attempts to single out those outcomes from
among the set of possible outcomes that rational players wouid agree to.
Minimally, it is assumed that such an outcome must satisfy both the condi-
tions of individual rationality and group rationality.

Individually rational outcomes guarantee each player a payoff at least as
good as the payoff he can ensure himself without the assistance of any other
player. Similarly, outcomes that satisfy the condition of group rationality {or
Pareto-optimality) provide the set of all players with a payoff equal to the
payoff that the group can guarantee itself.

The set of outcomes that satisfy the conditions of individual and group ra-
tionality in a two-person game define the von Neumann-Morgenstern solu-
tion (also called the negotiation ser) for this category of games (von Neumann
& Morgenstern, 1953). In n-person games, outcomes that satisfy these two
conditions are termed impurations.

Since the von Neumann-Morgenstern solution and the set of imputations
typically contain an infinitely large number of outcomes, they do not provide
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particularly satisfying solutions to their respective categories of cooperative
games. Consequently, in order to induce more determinate results, game the-
orists have imposed more restrictive conditions on the set of possible out-
comes. For a variety of reasons, most of the resultant theory is either not
compelling or not of immediate relevance to students of politics.

For example, in two-person cooperative game theory, most formal work
begins with the imposition of normative conditions that theorists fee] a ra-
tional agreement should satisfy. (For this reason, Luce and Raiffa (1957) re-
fer to these models as “arbitration schemes.”) Hence most of two-person
cooperative game theory is totally devoid of a descriptive interpretation. And
although several solution concepts in n-person cooperative theory admit
both a descriptive and normative interpretation, existent solution concepts
are also deficient because for many games they are either empty (e.g., the
core), or too inclusive {e.g., the von Neumann-Morgenstern V-solution), or
because they are defined by assumprions that are not particularly germane to
the study of politics.!*

B. Cooperative Game Theory: Recent Advances

In this section, two possible exceptions to the foregoing characterization of
cooperative game theory are discussed, a solution to finite two-person
cooperative games proposed by Rice (1979), and a solution to n-person
cooperative games, called the competitive solution, put forth by McKelvey,
Ordeshook, and Winer (1978).

1. The Rice Solution for Two-Person Games. Rice’s (1979) attempt
to define a solution for a two-person cooperative game is comprised of botha
description of a negotiation scenario and an examination of the rational
consequences of the process he postulates. The inherent plausibility of this
scenario —which will not be fully described here —as well as the fact that it
leads to a unique outcome that satisfies several properties characteristic of
the traditional, axiomatic solution concepts, including both individual and
group rationality, renders Rice’s solution worthy of attention.

In Rice’s model, players are assumed to have the option of choosing to
negotiate. They will only negotiate when they can guarantee 2 better outcome
than they can ensure by not negotiating. If they both choose to negotiate,
Rice assumes that their behavior is characterized by threats and promises
rendered credible by some “mechanism external to the game” (Rice, 1979, p.
565). In other words, Rice assumes that each player is able to commit himself
to any available strategy.

15 For example, the assumption of “transferable utility,” which is a standard siruplifying as-
sumption, renders most of existent cooperative game theory inappropriate for examining those
segments of the political world (e.g., legislatures) that are characterized by indivisible outcomes
(McKelvey, Ordeshook, and Winer, 1978).
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In the negotiation scenario posited by Rice, one player is assumed to move
first. In some games, the players will not be indifferent towards the order of
play, since the Rice solution may be different when one piayer, rather than
the other, makes the first move. But in the real world, Rice argues, this issue
is oftentimes resclved by circumstances. And when this question is not
resolved, negotiations might break down. Negotiations will also break down
if the player who makes the second move anticipates a lower payoff than the
payoff he anticipates if he does not negotiate. The player with the first move
will always do better by negotiatiing than by not negotiating.

If both players agree to negotiate, Rice assumes that the player with the
first move begins by specifying what he will do in response to each possible
choice of the other player. The problem for this player, then, is 10 determine
that combination of threats and promises that produces his highest payoff.

For example, in the game depicted in Figure 7, if Player A is assumed to
make the first move, he can guarantee a payoff of 15 by “promising” to select
a; if Player B selects by, and “threatening” to select a, if Player B selects any
other strategy. If Player A can commit himself to this combinarion of threats
and promises, Player B will do best and receive a payoff of 3 if he selects b,
and will receive a payoff of less than 3 (either 2, 1, or 0) if he selects b,, bs, or
b, respectively. No other combination of threats and promises induces a
better outcome for Player A. Similarly, if Player B moved first, he could also
ensure a payoff of 15 by promising to select b; in response to a,, and
threatening to select b, in response to any other strategy selected by Player A.

Will this game be negotiated? Rice says “no” since either player will receive
a payoff of only 3 if he makes the second move in the negotiated game, but
will receive payoff of 7 [associated with the unique Nash equilibrium, (7,7)] if
the game is played noncooperatively and negotiations do not take place.

By contrast, Rice argues that the game in Figure 8 would be negotiated. In
the negotiated game, the Rice solution is (9,4) or (4,9), depending on whether
Player A or Player B moves first, while the unigue Nash equilibrium of the

Playver B
by b2 b3 b4
1 (14,14) (3.15) (4.9) (13.11)
Player A 2 (15.,3) (10,10) (5.8) @.12)
23 9.4) (8.9 a.n (1,6)
2 (11,13) (12,2) 6.1) ©,0)

Figure 7 (From Rice, 1979, p. 571, reprinted by permission of Sage Publications,
Inc.).
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Player B
5| b2 by

' (3.8 (4,9) (1.7

Player A 2 9,4 (5.5 (2.6)

3 (L1 (6.2) 3,3

Figunre 8 (From Rice, 1979, p. 574, reprinted by permission of Sage Publications,
Ine.).

nonnegotiated game, (3,3}, is less than the payoff for either piayer in the ne-
gotiated game. »

Given this view of the negotation process, it is clear that the external en-
forcement mechanism posited by Rice must be activated by the consent of
both players. This suggests that each player, regardless of whether he moves
first or second, woulid have a certain amount of bargaining leverage over the
other. Yet, curiously, the Rice solution would seem to apply only to those sit-
uations wherein the player with the second move is completely unable to use
this leverage in any meaningful way.

To see this, consider again the game of Figure 8. Recall that the unique
Nash equilibrium in this game, and presumably the solution if the game is not
negotiated, is (3,3). To sustain this supposition, Rice must assume that only
{Nash) equilibrium strategies are credible in the nonnegotiated game. This
means that neither player can be said to possess what Brams and Hessel
(1984) call “threat power,” or the ability to induce a better outcome by credi-
bly threatening to move to a Pareto-inferior outcome. Put in a slightly differ-
ent way, Rice implicitly assumes that the nonnegotiated game is played be-
tween players of approximately equal power.

But what if this game is negotiated and Player A is assumed to make the
first move. As already indicated, Player A can propose (9,4) with the proper
combination of threats and promises and, according to Rice, Player B would
rationally accept this proposal, since it is better than the payoff he would ex-
pect in the nonnegotiated game. Similar reasoning would suggest, however,
that Player B could make a counteroffer —say, (4,9) or even (8,8). Would not
Player A also rationally accept either of these two offers? Since neither
player is assumed to have superior negotiating power (see the foregoing) the
answer must be in the affirmative. Of course, Player A would prefer to make
acounteroffer to Player B's counteroffer, and Player B would prefer to make
a subsequent counteroffer, and so on. Consequently, when the order in
which the players move is not fixed, the Rice solution is essentially indeter-
minate.
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As Rice argues, however, this indeterminacy is eliminated if and when the
negotiation order is set and is itself not negotiabie. Moreover, this order must
be exogenously determined since, as just argued, neither player can be as-
sumed to have a power advantage. But this leads to a small problem. How
can the negotiation order be both fixed and exogenously determined on the
one hand, and triggered by the consent of the players on the other? Either the
order in which the players make their moves is fixed or it is not. If it is fixed in
the negotiated (cooperative) version of this game, then one would expect it to
be fixed in the nonnegotiated (noncooperative) variant, though Rice implic-
itly assumes that it is not. And if it is not fixed, then one would expect that it is
negotiable, in which case the Rice solution may be indeterminate.

There are, of course, games like Prisoners’ Dilemma for which the order in
which the players move is inconsequential since the Rice solution is the same
for each player, regardless of whether he moves first or second. Still, this
should not obscure the fact that for the Rice solution to be determinate and,
hence empirically meaningful in games other than these, both players must be
able and willing to activate an external enforcement device that is (a) prede-
termined, nonnegotiable, and unalterable, and (b) may confer a distinct ad-
vantage on one of them. Such restrictive requirements, though, seriously
limit the real-world relevance of Rice’s solution concept. Thus one must con-
clude, unfortunately, that Rice’s proposed solution, while theoreticaily ele-
gant, is limited, by its assumptions, in its empirical applicability.

2. The Competitive Solution for N-person Games. Implicit in the
notion of the competitive solution recently developed by McKeivey, Orde-
shook, and Winer (1978) is the supposition that prorocoalitions, or potential
winning coalitions in an n-person game, compete with each other for pivotal
players who can render a protocoalition a winning coalition. The competi-
tion is assumed to take the form of an auction in which the bids are outcomes
(called proposals) that can be enforced if and when the protocoalition
reaches winning size.

Clearly, the set of proposals is identical to the set of possible outcomes.
Some proposals, however, are not viable. Specifically, if the set of players
who are pivotal between two protocoalitions strictly prefer one outcome, say
A, toanother outcome, say B, B is not considered to be a viable proposal with
respect to the two protocoalitions and the set of pivotal players. Proposals
that are not viable will (presumably) be rejected by rational players and need
not be considered as likely societal states.

To define a competitive solution for an n-person cooperative game,
McKelvey, Ordeshook, and Winer introduced the notion of a balanced set of
proposals. A set of proposals is balanced if (a} each distinct proposal is asso-
ciated with a different coalition, and (b) each proposal in the set is viable
against all other proposals in the set.
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In some games, many balanced sets of proposals may exist, but only pro-
posals from those balanced sets that are unable to be upset are likely to be
considered by pivotal players. A balanced set of proposals is upset if a pro-
posal exists that is viable against every proposal in the set and is strictly
preferred by the pivotal players associated with at least one proposal in the
set. Balanced sets of proposals that cannot be upset are said to constitute a
competitive solution to an n-person game. !

To iilustrate these concepts with an example, consider a legislature com-
posed of three players (or three factions) that must decide which of three bills
to pass. The utilities that each player is assumed to attach to each of the eight
possible combinations of these three bills, including passing none or all of
them, are listed in Figure 9.

Since this legislative body is also assumed to operate by majority rule, each
player needs the support of at least one other player to constitute a winning
coalition. Suppose, then, that legislator 1 and legislator 3 are competing for
the support of legislator 2. Legislator 1 could propose to pass all three bills if
legislator 2 joins bim in a coalition, thereby inducing a payoff of 3 and 1 to
legislators 1 and 2, respectively. But this offer is not viable since legislator 3
can make a counteroffer (i.e., to pass bills 2 and 3} that is preferred by legisla-
tor 2 to the offer of legislator 1.

By contrast, legislator 3's offer to legislator 2 is viable since legislator 2 is
indifferent between it and the best counteroffer that legisiator 1 can make
(i.e., to pass bills 1 and 2). For similar reasons, legislator 1's counteroffer is
also viable.

What if legislators 1 and 2 were competing for legislator 3? In this case,
both legisiator 1's proposal to pass bills I and 3, and legislator 2’s proposal to
pass bills 2 and 3, Constitute viable proposals. And finally, if legislators 2 and
3 were competing for legisiator 1, both legislator 2's proposal to pass bills 1
and 2, and legislator 3’s proposal to pass bills 1 and 3 are viable.

Given these considerations, the following set of proposals constitute a
(strong) competitive solution for the game depicted in Figure 5:

MAIJORITY DECISION PROPOSAL

pass only bills 1 and 2 4,3,-6; [1,2])
pass only bills 1 and 3 (4,—4,3; (13D =K
pass only bills 2 and 3 (-2,3,3,12,3D

First note that this set is composed only of proposals that are viable against
each other, thereby rendering this a balanced set. And second, observe that
there is no proposal in this set that can be upset by any proposal not in the set,

1¢ Slightly more stringent requirements define a strong competitive solution, For the details,
see McKeivey, Ordeshook, and Winer (1978).
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Bills Passed by the Commities

Legistator None 1 2 3 1&12 14&3 2&3 All
1 0 5 —1 -1 4 4 -2 3

0 -2 5 -2 3 -4 3 1
3 0 -3 -3 6 -6 3 3 0

Figure® Three-Person, three-bill logrolling example (from McKelvey, Ordeshook,
& Winer, 1978, p. 601).

that is, there is no alternate proposal that is preferred by each member of any
winning coalition. Thus the requirements that define a competitive solution
are met.

The competitive solution possesses a number of characteristics that render
it extremely attractive as a solution for n-person cooperative games. First, it
is based on an intuitively satisfying and behaviorally meaningful notion of
coalition competition. In addition, it is a general solution that does not de-
pend upon restrictive assumptions (e.g., transferable utility) that divorces it
from many meaningful political situations, although, as McKelvey,
Ordeshook, and Winer, (1978, p. 614) point out, the competitive solution
seems especially applicable when bargaining among the players is
unrestricted. Moreover, since the competitive solution is equivalent to both
the core and the (main-simple) von Neumann-Morgenstern V-solution when
they exist, “it is a natural extension of these classical solution concepts”
(McKelvey, Ordeshook, & Winer, 1978, p. 600). Existant experimental sup-
port for these two solution concepts, therefore, can also be interpreted as
corroborating evidence for the empirical validity of the competitive
solution.!?

On the other hand, crucial theorems concerning both the existence and the
uniqueness of the competitive solution do not exist. And since the competi-
tive solution has vet to be applied to a real-world political problem, further
theoretical and empirical research is required before a final judgment can be
made about its explanatory and predictive power.

V. SUMMARY AND CONCLUSIONS

It is not easy to offer a summary evaluation of the advances made in the
game theory and politics literature during the last decade. The primary rea-
son for this is that game theory is not really a single theory —at least the way
most political scientists think of the term “theory” —but is rather a coliection
of different theories that are interrelated and connected, but not fully inte-

17 For contrary evidence, see McKeivey and Ordeshook (1983).
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grated. And, as one might expect in a maturing science, developments within
the various strands of theory are uneven and do not necessarily mirror one
another.

Still, some general observations can be gleaned from the pockets of re-
search reviewed in this essay. First, it seems clear that the achievements of the
nencooperative branch of game theory have outstripped those of the
cooperative theory. This is perhaps because the problems normally addressed
by the noncooperative theory (e.g., tWo-person versus 7-person games) are
inherently more tractable. Nevertheless, the research examined herein does
indicate that noncooperative game-theoretic models are emerging from the
normative-theoretical realm into a form whereby they can provide more
compelling explanations and sounder predictions about political activity.
This development stems from the more realistic assumptions that underlie
these models and from a greater appreciation by theorists of the need to
adapt and modify basic, unadorned constructs to the exigencies of the real
world.

Second, the notions of rational behavior and of outcome stability have
undergone considerable refinement during the past ten years.!® Coinciden-
tally or not, all of the efforts revived in this essay that have attempted to mod-
ify Nash’s equilibrium concept have sought to extend it by incorperating into
each player’s calculus the long-term consequences of their present actions.
For instance, both Taylor’s and Axelrod’s work examine the rational implica-
tions of particular strategy choices for player payoffs in future plays of a
game with the same, or similar opponents, whereas Fraser and Hipel’s tech-
nique for analyzing complex conilicts, and Brams and Wittman’s notionof a
nonmyopic equilibrium, consider these ramifications within the confines of a
single game. Significantly, in some way, each of these efforts also provides a
resolution of the Prisoners’ Dilemma game, and thereby augments our un-
derstanding of the conditions that are conducive to player cooperation when
there is a conflict between individual and collective interests. This latter
achievement is perhaps the single most impressive addition to the literature in
recent years.

All of which is not to say that there have been no achievements within the
cooperative branch of the theory. Rice’s efforts to evolve a solution for two-
person cooperative games is noteworthy beyond the areas for which it is im-
mediately applicable, because it represents the first attempt of consequence
to study these games when the strategies available to the players are finite in
number, and when the outcomnes produced by these strategies are not divisi-
ble. Similarly, by also avoiding the assumption of transferable utility,
McKelvey, Ordeshook, and Winer’s definition of a competitive solution for

1% For a mathematical analysis and comparison of several noncooperative equilibrium con-
cepis, see Kilgour, Hipel, and Fraser (1984).
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n-person games avoids many of the limitations the more standard solution
concepts possess when they are applied to political games. Both of these ef-
forts, therefore, are encouraging because they constitute fundamental theo-
retical refinements of a form that should enhance the refevance of this strand
of game theory to political scientists.

In conclusion, it appears that the game theory and politics literature has
reached a mature stage. Concepts and models that have immediate import to
the study of politics are being developed. Moreover, pofitical scientists them-
selves are for the first time sharing in this development of the theory. Thisisa
healthy trend because it portends the evolution of the paradigm in ways that
will make more likely the realization of a positive theory of politics within a
game-theoretic perspective.
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